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On the secant method

By IOANNIS K. ARGYROS (Lawton)

Abstract. We apply the Secant method to solve nonlinear operator equations in
a Banach space. We assume that the operator has Hölder continuous derivatives. When
the operator has a bounded second Fréchet-derivative, our results reduce to the one’s
obtained by J.E. Dennis, T.J. Ypma and others.

1. Introduction

Consider an equation

(1) F (x) = 0

where F is a nonlinear operator between two Banach spaces E, Ê. A
Newton-like method can be defined as any iterative method of the form

(2) xn+1 = xn − L−1
n F (xn), n = 0, 1, 2, · · · ; x0 pre-chosen

for generating approximate solutions to (1). The {Ln} denotes a sequence
of invertible linear operators. This is plainly too general and what is re-
ally implicit in the title is that Ln should be a conscious approximation
to F ′(xn), since when Ln = F ′(xn), the method reduces to the Newton-
Kantorovich method. The convergence of (2) to a solution of (1) has been
described already by Dennis in [4] and the references there. The basic
assumption made is that the Fréchet-derivative F ′ of F is Lipschitz con-
tinuous in some ball around the initial iterate. We relax this requirement
to operators that are only Hölder (c, p) continuous, c > 0, 0 < p ≤ 1.
Moreover the Secant method is being examined as in a special case of (2).
An error analysis is also provided.

Relevant work has been done by T.J. Ypma [10], [11].
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Our results can be compared favorably with the ones obtained in [4],
[10], [11], [8]. In particular, they reduce to the ones in [4] for p = 1.

I. Preliminaries

From now on we assume that F is once Fréchet-differentiable at every
point x ∈ E and note that F ′(x) ∈ L(E, Ê), the space of bounded linear
operators from E to Ê.

Definition 1. We say that the Fréchet-derivative F ′(x) is Hölder con-
tinuous over a domain D if for some c > 0, p ∈ [0, 1]

(3) ‖F ′(x)− F ′(y)‖ ≤ c‖x− y‖p, for all x, y ∈ D.

We then say that F ′(·) ∈ HD(c, p).
Definition 2. Let t0 and t′ be non-negative real numbers and let g

be a continuously differentiable real function on [t0, t0 + t′] and p be a
continuously Fréchet-differentiable operator on

Ū(x0, t
′) = {x ∈ E | ‖x− x0‖ ≤ t′} ⊂ E

into Ê. Then the equation
t = g(t)

will be said to majorize the equation
x = P (x) on U(x0, t

′)
if

‖P (x0)− x0‖ ≤ g(t0)− t0
and

‖P ′(x)‖ ≤ g′(t) for ‖x− x0‖ ≤ t− t0 < t′.
We will need the following results whose proofs can be found in [5]

and [8] respectively.
Lemma 1. Let {xn}, n = 0, 1, 2, . . . be a sequence in E and {tn},

n = 0, 1, 2, . . . a sequence of non-negative real numbers such that

(4) ‖xn+1 − xn‖ ≤ tn+1 − tn, n = 0, 1, 2, . . .

and
tn → t∗ < ∞ as n →∞.

Then there exists a unique point x∗ ∈ E such that

xn → x∗ as n →∞
and

‖x∗ − xn‖ ≤ t∗ − tn, n = 0, 1, 2, . . . .

If inequality (4) holds then we say that iteration {tn} majorizes iter-
ation {xn}, n = 0, 1, 2, . . . .
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Lemma 2. Let F : E → E and D ⊆ E. Assume D is open and that
F ′(·) exists for every x ∈ D. Let D0 be a convex set with D0 ⊆ D such
that F ′(·) ∈ HD0(c, p), then

‖F (x)− F (y)− F ′(x)(x− y)‖ ≤ c

1 + p
‖x− y‖p+1 for all x, y ∈ D0.

We can now prove a lemma which reduces to lemma 3.5 in [5] for
p = 1.

Lemma 3. Assume that for any x, y ∈ D0 ⊂ D there is a divided
difference operator δF (x, y) ∈ L(E, Ê) such that

(5) δF (x, y)(x− y) = F (x)− F (y)
and if u ∈ D0,

(6) ‖δF (x, y)− δF (y, u)‖ ≤ `1‖x− u‖p + `2‖x− y‖p + `2‖y − u‖p,

where `1, `2 ≥ 0 are independent of x, y and u.

Then the following hold:

(a) δF (x, x) = F ′(x), x ∈ IntD0; and

(b) F ′(·) ∈ HD0 [2(`1 + `2), p] for any fixed p ∈ (0, 1].

Proof. (a) Let us choose x ∈ IntD0 and δ > 0 such that U(x, δ) ⊂
D0.

For ‖∆x‖ < δ, we have

‖F (x + ∆x)− F (x)− δF (x, x)(∆x)‖ = ‖[δF (x + ∆x, x)− δF (x, x)](∆x)‖
≤ ‖δF (x + ∆x, x)− δF (x, x)‖‖∆x‖ ≤ (`1 + `2)‖∆x‖p‖∆x‖.

The above inequality proves (a) when `1 + `2 6= 0 and ‖∆x‖ → 0.
To cover the case when `1 = `2 = 0, note that by (6) there is an

L ∈ L(E, Ê) such that δF (x, y) = L for every x, y ∈ D0. Therefore, by
(5), we can choose δ arbitrarily above and set F ′(x) = L.

(b) For part (b), let x, y ∈ D0 then by (6)

‖F ′(x)− F ′(y)‖ ≤ ‖δF (x, x)− δF (x, y)‖+ ‖δF (x, y)− δF (y, y)‖
≤ `1‖x− y‖p + `2‖x− y‖p + `1‖x− y‖p + `2‖x− y‖p

= 2(`1 + `2)‖x− y‖p.

That completes the proof of the lemma.
Note that conditions of the form (6) have been considered in [4, p.444]

for p = 1. Moreover, conditons (6) can be reduced to the ones considered
by T. J. Ypma in [10, p.242] if we choose the divided difference operator
δf to be the Fréchet derivative F ′ of F .

From now on we will assume that p ∈ (0, 1) and let D0 = Ū(x0, R) ⊂
D for some fixed x0 ∈ D and sufficiently small R > 0.
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II. Main convergence results

We can now prove the following theorem on the convergence of itera-
tion (2) to a locally unique solution x∗ of equation (1).

Theorem 1. Let F ′(·) ∈ HD0(c, p) and assume that:
(i) for every n with {xk} ⊂ D0, k = 0, 1, 2, . . . , n, there exists an

invertible operator Ln ∈ L(E, Ê) and positive real numbers d̄, d, dn such
that:

(7) ‖L−1
n ‖ ≤ d−1

n , with d̄ ≤ dn ≤ d.

(ii) For a, b > 0, with b ≤ d̄, both independent of n the following
estimate holds:

(8) ‖F ′(xn)− Ln‖ ≤ dn + ac




n∑

j=1

‖xj − xj−1‖



p

− b, n = 0, 1, 2 . . .

(the convention
0∑

j=1

‖xj − xj−1‖ = 0 is understood).

(iii) Let us define the real function f and the iteration {tn} by

f(t) =
ca

p + 1
tp+1 − bt + d0‖L−1

0 F (x0)‖, t ∈ [0,∞),(9)

tn+1 = tn +
f(tn)
dn

; t0 = 0(10)

and assume that the function f has a minimum positive zero r0 such that

(11) 0 < ‖x1 − x0‖ < r0 < M,

where

(12) M = min

[(
b

ca

)1/p

,
1

a(p+1)
,

t1
d

(d0+ac tp1),
(

d̄+b−d

c(2p+a(1+p)

)1/p
]

provided that

(13) d̄ + b− d > 0

and

(14) Ū(x0, r0) ⊂ D0.

Then
(a) the sequence {tn} is increasing, bounded above by its limit r0 and

majorizes the sequence {xn} given by (2) that remains in Ū(x0, r0) for all
n = 0, 1, 2, . . . .
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(b) The sequence {xn} converges to a unique solution x∗ in Ū(x0, r0)
of equation (1) and

(15) ‖xn+1 − x∗‖ ≤ r0 − tn+1; n = 0, 1, 2, . . . .

Proof. (a) Using (2), (9), (10), and (11) we have

‖x1 − x0‖ = ‖L−1
0 F (x0)‖ = t1 − t0 = t1 ≤ r0.

That is x1 ∈ Ū(x0, r0).
Let us assume that:

(16)
{xk} ⊂ Ū(x0, r0),

‖xk − xk−1‖ ≤ tk − tk−1 for k = 1, 2, . . . , n

and tk ≤ r0. We shall show that (16) holds for k = n + 1.
The iterate xn+1 is well defined since F (xn) and L−1

n are. By (2), (7),
(8), (9) and (16) we get

(17)

‖xn+1 − xn‖ ≤ ‖L−1
n ‖ · ‖F (xn)‖

≤ d−1
n [‖F (xn)− F (xn−1)− F ′(xn−1)(xn − xn−1)‖

+‖Ln−1 − F ′(xn−1)‖ ‖xn − xn−1‖]

≤ d−1
n

[
c

p + 1
‖xn − xn−1‖p+1 + (dn−1 + actpn−1 − b)‖xn − xn−1‖

]

≤ d−1
n

[
c

p + 1
(tn − tn−1)p+1 + (dn−1 + actpn−1 − b)(tn − tn−1)

]
.

By (17) to show,

‖xn+1 − xn‖ ≤ d−1
n f(tn) = tn+1 − tn,

we must have

(18)

c

p + 1
(tn − tn−1)p+1 + (dn−1 + actpn−1 − b)(tn − tn−1)

≤ ca

p + 1
tp+1
n − btn + d0t1,

for all n = 1, 2, . . . .
It can easily be seen that

(tn − tn−1)p+1 ≤ tp+1
n − tp+1

n−1.

Therefore, inequality (18) is certainly true for n ≥ 1 if

(19)

c(1− a)
p + 1

tp+1
n + ctpn−1

(
atn − 1

p + 1

)

+tn−1(b− dn−1) +
(
dn−1tn − d0t1 − actp+1

n−1

)
≤ 0.
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By the choice of a, b, d̄ and r0 each one of the parentheses in (19) is
nonpositive.

That is, inequality (18) is true for all n = 1, 2, . . . .
By the mean value theorem there is some ξn ∈ (tn, r0) if tn 6= r0, such

that

(20)
r0 − tn+1 = gn(r0)− gn(tn) = g′n(ξn)(r0 − tn)

= d−1
n [dn + ca ξp

n − b](r0 − tn),

where we have denoted

gn(t) = t +
f(t)
dn

.

Also by (8),

0 ≤ dn + ca




n∑

j=1

‖xj − xj−1‖



p

− b ≤ dn + ca tpn − b

< dn + ca ξp
n − b =

(r0 − tn+1)dn

r0 − tn
.

If tn = r0, then tn+1 = r0. That is

(21) tn+1 ≤ r0.

Furthermore

(22) ‖xn+1 − x0‖ ≤
n+1∑

j=1

‖xj − xj−1‖ ≤ tn+1 < r0.

That is xn+1 ∈ Ū(x0, r0).
Therefore, the assertions (16) are true for all n = 1, 2, . . . .
To complete the proof of (a) we must show that

(23) lim
n→∞

tn = r0.

The sequence {tn} is increasing and bounded above by r0 and as such
it converges to some r∗ ≤ r0. But,

0 = lim
n→∞

(tn+1 − tn) = lim
n→∞

f(tn)
dn

≥ lim
n→∞

f(tn)
d

=
f(r∗)

d
.

But this implies f(r∗) = 0, that is r∗ = r0.
(b) By part (a) there exists x∗ ∈ Ū(x0, r0) such that x∗ = lim

n→∞
xn

and inequality (15) holds. We must show that x∗ is a root of F .
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But iteration (2) gives

(24)
‖F (xn)‖ ≤ ‖Ln‖ · ‖xn+1 − xn‖

and ‖xn+1 − xn‖ → 0 as n →∞.

Therefore it suffices to show that the sequence ‖Ln‖, n = 0, 1, 2, . . . is
uniformly bounded. This follows readily from (8) and (23) since

‖Ln‖ ≤ ‖F ′(xn)‖+ dn − b + ac




n∑

j=1

‖xj − xj−1‖



p

≤ ‖F ′(x0)‖+ c‖xn − x0‖p + dn − b + acrp
0

≤ ‖F ′(x0)‖+ (c + ac)rp
0 − b + d ≡ B.

Therefore the inequality (24) gives

‖F (xn)‖ ≤ B‖xn − xn+1‖ → 0 as n →∞
which implies that F (x∗) = 0.

To show uniqueness let us assume that there exists a second solution
z∗ ∈ Ū(x0, r0). Then from the identity

xn+1 − z∗

= L−1
n [(Ln − F ′(xn)) (xn − z∗) + (F (z∗)− F (xn)− F ′(xn)(z∗ − xn))]

we obtain using (8) and lemma 2

‖xn+1 − z∗‖ ≤ d−1
n

[
(dn + acrp

0 − b) +
c

p + 1
‖xn − z∗‖p

]
‖xn − z∗‖

≤ d̄−1

[
carp

0 +
c

p + 1
(2r0)p + (d− b)

]
‖xn − z∗‖

= A‖xn − z∗‖ ≤ · · · ≤ An+1‖x0 − z∗‖ ≤ An+1r0,

where we have denoted A = A(r0) = [crp
0(a + 2p

p+1 ) + d − b]d̄−1. By the
choice of r0, lim

n→∞
An = 0. Therefore x∗ = lim

n→∞
xn = z∗.

That completes the proof of the theorem.

We now state and prove a proposition that will enable us to show the
uniqueness of x∗ in a larger ball.

Proposition 1. Let F ′(·) ∈ HD0(c, p), D0 ⊂ D.
Assume:
(i) Inequality (8) holdds for n = 0; and
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(ii) the function f̄(t) defined by

f̄(t) =
c

p + 1
tp+1 + (δ1 − 1)d0t + d0‖L−1

0 F (x0)‖,

with δ1 ≡ ‖F ′(x0)− L0‖
d0

, t ∈ [0,∞)

has two zeros r′0 and r′0 and r′1, r′0 < r′1 such that U(x0, r
′
1) ⊂ D0.

Then, equation (1) has a unique solution x∗ in Ū(x0, r
′
1).

Moreover:

(a) Iteration x′n+1 = x′n − L−1
0 F (x′n) converges to x∗ for ‖x′0 − x0‖ <

r2 ≤ r′1 and U(x0, r2) ⊂ D0.

(b) The following estimate is true:

‖x′n − x∗‖ ≤ |r′0 − t′n|

where {t′n} is generated by t′n+1 = t′n + f̄(t′n)
d0

.

Proof. Let us first note that inequality (8) for n = 0 gives 0 <
b/d0 ≤ 1− δ1. That is δ1 < 1. Define the nonlinear operator P on D0 by

P (x) = x− L−1
0 F (x).

We will show that if t′ ∈ [r′0, r
′
1), then g(t) = t + f̄(t)/d0 majorizes P (x)

on Ū(x0, t
′) ⊂ D0.

We have

‖P (x0)− x0‖ = ‖L−1
0 F (x0)‖ = g(0)− 0.

Let x, t be such that x ∈ Ū(x0, t
′) ∩D0 and ‖x− x0‖ ≤ t < t′. Then

‖P ′(x)‖ = ‖I − L−1
0 F ′(x)‖ =

∥∥L−1
0 ((L0 − F ′(x0)) + (F ′(x0)− F ′(x)))

∥∥

≤ ‖L−1
0 ‖ (‖F ′(x)− F ′(x0)‖+ ‖F ′(x0)− L0‖) ≤ δ1 + c

tp

d0
= g′(t).

By hypothesis r′0 is the unique fixed point of g(t) in [0, t′] and g(t′) ≤ t′
with equality holding if and only if t′ = r′0.

The results now follows from the well known classical theorem on
the existence and uniqueness of solutions of equation (1) via majorizing
sequences given in Kantorovich [[5], page 697].

The following Corollary is an immediate consequence of Theorem 1
and Proposition 1.
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Corollary. Let F ′(·) ∈ HD0(c, p), D0 ⊂ D. Assume that the hy-
potheses of Theorem 1 and Proposition 1 are satisfied. Then equation (1)
has a unique solution x∗ in D0 ∩ Ū(x0, r

′
1) and the iteration {xn} given by

(2), n = 0, 1, 2, . . . converges to x∗ with

‖xn+1 − x∗‖ ≤ r0 − tn+1, n = 0, 1, 2, . . . .

We will now study the convergence of the following secant iterations
as special cases of iteration (2):

(25) xn+1 = xn − δF (xn, xn−1)−1F (xn)
or

(26) xn+1 = xn − δF (xn−1, xn)−1F (xn)

where x0, x−1 are given.
We can prove a theorem concerning the convergence of iteration (26)

to a locally unique solution x∗ of equation (1). A similar theorem can be
proved for iteration (25).

Theorem 2. Under the assumptions of Lemma 3, F ′(·) ∈ HD0(c1, p)
with c1 = 2(`1 + `2). Let D0 ⊂ D with x−1, x0 ∈ intD0. Assume:

(i) the linear operator L0 = δF (x−1, x0) is invertible and

‖L−1
0 ‖ ≤ β; ‖x−1 − x0‖ ≤ η−1; ‖L−1

0 F (x0)‖ ≤ η.

(ii) Let us define the real function f1 and the iteration {sn} by

f1(s) =
c1a1

p + 1
sp+1 − b1s + d̄0‖L−1

0 F (x0)‖, s ∈ [0,∞),

sn+1 = sn +
f1(sn)

d̄n
, s0 = 0, n = 0, 1, 2, · · · ,

where we have denoted

a1 =
3(p + 1)

4
, b1 =

1− β(`1 + `2)η
p
−1

2β
, d̄0 = β−1,

d̄n = β−1
[
1− β(`1 + `2)‖xn − xn−1‖p − c1β‖xn − x0‖p − β(`1 + `2)η

p
−1

]
,

n = 1, 2, . . . .

The function f1 has a minimum positive zero r̄0 such that

(27)

0 < max(η−1, η) < r̄0 < M̄ =

= min

((
2b1

3c1

)1/p

, M,

[
1− 3`0(`1 + `2)η

p
−1

2β(`1 + `2 + c1)

])
,

Ū(x0, r̄0) ⊂ D0,
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provided that 1− 3β(`1 + `2)η
p
−1 > 0 where M is as defined in (12) with

d̄ = β−1[1− β(`1 + `2 + c1)r̄
p
0 − β(`1 + `2)η

p
−1],

d = β−1, c = c1, a = a1, b = b1, and t1 = s1.

Then
(a) the sequence {sn} is increasing, bounded above by its limit r̄0 and

majorizes the sequence {xn} given by (26) that remains in Ū(x0, r̄0) for
all n = 0, 1, 2, . . . .

(b) The sequence {xn} given by (26) converges to a unique solution
x∗ in Ū(x0, r̄0) of equation (1) with

‖xn+1 − x∗‖ ≤ r̄0 − sn+1, n = 0, 1, 2, . . . .

Proof. The proof will be accomplished by finding the analog of The-
orem 1 with Ln = δF (xn−1, xn).

By hypothesis

‖x−1 − x0‖ < r̄0 and ‖x0 − x1‖ < r̄0

and
‖F ′(x0)− L0‖ ≤ d̄0 − b1.

Let us assume
k∑

j=1

‖xj − xj−1‖ ≤ sk < r̄0,

the linear operators Lk are invertible and (8) holds for all k = 1, 2, . . . , n−1
with c = c1, a = a1, b = b1 and dk = d̄k.

As in Theorem 1 we can show that
n∑

j=1

‖xj − xj−1‖ ≤ sn < r̄0.

Using (6) we can easily obtain

(28) ‖Lk − F ′(xk)‖ ≤ (`1 + `2)‖xk−1 − xk‖p, k = 0, 1, 2, · · · , n.

Using (3) and (28) we get

‖Ln − L0‖ ≤ ‖Ln − F ′(xn)‖+ ‖F ′(xn)− F ′(x0)‖+ ‖F ′(x0)− L0‖
≤ (`1 + `2)‖xn − xn−1‖p + c1‖xn − x0‖p + (`1 + `2)η

p
−1.

Then

‖L−1
0 Ln−I‖ ≤ ‖L−1

0 ‖‖Ln−L0‖ ≤ β
[
(`1 + `2 + c1)r̄

p
0 + (`1 + `2)η

p
−1

]
< 1,
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which is true since r̄0 is a minimum positive zero of the equation f1(s) = 0.
That is the linear operator Ln is invertible and

‖L−1
n ‖ ≤ d̄−1

n .

Moreover, inequality (8) holds for k = n by (27), (28) and the estimate
d̄n ≥ b1.

It can easily be seen by the choice of r̄0 that

d̄ ≤ d̄n ≤ d, n = 0, 1, 2, . . . , b1 ≤ d̄ and d̄ + b1 ≥ d.

The hypotheses (i), (ii) and (iii) of Theorem 1 are now satisfied. Therefore
the results follow immediately from Theorem 1.

Note that the above theorem gives us a way of choosing linear opera-
tors Ln, n ≥ 0 in such a way that condition (8) is satisfied.

III. Error analysis and applications

Here we look at iteration (26) in a way different than before which
enables us to find the order of convergence of (26) to a solution x∗ of (1).

Proposition 2. Under the hypotheses of Theorem 2 the solution x∗
of equation (1) obtained via iteration (26) is such that

‖xn+1−x∗‖ ≤ γ1‖xn−x∗‖ (‖xn−x∗‖+ ‖xn−1−x∗‖)p + γ2‖xn−x∗‖p+1,

n = 0, 1, 2, . . .

where,

γ1(n) = γ1 = d̄−1
n (`1 + `2) and γ2(n) = γ2 =

d̄−1
n c1

1 + p
.

Proof. Using (26) we have

xn+1 − x∗ = xn − x∗ − δF (xn−1, xn)−1F (xn)

= δF (xn−1xn)−1 [(δF (xn−1, xn)− F ′(xn) + F ′(xn)) (xn − x∗)− F (xn)]

= δF (xn−1, xn)−1 [(δF (xn−1, xn)− F ′(xn)(xn − x∗))

+ (F ′(xn)(xn − x∗)− F (xn) + F (x∗))] .

By taking norms above we obtain

‖xn+1 − x∗‖ ≤ d̄−1
n

[
(`1‖xn − xn−1‖p + `2‖xn − xn−1‖p) ‖xn − x∗‖
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+
c1

1 + p
‖xn − x∗‖p+1

]
≤ d̄−1

n

[
(`1 + `2) (‖xn − x∗‖+ ‖xn−1 − x∗‖)p

×‖xn − x∗‖+
c1

1 + p
‖xn − x∗‖p+1

]
.

The result now follows from the above inequality.

We now give two examples as possible applications of the theory in-
troduced above for finding solutions x∗ of (1), for illustrational purposes.
The motivated reader can fill the computational details.

Example 1. Consider the function G defined on [0, b] by

G(t) = At1+p̄ + Bt

where, A, B ∈ R, p̄ ∈ [0, 1] and b > 0.
Let ‖ ‖ denote the max norm on R, then

‖G′′(t)‖ = max
t∈[0,b]

|A(1 + p̄)p̄tp̄−1| = ∞,

which implies that the Newton-Kantorovich hypotheses are not satisfied
[4].

However, it can easily be seen that G′(t) is Hölder continuous on [0, b]
with

c = A(1 + p̄) and p = p̄.

Therefore, under the assumptions of theorem 2, iteration (26) can be
used to find a solution t∗ of the equation G(t) = 0.

We can further apply our results by modifying an example considered
also by Rokne [9].

Example 2. Consider the differential equation

(29)
y′′ + y1+p = 0, p ∈ (0, 1)

y(0) = y(1) = 0.

We divide the interval [0,1] into n subintervals and we set h = 1/n.
Let {vk} be the points of subdivision with

0 = v0 < v1 < · · · < vn = 1.

A standard approximation for the second derivative is given by

y′′i =
yi−1 − 2yi + yi+1

h2
, yi = y(vi), i = 1, 2, . . . , n− 1.

Take y0 = yn = 0 and define the operator F : Rn−1
+ → Rn−1 by

(30) F (y) = H(y) + h2ϕ(y),
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H =




2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 2


 , ϕ(y) =




y1+p
1

y1+p
2
...

y1+p
n−1




, and y =




y1
y2
...

yn−1


 .

Then

F ′(y) = H + h2(p + 1)




yp
1

yp
2

. . .
yp

n−1


 .

The Newton-Kantorovich hypotheses for the solution of the equation

(31) F (y) = 0

may not be satisfied. We may not be able to evaluate the second Fréchet-
derivative since it would involve the evaluation of quantities of the form
yp−1

i and they may not exist.
The secant hypotheses [4, p. 445] for p 6= 1 are not satisfied.
Let y ∈ Rn−1, H ∈ Rn−1×Rn−1 and define the norms of y and H by

‖y‖ = max
1≤j≤n−1

|yj |, ‖M‖ = max
1≤j≤n−1

n−1∑

k=1

|mjk|.

For all y, z ∈ Rn−1 for which |yi| > 0, |zi| > 0, i = 1, 2, · · · , n− 1 we
obtain for p = 1

2 , say

‖F ′(y)− F ′(z)‖ =
∥∥∥∥diag

{(
1 +

1
2

)
h2

(
y
1/2
j − z

1/2
j

)}∥∥∥∥

=
3
2
h2 max

1≤j≤n−1

∣∣∣y1/2
j − z

1/2
j

∣∣∣ ≤ 3
2
h2[max |yj − zj |]1/2 =

3
2
h2‖y − z‖p.

Therefore under the assumptions of theorem 2, iteration (26) can be
used to find solutions y∗ of (31) as follows:

A linear operator L ∈ L(Rn−1,Rn−1) can be represented by a matrix
with entries qij and

‖L‖ = max





n−1∑

j=1

|qij | : 1 ≤ i ≤ n− 1



 .
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Let F be an operator defined on Rn−1 with values in Rn−1. Let us denote
by F1, . . . , Fn−1 the components of F . For each v ∈ Rn−1 we can write

F (v) = (F1(v), . . . , fn−1(v))tr.

Let v, w ∈ Rn−1 and define δF (v, w) by the matrix with entries

(32)
δF (v, w)ij =

1
vj − wj

(Fi(v1, · · · , vj , wj+1, · · · , wm)

−Fi(v1, · · · , vj−1, wj , · · · , wm)) , m = n− 1.

It can easily be seen that the operator defined by (32) satisfies (5)
and δF (v, w) ∈ L(Rn−1,Rn−1).

Denote by

PjFi(v) =
∂Fi(v)

∂vj
, i, j = 1, 2, . . . , n− 1.

We can choose n = 10 which gives (9) equations for iteration (26), if
we look at it as a system of linear equations given z−1, z0 ∈ R9. As in
[9], since a solution would vanish at the end points and be positive in the
interior a reasonable choise of initial approximation seems to be 130 sin x.
This gives us the following vector

z−1 =




4.015241E + 01
7.637852E + 01
1.051351E + 02
1.236112E + 02
1.299991E + 02
1.236752E + 02
1.052571E + 02
7.654622E + 01
4.034951E + 01




Choose z0 by setting

z0(vi) = z−1(vi)− 10−5, i = 1, 2, . . . , 9.

Using iteration (26) with the above values and (32), after seven iter-



On the secant method 237

ations we get

z6 =




3.357455E + 01
6.520294E + 01
9.156631E + 01
1.091680E + 02
1.153630E + 02
1.091680E + 02
9.156663E + 02
6.520294E + 01
3.357455E + 01




and z7 =




3.357450E + 01
6.520290E + 01
9.156660E + 01
1.091680E + 02
1.536301E + 02
1.091680E + 02
9.156660E + 02
6.520290E + 01
3.357450E + 01




.

We choose z6 = x−1 and z7 = x0 for our Theorem 2. From now on we
assume that F is restricted on Ū(x0, .1). With the notation of Theorem
2 we can easily obtain the following results: β ≤ 25.5882, η−1 ≤ 5E−05,
`1 = `2 = .03, c1 = .12, a1 = 1.125, s1 = t1 = η ≤ 9.15311E−05,
d0 = d = .039080513, b1 = .01932812 and

f1(s) = 9E−02 s3/2 − .01932812 s + 3.577082405E−06 = 0.

The above equation has a minimum positive solution R such that

r̄0 =̇R = 9.18E−05 and |R− r̄0| ≤ 5E−06.

With the above values and using (27) we get

d̄ = .03693415,

max(η − 1, η) = 9.15311E−05,

and
M̄ = 9.45561085E−05.

All the hypotheses of Theorem 2 are now satisfied with the above
values.

Therefore, the iteration generated by (26) converges to a unique so-
lution x∗ in Ū(x0, R) of equation (31).
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