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On the secant method

By IOANNIS K. ARGYROS (Lawton)

Abstract. We apply the Secant method to solve nonlinear operator equations in
a Banach space. We assume that the operator has Holder continuous derivatives. When
the operator has a bounded second Fréchet-derivative, our results reduce to the one’s
obtained by J.E. DENNIS, T.J. YPMA and others.

1. Introduction

Consider an equation
(1) F(z) =0

where F' is a nonlinear operator between two Banach spaces E, E. A
Newton-like method can be defined as any iterative method of the form

(2) Tpy1 =2 — L F(2,), n=0,1,2,---; x5 pre-chosen

for generating approximate solutions to (1). The {L, } denotes a sequence
of invertible linear operators. This is plainly too general and what is re-
ally implicit in the title is that L, should be a conscious approximation
to F'(x,), since when L,, = F'(z,,), the method reduces to the Newton-
Kantorovich method. The convergence of (2) to a solution of (1) has been
described already by DENNIS in [4] and the references there. The basic
assumption made is that the Fréchet-derivative F’ of F' is Lipschitz con-
tinuous in some ball around the initial iterate. We relax this requirement
to operators that are only Hoélder (¢, p) continuous, ¢ > 0, 0 < p < 1.
Moreover the Secant method is being examined as in a special case of (2).

An error analysis is also provided.
Relevant work has been done by T.J. YPmA [10], [11].
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Our results can be compared favorably with the ones obtained in [4],
[10], [11], [8]. In particular, they reduce to the ones in [4] for p = 1.

I. Preliminaries

From now on we assume that F is once Fréchet-differentiable at every
point x € E and noteAthat F'(z) € L(E, E), the space of bounded linear
operators from F to FE.

Definition 1. We say that the Fréchet-derivative F’(x) is Holder con-
tinuous over a domain D if for some ¢ > 0, p € [0, 1]

(3) 1F(z) = F'(y)ll < clle —yl|”, forall z, yeD.
We then say that F'(-) € Hp(c,p).
Definition 2. Let ty and t’ be non-negative real numbers and let g

be a continuously differentiable real function on [tg,to + t'] and p be a
continuously Fréchet-differentiable operator on

Uzg,t)={z € E||r—x|| <t} CE

into F/. Then the equation
t=yg(t)
will be said to majorize the equation
z=P(x) on U(xg,t)
if
1P (z0) — zoll < g(to) — to

and
|P'(z)|| <g'(t) for ||z —xol <t—tg<t.

We will need the following results whose proofs can be found in [5]
and [8] respectively.

Lemma 1. Let {z,}, n = 0,1,2,... be a sequence in E and {t,},

n=0,1,2,... a sequence of non-negative real numbers such that
(4) ||xn+1 _xn” <tpt1—tn, n=0,1,2,...
and

t, -t <oo as n— oo.
Then there exists a unique point x* € E such that
T, — T as n— oo

and
|le* —x,|| <t*—t,, n=0,1,2,....

If inequality (4) holds then we say that iteration {t,} majorizes iter-
ation {x,},n=0,1,2,....
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Lemma 2. Let F': E — E and D C E. Assume D is open and that
F'(-) exists for every x € D. Let Dy be a convex set with Dy C D such
that F'(-) € Hp,(c,p), then

1F (@) = Fy) = F'(2)(z = y)ll < 5 ipllw —y|P* forall w,y € Dy.
We can now prove a lemma which reduces to lemma 3.5 in [5] for
p=1.
Lemma 3. Assume that for any z,y € Dy C D there is a divided
difference operator 6F(z,y) € L(E, E) such that

(5) 0F (z,y)(x —y) = F(z) — F(y)
and if u € Dy,
(6)  [[0F(z,y) = 0F (y,w)|| < bz — ul|” + Loz — yl|” + L2lly —ul)”,
where (1,05 > 0 are independent of x,y and wu.
Then the following hold:
(a) 0F (z,x) = F'(x), x € Int Dy; and
(b) F'(-) € Hp,[2(¢1 + ¢2),p] for any fixed p € (0,1].
PROOF. (a) Let us choose x € Int Dy and 6 > 0 such that U(z,d) C

0-
For ||Az| < 0, we have

|F(z + Az) — F(z) = 0F (x, x)(Az)|| = [[[0F (x + Az, x) — 6 F(z, z)|(Az)||
< |[|0F(x + Az, ) = 0F (2, 2) ||| Az]] < (€ + L2)[| Az Az].
The above inequality proves (a) when ¢; + ¢5 # 0 and ||Az|| — 0.

To cover the case when ¢; = f5 = 0, note that by (6) there is an

L € L(E, E) such that 6F(z,y) = L for every x,y € Dy. Therefore, by
(5), we can choose d arbitrarily above and set F'(x) = L.
(b) For part (b), let 2,y € Dy then by (6)

|F'(z) = F'(y)ll < [|0F (2, 2) = 6F(z,y)|| + [0F (z,y) — 6F (y, y)||
< bz —yl|” + boflz —yl|P + 4|z — y|P + Lflz -y
= 2(ly + Lo) ||z — y[P.
That completes the proof of the lemma.

Note that conditions of the form (6) have been considered in [4, p.444]
for p = 1. Moreover, conditons (6) can be reduced to the ones considered
by T. J. YPMA in [10, p.242] if we choose the divided difference operator
0f to be the Fréchet derivative F' of F'. ~

From now on we will assume that p € (0,1) and let Dy = U(xo, R) C
D for some fixed g € D and sufficiently small R > 0.
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II. Main convergence results

We can now prove the following theorem on the convergence of itera-
tion (2) to a locally unique solution x* of equation (1).

Theorem 1. Let F'(:) € Hp,(c,p) and assume that:

(i) for every n with {xp} C Dy, k = 0,1,2,...,n, there exists an
invertible operator L,, € L(E, E) and positive real numbers d, d, d,, such
that:

(7) LY <d)t, with d<d, <d.

n

(ii) For a, b > 0, with b < d, both independent of n the following
estimate holds:

p
8) |1F(xn) = Lall < dn +ac | Y oy —2ja]l | —b, n=0,1,2...
j=1
0
(the convention ) ||x; — x;—1] = 0 is understood).

j=1
(iii) Let us define the real function f and the iteration {t,} by

ca

O) S = ST b dollLg Fa)l, ¢ € [0,00),
tn

(10) mﬂzm+f;% to=0
and assume that the function f has a minimum positive zero ro such that
(11) 0<||z1 — a0l <rog <M,
where

b\ 1 d+b—d \'*
12 M = mi — —(d Py [ — =
. - Kca) Calprny drect); (c<2p+a(1+p))
provided that
(13) d4+b—d>0
and
(14) (_](330,7’0) C Dy.
Then

(a) the sequence {t, } is increasing, bounded above by its limit ro and

majorizes the sequence {x,,} given by (2) that remains in U(xq,ro) for all
n=0,1,2,....
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(b) The sequence {z,,} converges to a unique solution z* in U(zg,7¢)
of equation (1) and

(15) [Zn41 — 2| <70 —tasr; n=0,1,2,....
PRrROOF. (a) Using (2), (9), (10), and (11) we have
21 — @oll = [|Lg ' F(xo)[l = t1 —to = t1 < 0.

That is 21 € U(zo,70).
Let us assume that:

{xk} C U(xo,T‘o),
|leg — zp1|| <tp —tp—q for E=1,2,... . n

and t < ro. We shall show that (16) holds for k =n + 1.
The iterate z,, 41 is well defined since F'(z,,) and L. ! are. By (2), (7),
(8), (9) and (16) we get

g1 — 2pl| <Ly - | F (20) |
< d, M [[|F(zn) — F(zn-1) = F'(zn-1)(zn — Tn-1)]
+|Lp—1 — F'(zn_1)|| |£n — zn_1]]]

(16)

(17) { c

o = a7 (s ety 1) xn_lu]

< d;l [p j_ N (t, — tn,l)p+1 + (dp—1 + actt | —b)(t, — tnl)} )

By (17) to show,

||xn+1 - xn” < dﬁlf(tn) =1ln+1 — tn,
we must have

pi -t tn1)PT + (dp_1 + act’_y — b)(tn — tn_1)
(18) @ o
<t bt,, + dot1,
foralln=1,2,....

It can easily be seen that
(ty — tn_1)PTH <21 —42F
Therefore, inequality (18) is certainly true for n > 1 if
1-— 1
M=) ppin o (“t” N —>
(19) p+1 p+1
+tn_1(b — dn—l) + <dn_1tn - dotl — CLCtpt1> S 0.

n—1
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By the choice of a, b, d and ry each one of the parentheses in (19) is
nonpositive.

That is, inequality (18) is true for alln =1,2,... .
By the mean value theorem there is some §,, € (t,, o) if t,, # 79, such

that
(20) ro —tp+1 = gn(TO) —9n (tn) = g;(én)(ro - tn)
=d; [d, + cat? —b](rg — tn),

where we have denoted

gn(t> =t+ %i)
Also by (8),
. P
0<d,+ca Z||a:j—xj_1|| -b<d,+catl —b
j=1

—tna1)dy,
<dn+ca££—b:u.

ro — ln
If t,, = ro, then t,11 = rg. That is
(21) tnt1 < T0-
Furthermore
n+1
(22) [#n41 — @ol| < Z |2j — zj—1l] < tagr <ro.
j=1

That is 2,11 € U(zg,70).
Therefore, the assertions (16) are true for all n = 1,2, .. ..
To complete the proof of (a) we must show that
(23) lim t, = ro.
n—oo
The sequence {t, } is increasing and bounded above by 7y and as such
it converges to some r* < rg. But,
tn . tn *
0= lim (tp41 —tn) = lim M > lim f(tn) = fr )

n—oo n—oo n n—oo d

But this implies f(r*) = 0, that is 7* = ro.
(b) By part (a) there exists * € U(xo, 7o) such that z* = lim z,

n—oo

and inequality (15) holds. We must show that x* is a root of F.
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But iteration (2) gives

(24 [E(zn)[| < [Lall - [[#n4+1 — @]
and || zp41 —zn|| = 0 as n — oco.

Therefore it suffices to show that the sequence ||L,||, n» = 0,1,2,... is
uniformly bounded. This follows readily from (8) and (23) since

p

Lol < I1F (@)l +dn —b+ac | Yz —aj-]|

j=1
< [1F' (o) || + cllzn — mol|” + dn — b+ acrg
< 1P/ (o)l + (c + ac)rf — b+ d = B.
Therefore the inequality (24) gives
[1E(zn)|l < Bllzn — 2nga]| = 0 as n— o0

which implies that F'(z*) = 0.
To show uniqueness let us assume that there exists a second solution
z* € U(xp,r9). Then from the identity

Tpy1 — 2"
=Ly, [(Ln — F'(@n)) (zn — ) + (F(2") = Flan) = F'(2n)(z" = 22))]
we obtain using (8) and lemma 2

C
p+1

|uwl—fns¢fﬂ%+wwg—m+ mn—fw}wn—fn

<d! {carg + Zﬁ(%o)l’ + (d — b)} |z, — 2%

= Az, -2 < < A"+1||:c0 -2 < Ay,

where we have denoted A = A(rg) = [erf(a + p%l) +d —bld~!. By the

choice of ry, lim A™ = 0. Therefore z* = lim =z, = z*.
n—oo n—oo

That completes the proof of the theorem.

We now state and prove a proposition that will enable us to show the
uniqueness of x* in a larger ball.

Proposition 1. Let F'(-) € Hp,(c,p), Do C D.

Assume:
(i) Inequality (8) holdds for n = 0; and
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(i) the function f(t) defined by

_ C _
f(t) = s ltp+1 + (61 — 1)dot + do|| Ly  F(20) |,

| F" (z0) — Lol|
do

with 6 = , t€1]0,00)

has two zeros r{, and r{, and 1}, r{ < ] such that U(xg,7}) C Dy.
Then, equation (1) has a unique solution x* in U(zq, ).
Moreover:

(a) Iteration z/,,, = x|, — Ly ' F(x!,) converges to x* for ||z{ — zo|| <
ro <1y and U(zg,r2) C Dy.

(b) The following estimate is true:
2!, — 2% < |ry — 1]
where {t],} is generated by t,, ., =t/ + f(dtoib)'

PROOF. Let us first note that inequality (8) for n = 0 gives 0 <
b/dg < 1— 6. That is §' < 1. Define the nonlinear operator P on Dy by

P(z) =z — Ly ' F(x).

We will show that if ¢’ € [r{,]), then g(t) =t + f(t)/dy majorizes P(x)
on U(CCo,t,) C Dy.

We have
|P(z0) — ol = || Lg ' F(zo0)|| = g(0) — 0.

Let z, t be such that z € U(zg,t') N Dy and ||z — 20| <t < t'. Then
1P ()] = I = Lo " F' ()| = || Lo (Lo — F'(w0)) + (F'(w0) — F'(2)))|

_ P
< Lo (1F" () = F' (o)l + [[F” (o) — Loll) < 6" + =9

By hypothesis 7, is the unique fixed point of g(¢) in [0,#'] and g(t') < ¢’
with equality holding if and only if ¢’ = rJ,.

The results now follows from the well known classical theorem on
the existence and uniqueness of solutions of equation (1) via majorizing
sequences given in KANTOROVICH [[5], page 697].

The following Corollary is an immediate consequence of Theorem 1
and Proposition 1.
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Corollary. Let F'(-) € Hp,(c,p), Do C D. Assume that the hy-
potheses of Theorem 1 and Proposition 1 are satisfied. Then equation (1)
has a unique solution x* in Do N U (xq,7;) and the iteration {x,} given by
(2), n=0,1,2,... converges to z* with

|Zps1 — ™| <19 —tpt1, n=0,1,2,....

We will now study the convergence of the following secant iterations
as special cases of iteration (2):

(25) Tpi1 = Ty — OF (T, 2p_1) ' F(z)
or
(26) Tpy1 = Tp — OF (2p_1,20) " F(20)

where xg, r_1 are given.

We can prove a theorem concerning the convergence of iteration (26)
to a locally unique solution z* of equation (1). A similar theorem can be
proved for iteration (25).

Theorem 2. Under the assumptions of Lemma 3, F'(-) € Hp,(c1,p)
with ¢; = 2(¢1 4+ {2). Let Dy C D with x_1, xg € intDy. Assume:
(i) the linear operator Ly = dF(x_1,x) is invertible and

ILg N < B85 llw—y —zoll < n-1: ILg " Fl@o)ll < .
(ii) Let us define the real function f; and the iteration {s,} by

c1a - _
fils) = S~ bus+ do|lLg Fao)ll. 5 € [0.00),
Sn—&-lzsn"i_%v 30:O7n:071727"'7

where we have denoted

3(p+1) , 1=+l -
Ta bl_ 2ﬁ 7d0_/8 )

dn = 87 1= Bl + Lo)||an — zpa [P — c1B]lzn — zol” — B(61 + L2)n? 4],
n=1,2,....

ap =

The function f; has a minimum positive zero 7y such that
0 <max(n_1,m) <7To < M =

, 2b, \ /P 1— 300 (01 + L),
9 — '} M
(27) e ((301) P [ 28(4y + Ly + 1) ’

U(l‘o,fo) C D(),
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provided that 1 — 33(¢y + ¢2)n” | > 0 where M is as defined in (12) with

d= 3711 - B + Ly +c1)T5 — By + £2)n" 4],
d=p"

1
, c=c1, a=ay, b=>y, and t; = s.

Then
(a) the sequence {s,} is increasing, bounded above by its limit 7y and

magjorizes the sequence {x,} given by (26) that remains in U(z, 7o) for
alln =0,1,2,... .

(b) The sequence {z,} given by (26) converges to a unique solution
x* in U(zg, 7o) of equation (1) with

|xni1 — ™| < 7o — Spp1, n=0,1,2,....
PRroOOF. The proof will be accomplished by finding the analog of The-

orem 1 with L,, = 6 F(zp—1,x,).
By hypothesis

||Z’_1 — .’EQH < 79 and ||1‘0 — 1'1” <To

and , _
| F'(x0) — Lo|| < do — b1.

Let us assume

k
D llwj — x|l < sk < 7o,
j=1

the linear operators Ly are invertible and (8) holds for all k = 1,2,...,n—1
with ¢ =¢1, a = a1, b = by and di = d.

As in Theorem 1 we can show that
> g — 21l < sn < To.
j=1
Using (6) we can easily obtain
(28) Ly — F'(zp)|| < (01 + b2)||wp—1 — x||P, £=0,1,2,--- ,n.
Using (3) and (28) we get
1Ly = Loll < [[Ln = F' ()l + [|F"(2n) — F' (o) || + | F(z0) — Lol
< (O + 0o)llen =z ||P + callen — ol|” + (6 + L2)n2 .
Then
1o L =T < Lo HII1En = Loll < B [(61 + €2 + 1) + (b + L), ] < 1,
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which is true since 7 is a minimum positive zero of the equation f;(s) = 0.
That is the linear operator L, is invertible and

1L < d,t.

Moreover, inequality (8) holds for k = n by (27), (28) and the estimate
dp, > by.
It can easily be seen by the choice of 7y that

d<d,<d n=0,1,2,..., by <d and d+ b, >d.

The hypotheses (i), (ii) and (iii) of Theorem 1 are now satisfied. Therefore
the results follow immediately from Theorem 1.

Note that the above theorem gives us a way of choosing linear opera-
tors Ly, n > 0 in such a way that condition (8) is satisfied.

ITI. Error analysis and applications

Here we look at iteration (26) in a way different than before which
enables us to find the order of convergence of (26) to a solution z* of (1).

Proposition 2. Under the hypotheses of Theorem 2 the solution x*
of equation (1) obtained via iteration (26) is such that

41— || < yillen—z*|| (lzn =2 + 201 —2* ()" + rallzn —2™[|PF,
n=20,1,2,...
where,

7—1
dn C1

1+p

7(n) =y =d, (t1 +£2) and y2(n) =72 =

PRrROOF. Using (26) we have

Tpi1 — % =2y — 2% — OF (Tp_1,Tp) " F(z)
= 0F (2p—120) " [(OF (Tn-1,20) — F'(25) + F'(20)) (2 — 27) — F(2,)]
= 0F (2p_1,2,) [(0F (2p_1,2n) — F'(zn)(x, — %))
+ (F'(zp)(xp — ) — F(zp) + F(z¥))].

By taking norms above we obtain

lons1 — 2| < dy* | (Gllzn — o |P + Lollwn — 2o [IP) [lzn — 27
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C1 * 7— * *
bl — 2 P £ @[+ ) (o = a7+ o = 271
€1
% ok ¥ ||pt1

fon =571+ £l — %)

The result now follows from the above inequality.

We now give two examples as possible applications of the theory in-
troduced above for finding solutions z* of (1), for illustrational purposes.
The motivated reader can fill the computational details.

Ezample 1. Consider the function G defined on [0, b] by
G(t) = At'*P + Bt

where, A, B€R, p € [0,1] and b > 0.
Let || || denote the max norm on R, then

IG" ()] = max |A(1+ p)ptP~!| = oo,
te[0,b]

which implies that the Newton-Kantorovich hypotheses are not satisfied
[4].
However, it can easily be seen that G’(t) is Holder continuous on [0, b]
with
c=A(1+p) and p = p.

Therefore, under the assumptions of theorem 2, iteration (26) can be
used to find a solution t* of the equation G(t) = 0.

We can further apply our results by modifying an example considered
also by ROKNE [9].

Ezxample 2. Consider the differential equation
y' +y'"t" =0, pe (0,1)
y(0) =y(1) =0.

We divide the interval [0,1] into n subintervals and we set h = 1/n.
Let {v} be the points of subdivision with

(29)

O=vo<v < - <w, =1.
A standard approximation for the second derivative is given by

Yi—1 — 2¥i + Yit1
h? ’

Take yo = y, = 0 and define the operator F': ]R’fr_l — R*"! by

(30) F(y) = H(y) + h*e(y),

Yl = yi=yvi), i=1,2,...,n—1.
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2 -1 y}+p Y1
-1 2 -1 e s
H= Cey) =" |, and y=
-1 2 -1 : )
-1 2 Yn—1
| Yt ]
Then
Yy
ys
F'(y)=H+h*(p+1)
yﬁ_l

The Newton-Kantorovich hypotheses for the solution of the equation
(31) Fy) =0

may not be satisfied. We may not be able to evaluate the second Fréchet-
derivative since it would involve the evaluation of quantities of the form

y?~" and they may not exist.

The secant hypotheses [4, p. 445] for p # 1 are not satisfied.
Let y e R"™!, H € R*! x R" ! and define the norms of y and H by

n—1
loll = max fyl, M= max ; [mjil-
For all y, z € R*~! for which |y;| > 0, |z;] >0,i=1,2,--- ,n — 1 we

obtain for p = %, say

IF/(y) - F/(2)] = \

X 1
dlag{(l + 5) h? <yj1-/2 — zjl/Q)}H
3

_ 3.9 /2 _ 12| o 3,0 I VE R S Tt
2h 1§I;1£nx—1‘yj % ‘_ 2h [max\y] ZJH 2h ly ==

Therefore under the assumptions of theorem 2, iteration (26) can be
used to find solutions y* of (31) as follows:

A linear operator L € L(R"~1, R"~1) can be represented by a matrix
with entries ¢;; and

n—1
|IL|| =max{ > gyl : 1<i<n-—1
j=1
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Let F be an operator defined on R"~! with values in R”~!. Let us denote
by Fi,...,F,_1 the components of F. For each v € R"! we can write

F(U) = (Fl(v)a cee 7fn—1(v))tT'

Let v, w € R*™! and define § F(v, w) by the matrix with entries

5F(U, w)ij = L
(32) Vj — Wj

_Fi<vl7"'7'Uj—1;wj7"'7wm))7 m=n—1.

(Fi(vlv"' yVjy Wig1, " 7wm)

It can easily be seen that the operator defined by (32) satisfies (5)
and 0F(v,w) € L(R"~1 R"~1).
Denote by
OF;(v)

PjFZ'(U): Ov. y i,j:1,2,...,n—1.
J

We can choose n = 10 which gives (9) equations for iteration (26), if
we look at it as a system of linear equations given z_1, zo € R?. As in
[9], since a solution would vanish at the end points and be positive in the

interior a reasonable choise of initial approximation seems to be 130 sin x.
This gives us the following vector

4.015241F + 01
7.637852E + 01
1.051351E + 02
1.236112F + 02
Z-1= | 1.299991E + 02
1.236752E + 02
1.052571E + 02
7.654622F + 01
| 4.034951F + 01 |

Choose zy by setting
20(v) = z_1(v;) —107°, i =1,2,...,9.

Using iteration (26) with the above values and (32), after seven iter-
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ations we get

3.357455EF 4 01 3.357450EF 4 01
6.520294EF + 01 6.520290F 4 01
9.156631EF + 01 9.156660L + 01
1.091680F + 02 1.091680E + 02
26 = | 1.153630E + 02 | and 27 = | 1.536301F + 02
1.091680F + 02 1.091680E + 02
9.156663E + 02 9.156660E + 02
6.520294F + 01 6.520290F + 01
| 3.357455F + 01 | | 3.357450F + 01 |

We choose zg = x_1 and z7 = zg for our Theorem 2. From now on we

assume that F' is restricted on U(xzg,.1). With the notation of Theorem
2 we can easily obtain the following results: § < 25.5882, n_; < 5FE—05,
51 = £2 = 03, c1 = 12, a; = 1125, S1 = tl =1 S 915311E—05,
dy = d = .039080513, by = .01932812 and

fi(s) = 9E—025%/2 — 01932812 5 + 3.577082405E—06 = 0.
The above equation has a minimum positive solution R such that
To=R=9.18£-05 and |R — 79| < 5E—06.
With the above values and using (27) we get

d = 03693415,
max(n — 1,n7) = 9.15311 E—05,

and

M = 9.45561085E—05.

All the hypotheses of Theorem 2 are now satisfied with the above
values.
Therefore, the iteration generated by (26) converges to a unique so-

lution x* in U(zg, R) of equation (31).
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