On the secant method

By IOANNIS K. ARGYROS (Lawton)

Abstract

We apply the Secant method to solve nonlinear operator equations in a Banach space. We assume that the operator has Hölder continuous derivatives. When the operator has a bounded second Fréchet-derivative, our results reduce to the one's obtained by J.E. Dennis, T.J. YPMA and others.

1. Introduction

Consider an equation

$$
\begin{equation*}
F(x)=0 \tag{1}
\end{equation*}
$$

where F is a nonlinear operator between two Banach spaces E, \hat{E}. A Newton-like method can be defined as any iterative method of the form

$$
\begin{equation*}
x_{n+1}=x_{n}-L_{n}^{-1} F\left(x_{n}\right), \quad n=0,1,2, \cdots ; \quad x_{0} \quad \text { pre-chosen } \tag{2}
\end{equation*}
$$

for generating approximate solutions to (1). The $\left\{L_{n}\right\}$ denotes a sequence of invertible linear operators. This is plainly too general and what is really implicit in the title is that L_{n} should be a conscious approximation to $F^{\prime}\left(x_{n}\right)$, since when $L_{n}=F^{\prime}\left(x_{n}\right)$, the method reduces to the NewtonKantorovich method. The convergence of (2) to a solution of (1) has been described already by Dennis in [4] and the references there. The basic assumption made is that the Fréchet-derivative F^{\prime} of F is Lipschitz continuous in some ball around the initial iterate. We relax this requirement to operators that are only Hölder (c, p) continuous, $c>0, \quad 0<p \leq 1$. Moreover the Secant method is being examined as in a special case of (2). An error analysis is also provided.

Relevant work has been done by T.J. Ypma [10], [11].

[^0]Our results can be compared favorably with the ones obtained in [4], [10], [11], [8]. In particular, they reduce to the ones in [4] for $p=1$.

I. Preliminaries

From now on we assume that F is once Fréchet-differentiable at every point $x \in E$ and note that $F^{\prime}(x) \in L(E, \hat{E})$, the space of bounded linear operators from E to \hat{E}.

Definition 1. We say that the Fréchet-derivative $F^{\prime}(x)$ is Hölder continuous over a domain D if for some $c>0, p \in[0,1]$

$$
\begin{equation*}
\left\|F^{\prime}(x)-F^{\prime}(y)\right\| \leq c\|x-y\|^{p}, \quad \text { for all } \quad x, y \in D \tag{3}
\end{equation*}
$$

We then say that $F^{\prime}(\cdot) \in H_{D}(c, p)$.
Definition 2. Let t_{0} and t^{\prime} be non-negative real numbers and let g be a continuously differentiable real function on $\left[t_{0}, t_{0}+t^{\prime}\right]$ and p be a continuously Fréchet-differentiable operator on

$$
\bar{U}\left(x_{0}, t^{\prime}\right)=\left\{x \in E \mid\left\|x-x_{0}\right\| \leq t^{\prime}\right\} \subset E
$$

into \hat{E}. Then the equation

$$
t=g(t)
$$

will be said to majorize the equation

$$
x=P(x) \quad \text { on } \quad U\left(x_{0}, t^{\prime}\right)
$$

if

$$
\left\|P\left(x_{0}\right)-x_{0}\right\| \leq g\left(t_{0}\right)-t_{0}
$$

and

$$
\left\|P^{\prime}(x)\right\| \leq g^{\prime}(t) \quad \text { for } \quad\left\|x-x_{0}\right\| \leq t-t_{0}<t^{\prime}
$$

We will need the following results whose proofs can be found in [5] and [8] respectively.

Lemma 1. Let $\left\{x_{n}\right\}, n=0,1,2, \ldots$ be a sequence in E and $\left\{t_{n}\right\}$, $n=0,1,2, \ldots$ a sequence of non-negative real numbers such that

$$
\begin{equation*}
\left\|x_{n+1}-x_{n}\right\| \leq t_{n+1}-t_{n}, \quad n=0,1,2, \ldots \tag{4}
\end{equation*}
$$

and

$$
t_{n} \rightarrow t^{*}<\infty \quad \text { as } \quad n \rightarrow \infty .
$$

Then there exists a unique point $x^{*} \in E$ such that

$$
x_{n} \rightarrow x^{*} \quad \text { as } \quad n \rightarrow \infty
$$

and

$$
\left\|x^{*}-x_{n}\right\| \leq t^{*}-t_{n}, \quad n=0,1,2, \ldots
$$

If inequality (4) holds then we say that iteration $\left\{t_{n}\right\}$ majorizes iteration $\left\{x_{n}\right\}, n=0,1,2, \ldots$.

Lemma 2. Let $F: E \rightarrow E$ and $D \subseteq E$. Assume D is open and that $F^{\prime}(\cdot)$ exists for every $x \in D$. Let D_{0} be a convex set with $D_{0} \subseteq D$ such that $F^{\prime}(\cdot) \in H_{D_{0}}(c, p)$, then

$$
\left\|F(x)-F(y)-F^{\prime}(x)(x-y)\right\| \leq \frac{c}{1+p}\|x-y\|^{p+1} \quad \text { for all } \quad x, y \in D_{0}
$$

We can now prove a lemma which reduces to lemma 3.5 in [5] for $p=1$.

Lemma 3. Assume that for any $x, y \in D_{0} \subset D$ there is a divided difference operator $\delta F(x, y) \in L(E, \hat{E})$ such that

$$
\begin{equation*}
\delta F(x, y)(x-y)=F(x)-F(y) \tag{5}
\end{equation*}
$$

and if $u \in D_{0}$,

$$
\begin{equation*}
\|\delta F(x, y)-\delta F(y, u)\| \leq \ell_{1}\|x-u\|^{p}+\ell_{2}\|x-y\|^{p}+\ell_{2}\|y-u\|^{p} \tag{6}
\end{equation*}
$$

where $\ell_{1}, \ell_{2} \geq 0$ are independent of x, y and u.
Then the following hold:
(a) $\delta F(x, x)=F^{\prime}(x), x \in \operatorname{Int} D_{0}$; and
(b) $F^{\prime}(\cdot) \in H_{D_{0}}\left[2\left(\ell_{1}+\ell_{2}\right), p\right]$ for any fixed $p \in(0,1]$.

Proof. (a) Let us choose $x \in \operatorname{Int} D_{0}$ and $\delta>0$ such that $U(x, \delta) \subset$ D_{0}.

For $\|\Delta x\|<\delta$, we have

$$
\begin{gathered}
\|F(x+\Delta x)-F(x)-\delta F(x, x)(\Delta x)\|=\|[\delta F(x+\Delta x, x)-\delta F(x, x)](\Delta x)\| \\
\leq\|\delta F(x+\Delta x, x)-\delta F(x, x)\|\|\Delta x\| \leq\left(\ell_{1}+\ell_{2}\right)\|\Delta x\|^{p}\|\Delta x\|
\end{gathered}
$$

The above inequality proves (a) when $\ell_{1}+\ell_{2} \neq 0$ and $\|\Delta x\| \rightarrow 0$.
To cover the case when $\ell_{1}=\ell_{2}=0$, note that by (6) there is an $L \in L(E, \hat{E})$ such that $\delta F(x, y)=L$ for every $x, y \in D_{0}$. Therefore, by (5), we can choose δ arbitrarily above and set $F^{\prime}(x)=L$.
(b) For part (b), let $x, y \in D_{0}$ then by (6)

$$
\begin{gathered}
\left\|F^{\prime}(x)-F^{\prime}(y)\right\| \leq\|\delta F(x, x)-\delta F(x, y)\|+\|\delta F(x, y)-\delta F(y, y)\| \\
\leq \ell_{1}\|x-y\|^{p}+\ell_{2}\|x-y\|^{p}+\ell_{1}\|x-y\|^{p}+\ell_{2}\|x-y\|^{p} \\
=2\left(\ell_{1}+\ell_{2}\right)\|x-y\|^{p} .
\end{gathered}
$$

That completes the proof of the lemma.
Note that conditions of the form (6) have been considered in [4, p.444] for $p=1$. Moreover, conditons (6) can be reduced to the ones considered by T. J. Ypma in [10, p.242] if we choose the divided difference operator δf to be the Fréchet derivative F^{\prime} of F.

From now on we will assume that $p \in(0,1)$ and let $D_{0}=\bar{U}\left(x_{0}, R\right) \subset$ D for some fixed $x_{0} \in D$ and sufficiently small $R>0$.

II. Main convergence results

We can now prove the following theorem on the convergence of iteration (2) to a locally unique solution x^{*} of equation (1).

Theorem 1. Let $F^{\prime}(\cdot) \in H_{D_{0}}(c, p)$ and assume that:
(i) for every n with $\left\{x_{k}\right\} \subset D_{0}, k=0,1,2, \ldots, n$, there exists an invertible operator $L_{n} \in L(E, \hat{E})$ and positive real numbers \bar{d}, d, d_{n} such that:

$$
\begin{equation*}
\left\|L_{n}^{-1}\right\| \leq d_{n}^{-1}, \quad \text { with } \quad \bar{d} \leq d_{n} \leq d \tag{7}
\end{equation*}
$$

(ii) For $a, b>0$, with $b \leq \bar{d}$, both independent of n the following estimate holds:

$$
\begin{equation*}
\left\|F^{\prime}\left(x_{n}\right)-L_{n}\right\| \leq d_{n}+a c\left(\sum_{j=1}^{n}\left\|x_{j}-x_{j-1}\right\|\right)^{p}-b, \quad n=0,1,2 \ldots \tag{8}
\end{equation*}
$$

(the convention $\sum_{j=1}^{0}\left\|x_{j}-x_{j-1}\right\|=0$ is understood).
(iii) Let us define the real function f and the iteration $\left\{t_{n}\right\}$ by

$$
\begin{gather*}
f(t)=\frac{c a}{p+1} t^{p+1}-b t+d_{0}\left\|L_{0}^{-1} F\left(x_{0}\right)\right\|, \quad t \in[0, \infty), \tag{9}\\
t_{n+1}=t_{n}+\frac{f\left(t_{n}\right)}{d_{n}} ; \quad t_{0}=0 \tag{10}
\end{gather*}
$$

and assume that the function f has a minimum positive zero r_{0} such that

$$
\begin{equation*}
0<\left\|x_{1}-x_{0}\right\|<r_{0}<M \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
M=\min \left[\left(\frac{b}{c a}\right)^{1 / p}, \frac{1}{a(p+1)}, \frac{t_{1}}{d}\left(d_{0}+a c t_{1}^{p}\right),\left(\frac{\bar{d}+b-d}{c\left(2^{p}+a(1+p)\right.}\right)^{1 / p}\right] \tag{12}
\end{equation*}
$$

provided that

$$
\begin{equation*}
\bar{d}+b-d>0 \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{U}\left(x_{0}, r_{0}\right) \subset D_{0} \tag{14}
\end{equation*}
$$

Then
(a) the sequence $\left\{t_{n}\right\}$ is increasing, bounded above by its limit r_{0} and majorizes the sequence $\left\{x_{n}\right\}$ given by (2) that remains in $\bar{U}\left(x_{0}, r_{0}\right)$ for all $n=0,1,2, \ldots$.
(b) The sequence $\left\{x_{n}\right\}$ converges to a unique solution x^{*} in $\bar{U}\left(x_{0}, r_{0}\right)$ of equation (1) and

$$
\begin{equation*}
\left\|x_{n+1}-x^{*}\right\| \leq r_{0}-t_{n+1} ; \quad n=0,1,2, \ldots . \tag{15}
\end{equation*}
$$

Proof. (a) Using (2), (9), (10), and (11) we have

$$
\left\|x_{1}-x_{0}\right\|=\left\|L_{0}^{-1} F\left(x_{0}\right)\right\|=t_{1}-t_{0}=t_{1} \leq r_{0}
$$

That is $x_{1} \in \bar{U}\left(x_{0}, r_{0}\right)$.
Let us assume that:

$$
\begin{gather*}
\left\{x_{k}\right\} \subset \bar{U}\left(x_{0}, r_{0}\right) \tag{16}\\
\left\|x_{k}-x_{k-1}\right\| \leq t_{k}-t_{k-1} \text { for } k=1,2, \ldots, n
\end{gather*}
$$

and $t_{k} \leq r_{0}$. We shall show that (16) holds for $k=n+1$.
The iterate x_{n+1} is well defined since $F\left(x_{n}\right)$ and L_{n}^{-1} are. By (2), (7), (8), (9) and (16) we get

$$
\begin{gather*}
\left\|x_{n+1}-x_{n}\right\| \leq\left\|L_{n}^{-1}\right\| \cdot\left\|F\left(x_{n}\right)\right\| \\
\leq d_{n}^{-1}\left[\left\|F\left(x_{n}\right)-F\left(x_{n-1}\right)-F^{\prime}\left(x_{n-1}\right)\left(x_{n}-x_{n-1}\right)\right\|\right. \\
\left.+\left\|L_{n-1}-F^{\prime}\left(x_{n-1}\right)\right\|\left\|x_{n}-x_{n-1}\right\|\right] \\
\leq d_{n}^{-1}\left[\frac{c}{p+1}\left\|x_{n}-x_{n-1}\right\|^{p+1}+\left(d_{n-1}+a c t_{n-1}^{p}-b\right)\left\|x_{n}-x_{n-1}\right\|\right] \tag{17}\\
\leq d_{n}^{-1}\left[\frac{c}{p+1}\left(t_{n}-t_{n-1}\right)^{p+1}+\left(d_{n-1}+a c t_{n-1}^{p}-b\right)\left(t_{n}-t_{n-1}\right)\right]
\end{gather*}
$$

By (17) to show,

$$
\left\|x_{n+1}-x_{n}\right\| \leq d_{n}^{-1} f\left(t_{n}\right)=t_{n+1}-t_{n}
$$

we must have

$$
\begin{gather*}
\frac{c}{p+1}\left(t_{n}-t_{n-1}\right)^{p+1}+\left(d_{n-1}+a c t_{n-1}^{p}-b\right)\left(t_{n}-t_{n-1}\right) \tag{18}\\
\leq \frac{c a}{p+1} t_{n}^{p+1}-b t_{n}+d_{0} t_{1}
\end{gather*}
$$

for all $n=1,2, \ldots$.
It can easily be seen that

$$
\left(t_{n}-t_{n-1}\right)^{p+1} \leq t_{n}^{p+1}-t_{n-1}^{p+1} .
$$

Therefore, inequality (18) is certainly true for $n \geq 1$ if

$$
\begin{gather*}
\frac{c(1-a)}{p+1} t_{n}^{p+1}+c t_{n-1}^{p}\left(a t_{n}-\frac{1}{p+1}\right) \tag{19}\\
+t_{n-1}\left(b-d_{n-1}\right)+\left(d_{n-1} t_{n}-d_{0} t_{1}-a c t_{n-1}^{p+1}\right) \leq 0
\end{gather*}
$$

By the choice of a, b, \bar{d} and r_{0} each one of the parentheses in (19) is nonpositive.

That is, inequality (18) is true for all $n=1,2, \ldots$.
By the mean value theorem there is some $\xi_{n} \in\left(t_{n}, r_{0}\right)$ if $t_{n} \neq r_{0}$, such that

$$
\begin{gather*}
r_{0}-t_{n+1}=g_{n}\left(r_{0}\right)-g_{n}\left(t_{n}\right)=g_{n}^{\prime}\left(\xi_{n}\right)\left(r_{0}-t_{n}\right) \\
=d_{n}^{-1}\left[d_{n}+c a \xi_{n}^{p}-b\right]\left(r_{0}-t_{n}\right), \tag{20}
\end{gather*}
$$

where we have denoted

$$
g_{n}(t)=t+\frac{f(t)}{d_{n}}
$$

Also by (8),

$$
\begin{aligned}
0 \leq d_{n}+ & c a\left(\sum_{j=1}^{n}\left\|x_{j}-x_{j-1}\right\|\right)^{p}-b \leq d_{n}+c a t_{n}^{p}-b \\
< & d_{n}+c a \xi_{n}^{p}-b=\frac{\left(r_{0}-t_{n+1}\right) d_{n}}{r_{0}-t_{n}}
\end{aligned}
$$

If $t_{n}=r_{0}$, then $t_{n+1}=r_{0}$. That is

$$
\begin{equation*}
t_{n+1} \leq r_{0} \tag{21}
\end{equation*}
$$

Furthermore

$$
\begin{equation*}
\left\|x_{n+1}-x_{0}\right\| \leq \sum_{j=1}^{n+1}\left\|x_{j}-x_{j-1}\right\| \leq t_{n+1}<r_{0} \tag{22}
\end{equation*}
$$

That is $x_{n+1} \in \bar{U}\left(x_{0}, r_{0}\right)$.
Therefore, the assertions (16) are true for all $n=1,2, \ldots$.
To complete the proof of (a) we must show that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} t_{n}=r_{0} \tag{23}
\end{equation*}
$$

The sequence $\left\{t_{n}\right\}$ is increasing and bounded above by r_{0} and as such it converges to some $r^{*} \leq r_{0}$. But,

$$
0=\lim _{n \rightarrow \infty}\left(t_{n+1}-t_{n}\right)=\lim _{n \rightarrow \infty} \frac{f\left(t_{n}\right)}{d_{n}} \geq \lim _{n \rightarrow \infty} \frac{f\left(t_{n}\right)}{d}=\frac{f\left(r^{*}\right)}{d} .
$$

But this implies $f\left(r^{*}\right)=0$, that is $r^{*}=r_{0}$.
(b) By part (a) there exists $x^{*} \in \bar{U}\left(x_{0}, r_{0}\right)$ such that $x^{*}=\lim _{n \rightarrow \infty} x_{n}$ and inequality (15) holds. We must show that x^{*} is a root of F.

But iteration (2) gives

$$
\begin{align*}
& \qquad\left\|F\left(x_{n}\right)\right\| \leq\left\|L_{n}\right\| \cdot\left\|x_{n+1}-x_{n}\right\| \\
& \text { and }\left\|x_{n+1}-x_{n}\right\| \rightarrow 0 \text { as } n \rightarrow \infty . \tag{24}
\end{align*}
$$

Therefore it suffices to show that the sequence $\left\|L_{n}\right\|, n=0,1,2, \ldots$ is uniformly bounded. This follows readily from (8) and (23) since

$$
\begin{aligned}
\left\|L_{n}\right\| \leq & \left\|F^{\prime}\left(x_{n}\right)\right\|+d_{n}-b+a c\left(\sum_{j=1}^{n}\left\|x_{j}-x_{j-1}\right\|\right)^{p} \\
\leq & \left\|F^{\prime}\left(x_{0}\right)\right\|+c\left\|x_{n}-x_{0}\right\|^{p}+d_{n}-b+a c r_{0}^{p} \\
& \leq\left\|F^{\prime}\left(x_{0}\right)\right\|+(c+a c) r_{0}^{p}-b+d \equiv B
\end{aligned}
$$

Therefore the inequality (24) gives

$$
\left\|F\left(x_{n}\right)\right\| \leq B\left\|x_{n}-x_{n+1}\right\| \rightarrow 0 \text { as } n \rightarrow \infty
$$

which implies that $F\left(x^{*}\right)=0$.
To show uniqueness let us assume that there exists a second solution $z^{*} \in \bar{U}\left(x_{0}, r_{0}\right)$. Then from the identity

$$
\begin{aligned}
& x_{n+1}-z^{*} \\
= & L_{n}^{-1}\left[\left(L_{n}-F^{\prime}\left(x_{n}\right)\right)\left(x_{n}-z^{*}\right)+\left(F\left(z^{*}\right)-F\left(x_{n}\right)-F^{\prime}\left(x_{n}\right)\left(z^{*}-x_{n}\right)\right)\right]
\end{aligned}
$$

we obtain using (8) and lemma 2

$$
\begin{aligned}
\| x_{n+1}- & z^{*}\left\|\leq d_{n}^{-1}\left[\left(d_{n}+a c r_{0}^{p}-b\right)+\frac{c}{p+1}\left\|x_{n}-z^{*}\right\|^{p}\right]\right\| x_{n}-z^{*} \| \\
& \leq \bar{d}^{-1}\left[c a r_{0}^{p}+\frac{c}{p+1}\left(2 r_{0}\right)^{p}+(d-b)\right]\left\|x_{n}-z^{*}\right\| \\
& =A\left\|x_{n}-z^{*}\right\| \leq \cdots \leq A^{n+1}\left\|x_{0}-z^{*}\right\| \leq A^{n+1} r_{0}
\end{aligned}
$$

where we have denoted $A=A\left(r_{0}\right)=\left[c_{0}^{p}\left(a+\frac{2^{p}}{p+1}\right)+d-b\right] \bar{d}^{-1}$. By the choice of $r_{0}, \lim _{n \rightarrow \infty} A^{n}=0$. Therefore $x^{*}=\lim _{n \rightarrow \infty} x_{n}=z^{*}$.

That completes the proof of the theorem.
We now state and prove a proposition that will enable us to show the uniqueness of x^{*} in a larger ball.

Proposition 1. Let $F^{\prime}(\cdot) \in H_{D_{0}}(c, p), D_{0} \subset D$.
Assume:
(i) Inequality (8) holdds for $n=0$; and
(ii) the function $\bar{f}(t)$ defined by

$$
\begin{gathered}
\bar{f}(t)=\frac{c}{p+1} t^{p+1}+\left(\delta^{1}-1\right) d_{0} t+d_{0}\left\|L_{0}^{-1} F\left(x_{0}\right)\right\| \\
\text { with } \delta^{1} \equiv \frac{\left\|F^{\prime}\left(x_{0}\right)-L_{0}\right\|}{d_{0}}, t \in[0, \infty)
\end{gathered}
$$

has two zeros r_{0}^{\prime} and r_{0}^{\prime} and $r_{1}^{\prime}, r_{0}^{\prime}<r_{1}^{\prime}$ such that $U\left(x_{0}, r_{1}^{\prime}\right) \subset D_{0}$.
Then, equation (1) has a unique solution x^{*} in $\bar{U}\left(x_{0}, r_{1}^{\prime}\right)$.
Moreover:
(a) Iteration $x_{n+1}^{\prime}=x_{n}^{\prime}-L_{0}^{-1} F\left(x_{n}^{\prime}\right)$ converges to x^{*} for $\left\|x_{0}^{\prime}-x_{0}\right\|<$ $r_{2} \leq r_{1}^{\prime}$ and $U\left(x_{0}, r_{2}\right) \subset D_{0}$.
(b) The following estimate is true:

$$
\left\|x_{n}^{\prime}-x^{*}\right\| \leq\left|r_{0}^{\prime}-t_{n}^{\prime}\right|
$$

where $\left\{t_{n}^{\prime}\right\}$ is generated by $t_{n+1}^{\prime}=t_{n}^{\prime}+\frac{\bar{f}\left(t_{n}^{\prime}\right)}{d_{0}}$.
Proof. Let us first note that inequality (8) for $n=0$ gives $0<$ $b / d_{0} \leq 1-\delta^{1}$. That is $\delta^{1}<1$. Define the nonlinear operator P on D_{0} by

$$
P(x)=x-L_{0}^{-1} F(x) .
$$

We will show that if $t^{\prime} \in\left[r_{0}^{\prime}, r_{1}^{\prime}\right)$, then $g(t)=t+\bar{f}(t) / d_{0}$ majorizes $P(x)$ on $\bar{U}\left(x_{0}, t^{\prime}\right) \subset D_{0}$.

We have

$$
\left\|P\left(x_{0}\right)-x_{0}\right\|=\left\|L_{0}^{-1} F\left(x_{0}\right)\right\|=g(0)-0 .
$$

Let x, t be such that $x \in \bar{U}\left(x_{0}, t^{\prime}\right) \cap D_{0}$ and $\left\|x-x_{0}\right\| \leq t<t^{\prime}$. Then

$$
\begin{aligned}
& \left\|P^{\prime}(x)\right\|=\left\|I-L_{0}^{-1} F^{\prime}(x)\right\|=\left\|L_{0}^{-1}\left(\left(L_{0}-F^{\prime}\left(x_{0}\right)\right)+\left(F^{\prime}\left(x_{0}\right)-F^{\prime}(x)\right)\right)\right\| \\
& \quad \leq\left\|L_{0}^{-1}\right\|\left(\left\|F^{\prime}(x)-F^{\prime}\left(x_{0}\right)\right\|+\left\|F^{\prime}\left(x_{0}\right)-L_{0}\right\|\right) \leq \delta^{1}+c \frac{t^{p}}{d_{0}}=g^{\prime}(t)
\end{aligned}
$$

By hypothesis r_{0}^{\prime} is the unique fixed point of $g(t)$ in $\left[0, t^{\prime}\right]$ and $g\left(t^{\prime}\right) \leq t^{\prime}$ with equality holding if and only if $t^{\prime}=r_{0}^{\prime}$.

The results now follows from the well known classical theorem on the existence and uniqueness of solutions of equation (1) via majorizing sequences given in Kantorovich [[5], page 697].

The following Corollary is an immediate consequence of Theorem 1 and Proposition 1.

Corollary. Let $F^{\prime}(\cdot) \in H_{D_{0}}(c, p), D_{0} \subset D$. Assume that the hypotheses of Theorem 1 and Proposition 1 are satisfied. Then equation (1) has a unique solution x^{*} in $D_{0} \cap \bar{U}\left(x_{0}, r_{1}^{\prime}\right)$ and the iteration $\left\{x_{n}\right\}$ given by (2), $n=0,1,2, \ldots$ converges to x^{*} with

$$
\left\|x_{n+1}-x^{*}\right\| \leq r_{0}-t_{n+1}, \quad n=0,1,2, \ldots .
$$

We will now study the convergence of the following secant iterations as special cases of iteration (2):

$$
\begin{equation*}
x_{n+1}=x_{n}-\delta F\left(x_{n}, x_{n-1}\right)^{-1} F\left(x_{n}\right) \tag{25}
\end{equation*}
$$

or

$$
\begin{equation*}
x_{n+1}=x_{n}-\delta F\left(x_{n-1}, x_{n}\right)^{-1} F\left(x_{n}\right) \tag{26}
\end{equation*}
$$

where x_{0}, x_{-1} are given.
We can prove a theorem concerning the convergence of iteration (26) to a locally unique solution x^{*} of equation (1). A similar theorem can be proved for iteration (25).

Theorem 2. Under the assumptions of Lemma 3, $F^{\prime}(\cdot) \in H_{D_{0}}\left(c_{1}, p\right)$ with $c_{1}=2\left(\ell_{1}+\ell_{2}\right)$. Let $D_{0} \subset D$ with $x_{-1}, x_{0} \in \operatorname{int} D_{0}$. Assume:
(i) the linear operator $L_{0}=\delta F\left(x_{-1}, x_{0}\right)$ is invertible and

$$
\left\|L_{0}^{-1}\right\| \leq \beta ; \quad\left\|x_{-1}-x_{0}\right\| \leq \eta_{-1} ; \quad\left\|L_{0}^{-1} F\left(x_{0}\right)\right\| \leq \eta
$$

(ii) Let us define the real function f_{1} and the iteration $\left\{s_{n}\right\}$ by

$$
\begin{gathered}
f_{1}(s)=\frac{c_{1} a_{1}}{p+1} s^{p+1}-b_{1} s+\bar{d}_{0}\left\|L_{0}^{-1} F\left(x_{0}\right)\right\|, s \in[0, \infty) \\
s_{n+1}=s_{n}+\frac{f_{1}\left(s_{n}\right)}{\bar{d}_{n}}, s_{0}=0, n=0,1,2, \cdots
\end{gathered}
$$

where we have denoted

$$
\begin{gathered}
a_{1}=\frac{3(p+1)}{4}, b_{1}=\frac{1-\beta\left(\ell_{1}+\ell_{2}\right) \eta_{-1}^{p}}{2 \beta}, \bar{d}_{0}=\beta^{-1} \\
\bar{d}_{n}=\beta^{-1}\left[1-\beta\left(\ell_{1}+\ell_{2}\right)\left\|x_{n}-x_{n-1}\right\|^{p}-c_{1} \beta\left\|x_{n}-x_{0}\right\|^{p}-\beta\left(\ell_{1}+\ell_{2}\right) \eta_{-1}^{p}\right] \\
n=1,2, \ldots
\end{gathered}
$$

The function f_{1} has a minimum positive zero \bar{r}_{0} such that

$$
\begin{gather*}
0<\max \left(\eta_{-1}, \eta\right)<\bar{r}_{0}<\bar{M}= \\
=\min \left(\left(\frac{2 b_{1}}{3 c_{1}}\right)^{1 / p}, M,\left[\frac{1-3 \ell_{0}\left(\ell_{1}+\ell_{2}\right) \eta_{-1}^{p}}{2 \beta\left(\ell_{1}+\ell_{2}+c_{1}\right)}\right]\right), \tag{27}\\
\bar{U}\left(x_{0}, \bar{r}_{0}\right) \subset D_{0}
\end{gather*}
$$

provided that $1-3 \beta\left(\ell_{1}+\ell_{2}\right) \eta_{-1}^{p}>0$ where M is as defined in (12) with

$$
\begin{gathered}
\bar{d}=\beta^{-1}\left[1-\beta\left(\ell_{1}+\ell_{2}+c_{1}\right) \bar{r}_{0}^{p}-\beta\left(\ell_{1}+\ell_{2}\right) \eta_{-1}^{p}\right] \\
d=\beta^{-1}, c=c_{1}, a=a_{1}, b=b_{1}, \text { and } t_{1}=s_{1}
\end{gathered}
$$

Then
(a) the sequence $\left\{s_{n}\right\}$ is increasing, bounded above by its limit \bar{r}_{0} and majorizes the sequence $\left\{x_{n}\right\}$ given by (26) that remains in $\bar{U}\left(x_{0}, \bar{r}_{0}\right)$ for all $n=0,1,2, \ldots$.
(b) The sequence $\left\{x_{n}\right\}$ given by (26) converges to a unique solution x^{*} in $\bar{U}\left(x_{0}, \bar{r}_{0}\right)$ of equation (1) with

$$
\left\|x_{n+1}-x^{*}\right\| \leq \bar{r}_{0}-s_{n+1}, \quad n=0,1,2, \ldots
$$

Proof. The proof will be accomplished by finding the analog of Theorem 1 with $L_{n}=\delta F\left(x_{n-1}, x_{n}\right)$.

By hypothesis

$$
\left\|x_{-1}-x_{0}\right\|<\bar{r}_{0} \text { and }\left\|x_{0}-x_{1}\right\|<\bar{r}_{0}
$$

and

$$
\left\|F^{\prime}\left(x_{0}\right)-L_{0}\right\| \leq \bar{d}_{0}-b_{1} .
$$

Let us assume

$$
\sum_{j=1}^{k}\left\|x_{j}-x_{j-1}\right\| \leq s_{k}<\bar{r}_{0}
$$

the linear operators L_{k} are invertible and (8) holds for all $k=1,2, \ldots, n-1$ with $c=c_{1}, a=a_{1}, b=b_{1}$ and $d_{k}=\bar{d}_{k}$.

As in Theorem 1 we can show that

$$
\sum_{j=1}^{n}\left\|x_{j}-x_{j-1}\right\| \leq s_{n}<\bar{r}_{0}
$$

Using (6) we can easily obtain

$$
\begin{equation*}
\left\|L_{k}-F^{\prime}\left(x_{k}\right)\right\| \leq\left(\ell_{1}+\ell_{2}\right)\left\|x_{k-1}-x_{k}\right\|^{p}, \quad k=0,1,2, \cdots, n \tag{28}
\end{equation*}
$$

Using (3) and (28) we get

$$
\begin{gathered}
\left\|L_{n}-L_{0}\right\| \leq\left\|L_{n}-F^{\prime}\left(x_{n}\right)\right\|+\left\|F^{\prime}\left(x_{n}\right)-F^{\prime}\left(x_{0}\right)\right\|+\left\|F^{\prime}\left(x_{0}\right)-L_{0}\right\| \\
\leq\left(\ell_{1}+\ell_{2}\right)\left\|x_{n}-x_{n-1}\right\|^{p}+c_{1}\left\|x_{n}-x_{0}\right\|^{p}+\left(\ell_{1}+\ell_{2}\right) \eta_{-1}^{p} .
\end{gathered}
$$

Then

$$
\left\|L_{0}^{-1} L_{n}-I\right\| \leq\left\|L_{0}^{-1}\right\|\left\|L_{n}-L_{0}\right\| \leq \beta\left[\left(\ell_{1}+\ell_{2}+c_{1}\right) \bar{r}_{0}^{p}+\left(\ell_{1}+\ell_{2}\right) \eta_{-1}^{p}\right]<1
$$

which is true since \bar{r}_{0} is a minimum positive zero of the equation $f_{1}(s)=0$. That is the linear operator L_{n} is invertible and

$$
\left\|L_{n}^{-1}\right\| \leq \bar{d}_{n}^{-1}
$$

Moreover, inequality (8) holds for $k=n$ by (27), (28) and the estimate $\bar{d}_{n} \geq b_{1}$.

It can easily be seen by the choice of \bar{r}_{0} that

$$
\bar{d} \leq \bar{d}_{n} \leq d, n=0,1,2, \ldots, b_{1} \leq \bar{d} \text { and } \bar{d}+b_{1} \geq d
$$

The hypotheses (i), (ii) and (iii) of Theorem 1 are now satisfied. Therefore the results follow immediately from Theorem 1.

Note that the above theorem gives us a way of choosing linear operators $L_{n}, n \geq 0$ in such a way that condition (8) is satisfied.

III. Error analysis and applications

Here we look at iteration (26) in a way different than before which enables us to find the order of convergence of (26) to a solution x^{*} of (1).

Proposition 2. Under the hypotheses of Theorem 2 the solution x^{*} of equation (1) obtained via iteration (26) is such that

$$
\begin{gathered}
\left\|x_{n+1}-x^{*}\right\| \leq \gamma_{1}\left\|x_{n}-x^{*}\right\|\left(\left\|x_{n}-x^{*}\right\|+\left\|x_{n-1}-x^{*}\right\|\right)^{p}+\gamma_{2}\left\|x_{n}-x^{*}\right\|^{p+1} \\
n=0,1,2, \ldots
\end{gathered}
$$

where,

$$
\gamma_{1}(n)=\gamma_{1}=\bar{d}_{n}^{-1}\left(\ell_{1}+\ell_{2}\right) \text { and } \gamma_{2}(n)=\gamma_{2}=\frac{\bar{d}_{n}^{-1} c_{1}}{1+p} .
$$

Proof. Using (26) we have

$$
\begin{gathered}
x_{n+1}-x^{*}=x_{n}-x^{*}-\delta F\left(x_{n-1}, x_{n}\right)^{-1} F\left(x_{n}\right) \\
=\delta F\left(x_{n-1} x_{n}\right)^{-1}\left[\left(\delta F\left(x_{n-1}, x_{n}\right)-F^{\prime}\left(x_{n}\right)+F^{\prime}\left(x_{n}\right)\right)\left(x_{n}-x^{*}\right)-F\left(x_{n}\right)\right] \\
=\delta F\left(x_{n-1}, x_{n}\right)^{-1}\left[\left(\delta F\left(x_{n-1}, x_{n}\right)-F^{\prime}\left(x_{n}\right)\left(x_{n}-x^{*}\right)\right)\right. \\
\left.+\left(F^{\prime}\left(x_{n}\right)\left(x_{n}-x^{*}\right)-F\left(x_{n}\right)+F\left(x^{*}\right)\right)\right] .
\end{gathered}
$$

By taking norms above we obtain

$$
\left\|x_{n+1}-x^{*}\right\| \leq \bar{d}_{n}^{-1}\left[\left(\ell_{1}\left\|x_{n}-x_{n-1}\right\|^{p}+\ell_{2}\left\|x_{n}-x_{n-1}\right\|^{p}\right)\left\|x_{n}-x^{*}\right\|\right.
$$

$$
\begin{gathered}
\left.+\frac{c_{1}}{1+p}\left\|x_{n}-x^{*}\right\|^{p+1}\right] \leq \bar{d}_{n}^{-1}\left[\left(\ell_{1}+\ell_{2}\right)\left(\left\|x_{n}-x^{*}\right\|+\left\|x_{n-1}-x^{*}\right\|\right)^{p}\right. \\
\left.\times\left\|x_{n}-x^{*}\right\|+\frac{c_{1}}{1+p}\left\|x_{n}-x^{*}\right\|^{p+1}\right]
\end{gathered}
$$

The result now follows from the above inequality.
We now give two examples as possible applications of the theory introduced above for finding solutions x^{*} of (1), for illustrational purposes. The motivated reader can fill the computational details.

Example 1. Consider the function G defined on $[0, b]$ by

$$
G(t)=A t^{1+\bar{p}}+B t
$$

where, $A, B \in \mathbb{R}, \bar{p} \in[0,1]$ and $b>0$.
Let || \| denote the max norm on \mathbb{R}, then

$$
\left\|G^{\prime \prime}(t)\right\|=\max _{t \in[0, b]}\left|A(1+\bar{p}) \bar{p} t^{\bar{p}-1}\right|=\infty
$$

which implies that the Newton-Kantorovich hypotheses are not satisfied [4].

However, it can easily be seen that $G^{\prime}(t)$ is Hölder continuous on $[0, b]$ with

$$
c=A(1+\bar{p}) \text { and } p=\bar{p} .
$$

Therefore, under the assumptions of theorem 2, iteration (26) can be used to find a solution t^{*} of the equation $G(t)=0$.

We can further apply our results by modifying an example considered also by Rokne [9].

Example 2. Consider the differential equation

$$
\begin{gather*}
y^{\prime \prime}+y^{1+p}=0, p \in(0,1) \tag{29}\\
y(0)=y(1)=0 .
\end{gather*}
$$

We divide the interval $[0,1]$ into n subintervals and we set $h=1 / n$. Let $\left\{v_{k}\right\}$ be the points of subdivision with

$$
0=v_{0}<v_{1}<\cdots<v_{n}=1 .
$$

A standard approximation for the second derivative is given by

$$
y_{i}^{\prime \prime}=\frac{y_{i-1}-2 y_{i}+y_{i+1}}{h^{2}}, y_{i}=y\left(v_{i}\right), \quad i=1,2, \ldots, n-1 .
$$

Take $y_{0}=y_{n}=0$ and define the operator $F: \mathbb{R}_{+}^{n-1} \rightarrow \mathbb{R}^{n-1}$ by

$$
\begin{equation*}
F(y)=H(y)+h^{2} \varphi(y) \tag{30}
\end{equation*}
$$

$$
H=\left[\begin{array}{ccccc}
2 & -1 & & & \\
-1 & 2 & -1 & & \\
& \ddots & \ddots & \ddots & \\
& & -1 & 2 & -1 \\
& & & -1 & 2
\end{array}\right], \quad \varphi(y)=\left[\begin{array}{c}
y_{1}^{1+p} \\
y_{2}^{1+p} \\
\vdots \\
y_{n-1}^{1+p}
\end{array}\right], \quad \text { and } y=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n-1}
\end{array}\right]
$$

Then

$$
F^{\prime}(y)=H+h^{2}(p+1)\left[\begin{array}{llll}
y_{1}^{p} & & & \\
& y_{2}^{p} & & \\
& & \ddots & \\
& & & y_{n-1}^{p}
\end{array}\right]
$$

The Newton-Kantorovich hypotheses for the solution of the equation

$$
\begin{equation*}
F(y)=0 \tag{31}
\end{equation*}
$$

may not be satisfied. We may not be able to evaluate the second Fréchetderivative since it would involve the evaluation of quantities of the form y_{i}^{p-1} and they may not exist.

The secant hypotheses [4, p. 445] for $p \neq 1$ are not satisfied.
Let $y \in \mathbb{R}^{n-1}, H \in \mathbb{R}^{n-1} \times \mathbb{R}^{n-1}$ and define the norms of y and H by

$$
\|y\|=\max _{1 \leq j \leq n-1}\left|y_{j}\right|, \quad\|M\|=\max _{1 \leq j \leq n-1} \sum_{k=1}^{n-1}\left|m_{j k}\right|
$$

For all $y, z \in \mathbb{R}^{n-1}$ for which $\left|y_{i}\right|>0,\left|z_{i}\right|>0, i=1,2, \cdots, n-1$ we obtain for $p=\frac{1}{2}$, say

$$
\begin{gathered}
\left\|F^{\prime}(y)-F^{\prime}(z)\right\|=\left\|\operatorname{diag}\left\{\left(1+\frac{1}{2}\right) h^{2}\left(y_{j}^{1 / 2}-z_{j}^{1 / 2}\right)\right\}\right\| \\
=\frac{3}{2} h^{2} \max _{1 \leq j \leq n-1}\left|y_{j}^{1 / 2}-z_{j}^{1 / 2}\right| \leq \frac{3}{2} h^{2}\left[\max \left|y_{j}-z_{j}\right|\right]^{1 / 2}=\frac{3}{2} h^{2}\|y-z\|^{p} .
\end{gathered}
$$

Therefore under the assumptions of theorem 2, iteration (26) can be used to find solutions y^{*} of (31) as follows:

A linear operator $L \in L\left(\mathbb{R}^{n-1}, \mathbb{R}^{n-1}\right)$ can be represented by a matrix with entries $q_{i j}$ and

$$
\|L\|=\max \left\{\sum_{j=1}^{n-1}\left|q_{i j}\right|: 1 \leq i \leq n-1\right\}
$$

Let F be an operator defined on \mathbb{R}^{n-1} with values in \mathbb{R}^{n-1}. Let us denote by F_{1}, \ldots, F_{n-1} the components of F. For each $v \in \mathbb{R}^{n-1}$ we can write

$$
F(v)=\left(F_{1}(v), \ldots, f_{n-1}(v)\right)^{t r}
$$

Let $v, w \in \mathbb{R}^{n-1}$ and define $\delta F(v, w)$ by the matrix with entries

$$
\begin{gather*}
\delta F(v, w)_{i j}=\frac{1}{v_{j}-w_{j}}\left(F_{i}\left(v_{1}, \cdots, v_{j}, w_{j+1}, \cdots, w_{m}\right)\right. \tag{32}\\
\left.\quad-F_{i}\left(v_{1}, \cdots, v_{j-1}, w_{j}, \cdots, w_{m}\right)\right), \quad m=n-1
\end{gather*}
$$

It can easily be seen that the operator defined by (32) satisfies (5) and $\delta F(v, w) \in L\left(\mathbb{R}^{n-1}, \mathbb{R}^{n-1}\right)$.

Denote by

$$
P_{j} F_{i}(v)=\frac{\partial F_{i}(v)}{\partial v_{j}}, \quad i, j=1,2, \ldots, n-1
$$

We can choose $n=10$ which gives (9) equations for iteration (26), if we look at it as a system of linear equations given $z_{-1}, z_{0} \in \mathbb{R}^{9}$. As in [9], since a solution would vanish at the end points and be positive in the interior a reasonable choise of initial approximation seems to be $130 \sin x$. This gives us the following vector

$$
z_{-1}=\left[\begin{array}{l}
4.015241 E+01 \\
7.637852 E+01 \\
1.051351 E+02 \\
1.236112 E+02 \\
1.299991 E+02 \\
1.236752 E+02 \\
1.052571 E+02 \\
7.654622 E+01 \\
4.034951 E+01
\end{array}\right]
$$

Choose z_{0} by setting

$$
z_{0}\left(v_{i}\right)=z_{-1}\left(v_{i}\right)-10^{-5}, \quad i=1,2, \ldots, 9 .
$$

Using iteration (26) with the above values and (32), after seven iter-
ations we get

$$
z_{6}=\left[\begin{array}{c}
3.357455 E+01 \\
6.520294 E+01 \\
9.156631 E+01 \\
1.091680 E+02 \\
1.153630 E+02 \\
1.091680 E+02 \\
9.156663 E+02 \\
6.520294 E+01 \\
3.357455 E+01
\end{array}\right] \text { and } z_{7}=\left[\begin{array}{c}
3.357450 E+01 \\
6.520290 E+01 \\
9.156660 E+01 \\
1.091680 E+02 \\
1.536301 E+02 \\
1.091680 E+02 \\
9.156660 E+02 \\
6.520290 E+01 \\
3.357450 E+01
\end{array}\right] .
$$

We choose $z_{6}=x_{-1}$ and $z_{7}=x_{0}$ for our Theorem 2. From now on we assume that F is restricted on $\bar{U}\left(x_{0}, .1\right)$. With the notation of Theorem 2 we can easily obtain the following results: $\beta \leq 25.5882, \eta_{-1} \leq 5 E-05$, $\ell_{1}=\ell_{2}=.03, c_{1}=.12, a_{1}=1.125, s_{1}=t_{1}=\eta \leq 9.15311 E-05$, $d_{0}=d=.039080513, b_{1}=.01932812$ and

$$
f_{1}(s)=9 E-02 s^{3 / 2}-.01932812 s+3.577082405 E-06=0 .
$$

The above equation has a minimum positive solution R such that

$$
\bar{r}_{0} \doteq R=9.18 E-05 \text { and }\left|R-\bar{r}_{0}\right| \leq 5 E-06
$$

With the above values and using (27) we get

$$
\begin{gathered}
\bar{d}=.03693415 \\
\max (\eta-1, \eta)=9.15311 E-05
\end{gathered}
$$

and

$$
\bar{M}=9.45561085 E-05
$$

All the hypotheses of Theorem 2 are now satisfied with the above values.

Therefore, the iteration generated by (26) converges to a unique solution x^{*} in $\bar{U}\left(x_{0}, R\right)$ of equation (31).

References

[1] I. K. Argyros, On the approximation of some nonlinear equations, Aequationes Mathematicae 32 (1987), 87-95.
[2] I. K. Argyros, Newton-like methods under mild differentiability conditions with error analysis, Bull. Austral. Math. Soc. 37, 1 (1988), 131-147.
[3] X. Chen and T. Yamamoto, Convergence domains of certain iterative methods for solving nonlinear equations, Numer. Funct. Anal. and Optimiz. 10 (1 and 2) (1989), 34-48.
[4] J. E. Dennis, Toward a unified convergence theory for Newton-like methods. Article in Nonlinear Functional Analysis and Applications. Edited by L. B. Rall,, Academic Press, New York, 1970, pp. 425-472.
[5] L. V. Kantorovich and G. P. Akilov, Functional analysis in normed spaces, Oxford, Pergamon Press, 1964.
[6] P. Lancaster, Error analysis for the Newton-Raphson method, Num. Math. 9, 55 (1968), 55-68.
[7] F. A. Potra and V. Ptak, Nondiscrete induction and iterative processes, Pitman Publ., 1984.
[8] W. C. Rheinboldt, A unified convergence theory for a class of iterative processes, SIAM J. Numer. Anal. 5, 1 (1968), 371-391.
[9] J. Rokne, Newton's method under mild differentiability conditions with error analysis, Numer. Math. 18 (1972), 401-412.
[10] T. J. Ypma, Convergence of Newton-like iterative methods, Numer. Math. 45 (1984), 241-251.
[11] T. J. Ypma, Local convergence of difference Newton-like methods, Math. Comput. 41 (1983), 527-536.

```
IOANNIS K. ARGYROS
CAMERON UNIVERSITY
DEPARTMENT OF MATHEMATICS
LAWTON, OK 73505-6377, U.S.A.
```

(Received September 15, 1991)

[^0]: 1980 Mathematics Subject Classification (1985 Revision): 65J15, 65B05, 65L50, 65M50, 47H15, 47H17.
 Keywords: Hölder continuity, Fréchet-derivative, Newton's method, Banach space.

