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Embeddings into absolutely solvable groups

By EDIT SZABÓ (Debrecen)

Abstract. We prove that every solvable group can be embedded as a sub-
group into an absolutely solvable group. However, we construct solvable groups
that cannot be embedded as subnormal subgroups into absolutely solvable groups.

1. Introduction

The notion of absolutely solvable groups was introduced by Professor
Gerhard Pazderski. In a previous paper [7] we investigated properties of
the formation of absolutely solvable groups. It turned out that a subgroup
of an absolutely solvable group need not be absolutely solvable, as for
example A4 � S4 shows. Therefore it is worth investigating which groups
can be embedded as subgroups into absolutely solvable groups. We find
that the situation is similar to the well known class of M-groups (see [3],
Section V.18), namely, every solvable group can be embedded into an
absolutely solvable group (cf. [3], V.18.11). Then we show that such an
embedding is not possible if we require the subgroup to be normal or
subnormal.

Let us recall the definition of an absolutely solvable group. Let G be
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a finite solvable group with a chief series

G = N0 > N1 > · · · > Nn−1 > Nn = 1,

that is, the Ni’s are normal subgroups of G and this series is not refinable.
Solvability of G yields that each chief factor Ni−1/Ni is an elementary
abelian pi-group for some prime pi, so |Ni−1/Ni| = pdi

i for some di ≥ 1.
Hence Ni−1/Ni is isomorphic to the additive group of the vector space of
dimension di over the pi-element field. Every element g ∈ G induces an
automorphism of Ni−1/Ni by conjugation: xNi �→ gxg−1Ni, x ∈ Ni−1.
This way we obtain a linear representation of G into GL(di, pi). Since
Ni−1/Ni is a chief factor, this representation is irreducible. If all these
representations are absolutely irreducible, that is, they remain irreducible
if considered over an arbitrary extension field, then the group G is called
absolutely solvable.

2. Embedding as a subgroup

We are going to show that every finite solvable group can be embedded
as a subgroup into an absolutely solvable group. The construction will be
based on the following lemma. For an arbitrary prime p we denote by Lp

the group of linear functions {x �→ ax + b (x ∈ Zp) | a, b ∈ Zp, a �= 0}
considered as a permutation group of degree p.

Lemma 2.1. Let A be an absolutely solvable group. Then the wreath

product A � Lp is also absolutely solvable.

Proof. Let G = A �Lp which can be written as a semidirect product
ApLp. Since G/Ap ∼= Lp is supersolvable, it is enough to show that the
action of G on each chief factor below Ap is absolutely irreducible. Let
A = A0 > A1 > · · · > Ak−1 > Ak = 1 be a chief series of A. Using
induction on k, we may assume that G/Ap

k−1
∼= (A/Ak−1) �Lp is absolutely

solvable, so it remains to consider the chief factors below Ap
k−1. For the

sake of brevity let us denote B = Ak−1. We distinguish three cases:
(1) B � Z(A);
(2) B ≤ Z(A), |B| = p;
(3) B ≤ Z(A), |B| = q for some prime q �= p.
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Case (1): If the minimal normal subgroup B of A is not central, then
Bp is a minimal normal subgroup of G (see [1], A.18.5(a)). We have to
show that the action of G on Bp is absolutely irreducible. We use the
criterion that the centralizer of the action must consist of the scalar trans-
formations (see [4], 9.2). Indeed, if we consider the action of Ap on Bp

then it splits into the direct sum of p pairwise non-equivalent absolutely
irreducible representations. The action of Lp permutes these constituents
transitively. Now the matrices commuting with the action of Ap are all
diagonal matrices with the diagonal entries constant in each block corre-
sponding to a direct factor of Bp. These blocks are permuted by Lp, hence
the diagonal entries are all equal, the matrix is a scalar matrix, as needed.

Case (2): In this case Bp is the natural permutation module for Lp

over the p-element field Zp. We may consider the elements of Bp as func-
tions Zp → Zp. Then the conjugation action of Lp becomes simply func-
tion composition. Now we obtain a part of a chief series of G by taking
Bp = Vp > Vp−1 > · · · > V1 > V0 = 1 with Vj consisting of the polynomial
functions of degree less than j (j = 1, . . . , p). The corresponding chief fac-
tors have dimension one, hence the representations on them are absolutely
irreducible.

Case (3): In this case Bp is again the natural permutation module
for Lp, but in a different characteristic. Now Bp = V0 ⊕ V1, where V0 =
{(b1, . . . , bp) ∈ Bp | ∑p

i=1 bi = 0} and V1 = {(b, . . . , b) | b ∈ B}. On V1 the
representation is one-dimensional, hence absolutely irreducible. We show
that the representation on V0 is absolutely irreducible as well. Let F be any
field of characteristic q and consider the FLp-module V F

0 = {(f1, . . . , fp) ∈
F p | ∑p

i=1 fi = 0}. We may and do assume that F contains all p-th roots
of unity. Let W ⊆ V F

0 be a nonzero FLp-submodule. Let t ∈ Lp be the
permutation x �→ x + 1 of order p. Then t has an eigenvalue ε �= 1 on W .
For 1 ≤ k ≤ p − 1 we have that tk is conjugate to t in Lp, hence εk is also
an eigenvalue of t acting on W . Therefore, W has dimension at least p−1,
thus W = V F

0 , as we wanted. �
Theorem 2.2. Every finite solvable group can be embedded as a

subgroup into an absolutely solvable group.

Proof. Let G be a finite solvable group with a composition series
1 = G0 � G1 � · · · � Gk−1 � Gk. Let the composition factor Gi/Gi−1 be
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the cyclic group Cpi of prime order pi. Then G can be embedded into the
iterated wreath product Cp1 � Cp2 � · · · � Cpk

(see [3], I.15.9), which is in
turn a subgroup of Cp1 �Lp2 � · · · �Lpk

. Repeated application of Lemma 2.1
shows that the latter group is absolutely solvable. �

One should note that the absolute solvability of A is essential in
Lemma 2.1.

Proposition 2.3. Let T ≤ Sn be an arbitrary transitive permutation

group, and assume that the wreath product G � T is absolutely solvable.

Then G is absolutely solvable.

Proof. Assume the contrary and let N/N0 be a chief factor of G on
which the action of G is not absolutely irreducible. We will show that
(G/N0) � T is not absolutely solvable, so neither is G � T . We may assume
without loss of generality that N0 = 1, so N is a minimal normal subgroup
of G on which the action of G is not absolutely irreducible. Let N →
N , x �→ x′ be a non-scalar linear transformation which commutes with
the action of G. Then Nn → Nn, (x1, . . . , xn) �→ (x′

1, . . . , x
′
n) obviously

commutes with the action of G�T on Nn and is not a scalar transformation.
Thus G � T is not absolutely solvable. �

We will make use of Proposition 2.3 in Section 4.

3. Normal embeddings

A normal subgroup of an absolutely solvable group need not be ab-
solutely solvable as the example A4 � S4 shows. So it might be conceiv-
able that even a result stronger than Theorem 2.2 would hold, namely
that every solvable group could be embedded into an absolutely solvable
group as a normal subgroup. However, we will give a counterexample.
M. W. Short ([6], Section 6.5, pp. 81–83) constructs a maximal solvable
subgroup M of GL(3, p) for p ≡ 1 (mod 3) with the following structure:
M has a normal subgroup M0 which is a central product of an extraspecial
group of order 27 and a cyclic group of order p− 1, and M/M0

∼= Sp(2, 3).
So we have |M | = 216(p − 1). Furthermore, M is an irreducible subgroup
of GL(3, p). Let U be the natural module on which M acts, so U is an
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elementary abelian group of order p3, and let H = UM be the natural
semidirect product.

Lemma 3.1. The group H possesses the following properties:

(1) U is the unique minimal normal subgroup of H.

(2) Z(H) = 1.

(3) Every automorphism of H is inner.

(4) If H � G, then G = H × CG(H).

(5) H is solvable but not absolutely solvable.

Proof. Since M acts irreducibly on U , it is clear that U is a minimal
normal subgroup of H = UM . If we consider H in its faithful natural
action as affine group over the underlying vector space, then U is a regular
subgroup, hence CH(U) = U , so it follows that U is the unique minimal
normal subgroup of H. Now Z(H) ≤ CH(U) = U , but M does not fix any
vector in U , hence (2) follows.

To show (3) let ϕ be an arbitrary automorphism of H. Since U =
Op(H) is a characteristic subgroup of H, it is ϕ-invariant. The restric-
tion of ϕ to U induces a linear transformation belonging to the normal-
izer of M . However, as M is a maximal solvable subgroup, it is its own
normalizer. Hence ϕ induces the same linear transformation on U as a
suitable element m∈M . Also, ϕ(M)< H is a complement to U in H, and
as all complements are conjugate in H (see [5], Exercise 9.1.14, p. 253),
there exists a u ∈ U such that ϕ(M) = uMu−1. We show that ϕ

is just the inner automorphism of H induced by the element um. If
x ∈ U then ϕ(x) = mxm−1 = umxm−1u−1. Further, if y ∈ M and
z = m−1u−1ϕ(y)um, then z ∈ M , and

zxz−1 = m−1u−1ϕ(y)umxm−1u−1ϕ(y)−1um

= m−1u−1ϕ(y)ϕ(x)ϕ(y)−1um

= m−1u−1ϕ(yxy−1)um

= yxy−1

shows that y−1z ∈ CM (U), so z = y because CM (U) = 1. This proves
that the inner automorphism in question and ϕ agree both on U and on M ,
and therefore the agree also on H = UM , as claimed.
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It is well known that (4) follows from (2) and (3), see [5], 13.5.7.
By its construction H is solvable, but it has a quotient Sp(2, 3), hence

also a quotient isomorphic to A4, which is not absolutely solvable, so H is
not absolutely solvable either. �

Theorem 3.2. The solvable group H cannot be embedded as a normal

subgroup into any absolutely solvable group.

Proof. Let H � G for some solvable group G. Then Lemma 3.1(4)
yields that G = H × CG(H), so H is a quotient group of G. Since H is
not absolutely solvable, neither is G. �

4. Subnormal embeddings

Recall that a subgroup H is called subnormal in G if there exists a
sequence H = Hn � Hn−1 � · · · � H1 � H0 = G. The length of the shortest
such series is called the subnormal defect of H. Let us define the series of
successive normal closures by taking HG,0 = G and HG,i+1 = HHG,i

, the
normal closure of H in HG,i for i = 0, 1, 2, . . . . If H is subnormal in G

then we have

H = HG,n � HG,n−1 � · · · � HG,1 = HG � HG,0 = G,

where n is the subnormal defect of H in G (see [5], 13.1.1).
Throughout this section H will denote the group defined in Section 3.

Our goal is to strengthen Theorem 3.2 by considering subnormal embed-
dings.

Theorem 4.1. The solvable group H cannot be embedded as a sub-

normal subgroup into any absolutely solvable group.

The proof will be based on two lemmas.

Lemma 4.2. Let H have subnormal defect 2 in G, and assume that

Op′(G) = 1. Then HG is the direct product of the distinct conjugates of

H in G, and G/CG(HG) is isomorphic to a wreath product of H with a

transitive permutation group.
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Proof. First of all, note that the condition Op′(G) = 1 is inherited by
normal, hence also by subnormal subgroups of G. Let Hg be a conjugate
of H. Suppose that Hg∩H �= 1. As the subnormal defect of H is 2, both H

and Hg are normal in HG. From Lemma 3.1(1) it follows that Hg∩H ≥ U .
Lemma 3.1(4) yields that HHg = H × CHHg(H). Here |CHHg(H)| =
|HHg : H| = |Hg : Hg ∩H| divides |Hg : U |, so it is relatively prime to p.
Since Op′(HHg) = 1, we obtain that Hg = H. So we have proved that
distinct conjugates of H intersect trivially. Now if the different conjugates
of H are Hg1, Hg2, . . . , Hgk , then Hgi∩〈Hg1, . . . ,Hgi−1,Hgi+1 , . . . ,Hgk〉 ≤
Hgi ∩ CG(Hgi) = Z(H)gi = 1, hence HG is indeed the direct product of
the distinct conjugates of H.

Consider the action of G on HG = Hg1 × · · · × Hgk by conjugation.
The kernel of this action is CG(HG). Let us denote the image by Ḡ. Since
the direct factors are permuted by Ḡ, we have that Ḡ ≤ Aut(H) � Sk. By
Lemma 3.1(3) every automorphism of H is inner, hence Ḡ ≤ Inn(H) � Sk.
Since HG induces Inn(H)k, we get Ḡ = Inn(H) � T for some transitive
permutation group T ≤ Sk. As Inn(H) ∼= H we obtain that G/CG(HG)
is isomorphic to H � T . �

Lemma 4.3. Suppose that Op′(G) = 1. If H is subnormal in G, then

the subnormal defect of H in G cannot exceed 2.

Proof. Suppose by way of contradiction that H has subnormal defect
n ≥ 3 in G. Then H has subnormal defect 3 in HG,n−3, so we may assume
without loss of generality that the subnormal defect of H is 3.

Let L = HG and K = HL, so H � K � L � G. By Lemma 4.2, K =
Hx1 ×· · ·×Hxk (xi ∈ L) is the direct product of the distinct conjugates of
H by elements of L, and L/CL(K) is isomorphic to a wreath product H �T
of H with a transitive permutation group T . Let V = Ux1 × · · · × Uxk be
the direct product of the conjugates of U . Since U is the unique minimal
normal subgroup of H, it is easy to see that V is the unique minimal
normal subgroup of L contained in K. Clearly, CL(V ) = V CL(K), and
we have L/CL(V ) ∼= (H/U) � T .

We will apply the result of Fletcher Gross ([2], Theorem 3.12) on
the uniqueness of wreath products. Now we do not have the exceptional
case from Gross’s theorem, since our M ∼= H/U is not a “special dihedral
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group”. Hence the base group in the wreath product (H/U) �T is a charac-
teristic subgroup, that is, KCL(V )/CL(V ) is characteristic in L/CL(V ).

Take an element g ∈ G and suppose that Kg ∩ K �= 1. Since both
K and Kg are normal in L, we have that Kg ∩ K ≥ V , so V g = V .
Hence the conjugation by g induces an automorphism on L/CL(V ). As
KCL(V )/CL(V ) is characteristic in L/CL(V ), we obtain KgCL(V ) =
KCL(V ). Using CL(V ) = V CL(K), we get KgCL(K) = K × CL(K).
Now CL(K) ∩ KgK � L and its order |CL(K) ∩ KgK| = |KgK : K| =
|Kg : K∩Kg| divides |Kg : V |, so it is relatively prime to p. As Op′(L) = 1
we must have Kg = K.

Similarly as in the proof of Lemma 4.2 it follows now that L is the
direct product of the distinct conjugates of K. Then, however, H is normal
in L, contrary to our assumption on its subnormal defect. �

Proof of Theorem 4.1. Let us assume that H is a subnormal sub-
group in G. Since U is the unique minimal normal subgroup of H, we
have H ∩ Op′(G) = 1, hence G/Op′(G) contains a subnormal subgroup
isomorphic to H as well. So we can assume without loss of generality that
Op′(G) = 1. By Lemma 4.3 the subnormal defect of H is at most 2. If H

is normal in G, then we already know that G cannot be absolutely solv-
able (Theorem 3.2), so we have to deal with the case when the subnormal
defect of H is 2. By Lemma 4.2 G has a quotient group isomorphic to a
wreath product of H with a transitive permutation group. Since H is not
absolutely solvable, Proposition 2.3 yields that G is not absolutely solvable
either. �
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