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Profinite groups with linear subgroup growth

By ANER SHALEV (Jerusalem)

Dedicated to the memory of Edith Szabó

Abstract. We show that profinite groups with linear subgroup growth have
a prosoluble open subgroup, while profinite groups with faster subgroup growth
need not have this property. Our proofs involve some number theory and the
structure of finite simple groups.

1. Introduction

For a group G and a positive integer n let an(G) denote the number
of subgroups of index n in G. Understanding the connections between
the growth of the series {an(G)} and the structure of G has been a major
research topic in the past two decades (see the book [LS] and the references
therein). What can be said about groups with linear subgroup growth
(satisfying an(G) ≤ cn for all n, where c is some constant)?

We may (and will) assume our groups G are residually finite. If in
addition G is finitely generated (as an abstract group) then it was shown
in Theorem 1.2 of [Sh3] that G has linear subgroup growth if and only if
it is virtually cyclic (namely, has a cyclic subgroup of finite index).
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However, for profinite groups (finitely generated only topologically)
this is no longer true. The simplest example is G = Zp × Zp, where
an(G) = (pn−1)/(p−1) for all n = pk (and 0 otherwise). Moreover, pro-p
groups with linear subgroup growth need not even be soluble [K1]; their
characterization (for odd p) has been obtained by Klopsch [K2].

A natural question which is still open is to characterize profinite groups
of linear subgroup growth. Our main result is a step towards such a char-
acterization, showing that such groups are well-behaved in some sense.

Theorem 1.1. Profinite groups of linear subgroup growth are virtu-

ally prosoluble of finite rank.

Note that while finitely generated abstract groups of polynomial sub-
group growth are virtually soluble of finite rank [LMS], this is not true for
profinite groups; see [SSh] for the characterization of profinite groups with
polynomial subgroup growth.

Can we extend Theorem 1.1 for groups of somewhat faster subgroup
growth? Our second result provides a negative answer, thus showing that
Theorem 1.1 is best possible in some sense.

Theorem 1.2. For every function f : N → N such that f(1) = 1 and

f(n)/n → ∞ there exists a 2-generated profinite group G which is not

virtually prosoluble such that an(G) ≤ f(n) for all n.

It is noteworthy that our proof of Theorem 1.1 relies on the Classifi-
cation of Finite Simple Groups.

In Theorem 1.2 we may take for G a cartesian product of the groups
PSL2(p), where p ranges over a certain infinite set of primes, whose con-
struction requires some number theory.

Notation. By a finite simple group we mean a non-abelian finite simple
group. Let p, pi denote prime numbers, and q a prime power. The field
with q elements is denoted by Fq, and Zp denotes the p-adic integers. Let
Cm be the cyclic group with m elements. A semisimple group is a Cartesian
product

∏
i Ti (finite or infinite) of finite simple groups Ti. The rank of a

profinite group G is the minimal r (possibly infinity) such that any closed
subgroup of G can be generated (topologically) by at most r elements.
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2. Proofs

In this section we prove Theorems 1.1 and 1.2.
We start by quoting a structure theorem for profinite groups with

polynomial subgroup growth, which will be a main tool in this section.

Theorem 2.1. Let G be a profinite group with polynomial subgroup

growth. Then G has closed normal subgroups N ≤ H ≤ G such that

(i) H is open (hence of finite index) in G;

(ii) N is prosoluble;

(iii) There are a number 0 ≤ k ≤ ∞ and finite simple groups Ti

(1 ≤ i < k), such that H/N =
∏

i<k Ti;

(iv) Each finite simple group T occurs only finitely many times in the

sequence (Ti : i < k);
(v) There is a constant c (depending on G) such that each group Ti is

a group of Lie type of Lie rank ≤ c over the field Fp
ei
i

, where ei ≤ c;

(vi) G is virtually prosoluble of finite rank if and only if k < ∞.

Proof. This follows from Theorem 1.2 in [Sh1] and the remarks fol-
lowing it. See also the more general result in [SSh]. �

Now let G be a profinite group with linear subgroup growth. Then G

has the structure as in Theorem 2.1 above, and to prove Theorem 1.1 it
suffices to show that k < ∞.

This requires some preparations regarding simple groups of Lie type
(see Carter [C] for background).

Lemma 2.2. Every Coxeter group has a subgroup of index 2.

Proof. Let G be a Coxeter group. Then there is a length function l

defined on G such that l(g) is the minimal length of a word in the canonical
generators which represents g. Since the relators of the group all have even
length, we have l(gh) ≡ l(g)+ l(h) mod 2. Thus the set of elements of even
length in G form a subgroup, which is obviously of index 2. �

Lemma 2.3. Let G = G(q) be a finite simple group of Lie type over

Fq. Suppose q is odd and q > 11. Let B,N ≤ G form a (B,N)-pair. Then

the subgroup N is self-normalizing in G, namely NG(N) = N .
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Proof. We apply a paper of Seitz [S] studying the groups G(q) under
our conditions on q. Let H ≤ B be a Cartan subgroup. Then N =
NG(H) by result 2.3 in [S], and result 2.8(b) loc. sit. shows that H is a
characteristic subgroup of N. Therefore any g ∈ NG(N) satisfies Hg = H,
so NG(N) = N . �

Lemma 2.4. Let G be a finite simple group of Lie type over Fq, where

q > 11 is odd. Then G has subgroups M > K satisfying |M : K| = 2 and

NG(M) = M .

Proof. Let B,N ≤ G form a (B,N)-pair, where B is a Borel sub-
group, H = B ∩ N is a Cartan subgroup, H � N , and the Weyl group
W = N/H is a Coxeter group. It follows by Lemma 2.2 that W has a sub-
group of index 2. Thus N has a subgroup of index 2, which we denote by
K. Lemma 2.3 and our assumptions on q show that N is self-normalizing
in G. Setting M = N we obtain the result. �

Remark. The conclusion of Lemma 2.4 also holds for alternating groups
G = An (n ≥ 5). Indeed take M = (Sn−2 × S2) ∩ An in the natural in-
transitive embedding. Then M is a maximal subgroup of G, hence it is
self-normalizing. Letting K be An−2 acting on the first n − 2 letters, we
obtain the result.

We can also show that the assumptions on q in Lemma 2.4 may be
weakened, but the present version is sufficient for our purpose here.

Proposition 2.5. Let G be an infinite profinite semisimple group.

Then the subgroup growth of G is super-linear.

Proof. Write G =
∏∞

i=1 Ti where Ti are finite simple groups. We may
assume G has polynomial subgroup growth, otherwise the conclusion holds
trivially. Note that, if H ≤ G is an open subgroup whose subgroup growth
is super-linear, then the subgroup growth of G is super-linear. Applying
Theorem 2.1 and replacing G with an open subgroup we may assume that
the groups Ti satisfy conclusions (iv) and (v) of the theorem.

Therefore only finitely many groups Ti can be of Lie type in character-
istic 2 (otherwise either the Lie ranks, or the extension degrees ei, will be
unbounded). Similarly only finitely many group Ti can be of Lie type over
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Fq for q ≤ 11. By passing again to an open subgroup if needed, we may
assume that, for each i, Ti is a simple group of Lie type over Fqi , where qi

are odd prime powers larger than 11.
Applying Lemma 2.4 it now follows that each Ti has a self-normalizing

subgroup Mi which has a subgroup Ki of index 2. Set mi = |Ti : Mi|.
Given an integer s ≥ 1, consider the quotient L = T1×· · ·×Ts of G, and let
M = M1×· · ·×Ms and K = K1×· · ·×Ks. Then M < L is self-normalizing
and M/K ∼= Cs

2 . Let N be a subgroup satisfying K < N ≤ M such that
N/K ∼= C2 with the property that N/K projects onto each subgroup
Mi/Ki (i = 1, . . . , s). Then M/N ∼= Cs−1

2 , and so there are at least
2(s−1)2/4 subgroups H < L such that N ≤ H ≤ M and |M : H| = 2(s−1)/2

(assuming, for simplicity, that s is odd). These subgroups have index
m1 · · ·ms2(s−1)/2 in L, and their images under the natural projections
L → Ti (i = 1, . . . , s) are M1, . . . ,Ms respectively.

The same process can be repeated for all conjugates Mx,Kx of M and
K, where x ranges over a set of representatives for the cosets of M in L.
Note that there is no overlapping between the subgroups H corresponding
to distinct elements x. Set m = m1 · · ·ms, and n = m · 2(s−1)/2. Since
there are m possibilities for x, we conclude that

an(G) ≥ an(L) ≥ m · 2(s−1)2/4 = n · 2(s−1)(s−3)/4.

Letting s tend to infinity, we see that the series {an(G)/n} is unbounded.
This completes the proof. �

We can now prove Theorem 1.1. Let G be a profinite group with
linear subgroup growth. Then G has polynomial subgroup growth, so its
structure is described in Theorem 2.1 above. Now, the open subgroup H

of G has linear subgroup growth, and so does H/N =
∏

i<k Ti. Applying
Proposition 2.5 above it follows that k is finite. Hence G is virtually
prosoluble of finite rank.

Theorem 1.1 is proved.

To prove Theorem 1.2 we make use of a construction devised in [Sh1].
We choose an infinite series {pi} of primes satisfying pi ≡ 67 mod 72 such



384 Aner Shalev

that |PSL2(pi)| = pi(p2
i − 1)/2 is not divisible by any prime p > 3 divid-

ing |PSL2(pj)| = pj(p2
j − 1)/2 for some j < i. This can be done using

Dirichlet’s Theorem.
It then follows that

gcd(|PSL2(pi)|, |PSL2(pj)|) = 12 for all i 	= j.

Set G =
∏∞

i=1 PSL2(pi). It is well known that G is 2-generated as a
profinite group. Clearly G is not virtually prosoluble, and has infinite
rank.

The subgroup growth of groups G constructed as above is analyzed
in Section 5 of [Sh1]. Lemma 5.1 there shows that there exists a constant
A > 1 such that for any integer n ≥ 1 there is an integer s ≥ 0 satisfying

p1 · · · ps ≤ n and an(G) ≤ nAs2
. (1)

Next, given a function f with f(1) = 1 and f(n)/n → ∞ we construct
a sequence of primes {pi} as above, which grows fast enough, so as to
satisfy the additional requirement

p1p2 · · · ps ≤ n ⇒ As2 ≤ f(n)/n. (2)

This can be done inductively, requiring that ps > ns/(p1 · · · ps−1), where
ns = max{n : f(n)/n < As2}.

It now follows from (1) and (2) that an(G) ≤ f(n) for all n.
Theorem 1.2 is proved.

3. Concluding remarks

Profinite groups with sublinear subgroup growth are exactly those
which have an open pro-cyclic central subgroup (see [Sh2]). Can we expect
a concise description of profinite groups with linear subgroup growth? The
purpose of this section is to indicate a negative answer. Indeed, we give
some examples, which show that any characterization of profinite groups
with linear subgroup growth must have an essential arithmetic component.
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Let G be a pro-nilpotent profinite group. Then G =
∏

p Gp, where,
for each prime p, Gp is the pro-p Sylow subgroup of G. We also have, for
n =

∏
p pkp ,

an(G) =
∏

p

apkp (Gp).

Suppose G has linear subgroup growth. Then it follows that each pro-p
group Gp has linear subgroup growth, and so its structure is given in [K2].
Furthermore, setting cp = supk apk(Gp)/pk, we must have

∏
p cp < ∞.

Conversely, a Cartesian product of pro-p groups Gp satisfying an(Gp) ≤
cpn and

∏
cp < ∞ is itself of linear subgroup growth. These remarks

essentially reduce the pro-nilpotent case to the pro-p case and the de-
termination of the constants cp. For example, for Gp = Zp × Zp we have
cp = p/(p−1) = 1+(p−1)−1, and the above discussion yields the following

Corollary 3.1. Consider the abelian profinite group G =
∏

p Z
bp
p

where p ranges over the prime numbers and bp are natural numbers. Then

G has linear subgroup growth if and only if bp ≤ 2 for all p, and

∑

{p:bp=2}
p−1 < ∞.
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