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The Dunford–Pettis property on spaces of polynomials

By RAFFAELLA CILIA (Catania)

and JOAQUÍN M. GUTIÉRREZ (Madrid)

Abstract. We give conditions on a Banach space X so that the spaces of
scalar-valued homogeneous polynomials on X do not have the Dunford–Pettis
property (DPP). This allows us to obtain new examples of Banach spaces with
the DPP such that their duals fail it.

In [P2], Pe�lczyński asks whether the projective tensor product of
two Banach spaces with the Dunford–Pettis property (DPP) has the DPP.
The same question is raised in [D1, Question 11] for the injective tensor
product.

An important counterexample was given by Talagrand [T1] who
constructed a Banach space X such that X∗ has the Schur property (so
X and X∗ have the DPP) and C([0, 1],X) ≡ C[0, 1] ⊗ε X and L1(X∗) ≡
L1[0, 1] ⊗π X∗ fail the DPP. Positive results have been obtained by many
authors (see, for instance, [A], [B2], [Ry1]).

In many cases, the injective and the projective tensor products may
be identified with spaces of operators [DF, 5.3, Proposition and 5.7, Corol-
lary 1]. In all cases, the duals of these tensor products are also spaces of
operators. In [BV] and [GG4] conditions are given on Banach spaces X

and Y so that the projective tensor product X ⊗π Y , the injective tensor
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product X ⊗ε Y , or the duals of these tensor products do not have the
DPP.

As far as we know, little has been done concerning the DPP on spaces
of scalar-valued polynomials (some easy cases may be seen in [CG, p. 233]).
In the present paper, we give conditions on X so that the spaces of scalar-
valued homogeneous polynomials on X fail the DPP, obtaining new exam-
ples of Banach spaces with the DPP such that their duals fail it.

Throughout, X and Y denote Banach spaces, X∗ is the dual of X, and
BX stands for its closed unit ball. By N we represent the set of all natural
numbers and by K the scalar field (real or complex). The notation X ≡ Y

(respectively, X ∼= Y ) means that X and Y are isometrically isomorphic
(respectively, isomorphic). By an operator from X into Y we always mean
a bounded linear mapping. We use L(X,Y ) for the space of all operators
from X into Y , and K(X,Y ) for the subspace of compact operators. Given
an operator T ∈ L(X,Y ), its adjoint is denoted by T ∗ ∈ L(Y ∗,X∗).

By I(X,Y ) we denote the space of all (Grothendieck) integral operators
from X into Y (see [DU, Definition VIII.2.6]).

An operator T ∈ L(X,Y ) is absolutely (q, p)-summing (1 ≤ p, q < ∞)
if there is a constant K > 0 such that, no matter how we select finitely
many vectors x1, . . . , xn ∈ X, we have

( n∑
k=1

‖T (xk)‖q

)1/q

≤ K · sup
{( n∑

k=1

|〈x∗, xk〉|p
)1/p

: x∗ ∈ BX∗

}
.

A Banach space X has cotype q if there is a constant K ≥ 0 such that,
however we choose finitely many vectors x1, . . . , xn ∈ X, we have

( n∑
k=1

‖xk‖q

)1/q

≤ K

(∫ 1

0

∥∥∥∥
n∑

k=1

rk(t)xk

∥∥∥∥2

dt

)1/2

,

where rk(t) are the Rademacher functions (see [DJT, Chapter 11]).
A Banach space X has the Orlicz property if the identity operator on

X is absolutely (2, 1)-summing. Every Banach space with cotype 2 has the
Orlicz property (see [DPR, Definition 5.1]). The converse is not true [T2].

Given m ∈ N, we denote by P(mX,Y ) the space of all m-homogeneous
(continuous) polynomials from X into Y endowed with the supremum
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norm. Recall that with each P ∈ P(mX,Y ) we can associate a unique
symmetric m-linear (continuous) mapping P̂ : X× (m). . . ×X → Y so that

P (x) = P̂
(
x, (m). . ., x

)
(x ∈ X).

For simplicity, we write P(mX) := P(mX, K). For 1 ≤ k ≤ m (k,m ∈ N),
P(kX) is isomorphic to a complemented subspace of P(mX) [AS, Proposi-
tion 5.3].

A polynomial P ∈ P(mX,Y ) is of finite type if it is a finite sum of terms
of the form γm ⊗ y, with γ ∈ X∗ and y ∈ Y , where (γm ⊗ y)(x) := γ(x)my

for all x ∈ X. A polynomial is approximable if it lies in the norm closure
of the space of polynomials of finite type.

A polynomial P ∈ P(mX,Y ) is compact if P (BX) is relatively com-
pact in Y . A polynomial P ∈ P(mX,Y ) is weakly continuous on bounded
subsets if for each bounded net (xα) ⊂ X weakly converging to x, (P (xα))
converges to P (x) in norm. We denote by Pwb(mX,Y ) the space of all
polynomials in P(mX,Y ) which are weakly continuous on bounded sets.
Every polynomial in Pwb(mX,Y ) is compact ([AP, Lemma 2.2] and [AHV,
Theorem 2.9]). An operator is weakly continuous on bounded sets if and
only if it is compact [AP, Proposition 2.5].

For the general theory of multilinear mappings and polynomials on
Banach spaces, we refer to [Di] and [M].

By X ⊗s X we denote the 2-fold symmetric tensor product of X, that
is, the set of all elements of X ⊗ X of the form

u =
m∑

i=1

λixi ⊗ xi (m ∈ N, λi ∈ K, xi ∈ X, 1 ≤ i ≤ m).

By X ⊗π,s X (respectively, X ⊗ε,s X), we denote the closure of X ⊗s X in
X ⊗π X (respectively, in X ⊗ε X). Given x, y ∈ X, we denote

x ⊗s y :=
1
2

(x ⊗ y + y ⊗ x).

See [DF] or [DU] for the theory of tensor products. For symmetric tensor
products, we refer to [F]. It is well known that P(mX) ∼= (⊗m

π,sX)∗ [F,
Proposition 2.2].
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A Banach space X has the Dunford–Pettis property (DPP, for short)
if every weakly compact operator on X is completely continuous, i.e., takes
weakly null sequences into norm null sequences [Gr]. Equivalently, X has
the DPP if and only if, given arbitrary weakly null sequences (xn) ⊂ X and
(x∗

n) ⊂ X∗, we have limn〈xn, x∗
n〉 = 0. If X∗ has the DPP, then so does X,

but the converse is not true [S]. The DPP is inherited by complemented
subspaces. The spaces C(K) and L1(µ) enjoy the DPP. For more on the
DPP, the reader is referred to [D1].

The Banach–Mazur distance d(X,Y ) between two isomorphic Banach
spaces X and Y is defined by inf

(‖T‖‖T−1‖) where the infimum is taken
over all isomorphisms T from X onto Y . Recall that a Banach space
X is an Lp-space (1 ≤ p ≤ ∞) [LP] if there is λ ≥ 1 such that every
finite-dimensional subspace of X is contained in another subspace N with
d

(
N, �n

p

) ≤ λ for some integer n. The L1-spaces, the L∞-spaces, and all
their duals have the Dunford–Pettis property[B1, Corollary 1.30].

We start with a preparatory result of independent interest.

Theorem 1. Suppose that X has the Orlicz property, does not have

the Schur property, and contains a complemented copy of �1. Then the

space X ⊗ε,s X does not have the DPP.

Proof. Since X is isomorphic to a complemented subspace of X⊗ε,sX

[AF, 3.5], we can assume that X has the DPP.
Let (zn) ⊂ X be a weakly null normalized, basic sequence. We can

find a sequence (z∗n) ⊂ X∗ with ‖z∗n‖ ≤ C for all n, and 〈zn, z∗n〉 = δnm.
There are operators

�1
j−−−−→ X

h−−−−→ �1

so that h ◦ j = I�1 , where I�1 is the identity map on �1. Taking adjoints,
we have

�∞
h∗−−−−→ X∗ j∗−−−−→ �∞,

and
〈j(en), h∗ (e∗m)〉 = 〈hj(en), e∗m〉 = 〈en, e∗m〉 = δnm,

where (en) ⊂ �1 and (e∗n) ⊂ �∞ are the canonical unit vector sequences.
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Define T : X ⊗ε,s X → �2 by

T (x ⊗ x) = (z∗n(x)h∗ (e∗n) (x))∞n=1 .

Since
∑

h∗(e∗n) is weakly unconditionally Cauchy, T is well defined. More-
over, for an arbitrary element

∑m
i=1 λixi ⊗ xi ∈ X ⊗s X, we have∥∥∥∥T

( m∑
i=1

λixi ⊗ xi

)∥∥∥∥ =
∥∥∥∥

m∑
i=1

λi

(
z∗n(xi)h∗(e∗n)

(xi)
)∞

n=1

∥∥∥∥.

Let H ∈ L(X∗,X) be given by

〈H(y∗), x∗〉 =
m∑

i=1

λiy
∗(xi)x∗(xi).

Then

‖H‖ =
∥∥∥∥

m∑
i=1

λixi ⊗ xi

∥∥∥∥
ε

[DF, Examples 4.2]. So, by the Orlicz property of X,∥∥∥∥T

( m∑
i=1

λixi ⊗ xi

)∥∥∥∥ =
( ∞∑

n=1

|〈H (h∗ (e∗n)) , z∗n〉|2
)1/2

≤ C ·
( ∞∑

n=1

‖H (h∗ (e∗n))‖2

)1/2

≤ M sup
x∗∈BX∗

∞∑
n=1

|〈H (h∗ (e∗n)) , x∗〉|

= M sup
x∗∈BX∗

∞∑
n=1

|〈e∗n, h∗∗(H∗(x∗))〉|

≤ M‖h‖‖H‖ sup
ξ∈B�∗∞

∞∑
i=1

|〈e∗n, ξ〉|

= M‖h‖‖H‖ sup
y∈B�1

∞∑
i=1

|〈e∗n, y〉|

= M‖h‖‖H‖ = M‖h‖
∥∥∥∥

m∑
i=1

λixi ⊗ xi

∥∥∥∥
ε

,
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where we have used the decomposition �∗∞ = �1⊕c⊥0 [Kö, §31.1(11)]. Hence,
T is continuous for the injective topology.

Consider the symmetric tensor

zn ⊗s j(en) =
1
2

zn ⊗ j(en) +
1
2

j(en) ⊗ zn.

Clearly, the sequence (zn ⊗s j(en)) is weakly null in X ⊗ε,s X. We have

2T (zn ⊗s j(en)) = T ((zn + j(en)) ⊗ (zn + j(en)))

− T (zn ⊗ zn) − T (j(en) ⊗ j(en))

= (z∗m(zn)h∗(e∗m)(j(en)))∞m=1+ (z∗m(j(en))h∗(e∗m)(zn))∞m=1

= en + (z∗m(j(en))h∗ (e∗m) (zn))∞m=1 .

By the DPP of X, we have h∗(e∗n)(zn) → 0, so

lim sup
n→∞

‖T (zn ⊗s j(en))‖ ≥ 1
2

lim sup
n→∞

|1 + z∗n(j(en))h∗ (e∗n) (zn)| =
1
2

,

and T is not completely continuous. �

Examples 2. The following spaces X with the DPP satisfy the condi-
tions of Theorem 1:

(a) Every infinite dimensional L1-space X without the Schur property
([DJT, Corollary 11.7], [LP, Proposition 7.3]).

(b) The dual X = A∗ of the disc algebra A ([P3, Corollaries 8.1
and 8.4], [W, Corollary III.I.14]). Since A contains a copy of �1 [P3, Corol-
lary 3.1], A∗ does not have the Schur property.

(c) X = L1/H1 (see [P3, Corollary 8.1], [W, Corollary III.I.14]). Since
L1/H1 contains a copy of L1 [B4], it does not have the Schur property.

(d) X = (H∞)∗ (see [B3], [B5, Corollary 5.4], [B5, comment after
Corollary 2.11]). Recall that H∞ is the dual of L1/H1 ([P3, page 11], [Pi,
page 84, Remark after Theorem 6.17]).

Note that A∗, (H∞)∗ and L1/H1 are not L1-spaces, since they do
not have local unconditional structure [Pi, Theorem 8.18 and page 110,
Remarks].

(e) The predual X (with the DPP and without the Schur property)
of a C∗-algebra A (see [CI] for the DPP of C∗-algebras and [To, Propo-
sition 3.2] for the cotype 2 property). Note that A contains a copy of
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c0 [R, Proposition 2.19], so X contains a complemented copy of �1 [D2,
Theorem V.10].

(f) If Z is a Banach space with the DPP and cotype 2 not having
the Schur property, then X = �1(Z) has the Orlicz property [Pi, page 83,
lines 1–2], the DPP, and does not have the Schur property [Bo, Corol-
lary 2.4(c)].

(g) X = L1/S where S is a reflexive subspace of L1 = L1(µ) (see [D1,
Theorem 9] for the DPP and [Pi, page 82] for the cotype 2 property). Note
that, by the next Lemma, X contains a complemented copy of �1. Note
also that, if S is infinite dimensional, X is not an L1-space [Pi, page 82].

Recall that a Banach space X has property (V ∗) if whenever a set
K ⊂ X satisfies

lim
n

sup
x∈K

〈x, x∗
n〉 = 0

for every weakly unconditionally Cauchy series
∑

x∗
n in X∗, K is weakly

sequentially compact. Reflexive spaces and L1(µ)-spaces have property
(V∗) [P1].

Lemma 3. Let X be a nonreflexive Banach space with property (V ∗).
Let Y be a reflexive subspace of X. Then X/Y contains a complemented

copy of �1.

Proof. The space X/Y has property (V∗) [GS, Theorem III.3]. Since
reflexivity is a three-space property [CasG, 4.1], X/Y is not reflexive.
Therefore, by [GS, Proposition III.1], X/Y contains a complemented copy
of �1. �

Corollary 4. Suppose that X∗ has the Orlicz property, does not have

the Schur property, contains a complemented copy of �1, and has the ap-

proximation property. Then the space Pwb(2X) does not have the DPP.

Proof. By the approximation property of X∗, the space Pwb(2X) co-
incides with the space of approximable polynomials [AP, Proposition 2.7],
and the latter is isomorphic to X∗ ⊗ε,s X∗ [F, Proposition 3.2]. Hence, it
is enough to apply Theorem 1. �

Examples 5. The following spaces X satisfy the conditions of Corol-
lary 4:
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(a) Every L∞-space X containing a copy of �1.
(b) X = A, the disc algebra. Recall that A∗ = L1/H

0
1 ⊕1 Vsing [P3,

(1.2)], where Vsing is an L1(ν)-space, and L1/H
0
1 has the approximation

property [P3, §10]. Given two Banach spaces Y and Z with the approxima-
tion property, it is easy to see that Y ⊕1 Z has the approximation property
(use, for instance, the definition given in [Ry2, Proposition 4.1(iii)]).

(c) Every C∗-algebra X with the DPP (by [CIW], this implies that X∗

has the DPP), containing a copy of �1, such that X∗ has the approximation
property.

Recall that it is unknown if H∞ has the approximation property
[P3, §10].

Theorem 1 and Corollary 4 are also true if the Orlicz property is
replaced by having finite cotype q ≥ 2. The operator T in the proof of
Theorem 1 would then take values in �q, and we should use the fact that
the identity on X is absolutely (q, 1)-summing [DJT, Corollary 11.17].
However, we do not know if there are Banach spaces with finite cotype
and the DPP that fail the Orlicz property.

Theorem 6. Suppose that X∗ does not have the Schur property and

contains a complemented copy of �1, and X∗∗ contains no complemented

copy of �1. Then the space P(2X) does not have the DPP.

Proof. Consider the operators

�1
j−−−−→ X∗ h−−−−→ �1

such that h ◦ j = I�1 , and their adjoints

�∞
h∗−−−−→ X∗∗ j∗−−−−→ �∞.

Clearly, 〈j(en), h∗(e∗n)〉 = 1.
Let (φn) ⊂ X∗ be a weakly null normalized, basic sequence, with

coefficient functionals (zn) ⊂ X∗∗ so that ‖zn‖ ≤ C.
Define Pn ∈ Pwb(2X) by

Pn(x) = 〈φn, x〉〈j(en), x〉.
Denote by P̃n the natural extension of Pn to X∗∗ by weak-star continuity
on bounded sets. For every z ∈ X∗∗, we have∣∣P̃n(z)

∣∣ = |〈φn, z〉〈j(en), z〉| ≤ ‖j‖ · ‖z‖ · |〈φn, z〉| −→
n

0.
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Then, the sequence (Pn) is weakly null in Pwb(2X) [GG2, Corollary 5],
and so in P(2X).

Consider

Φn := zn ⊗ h∗ (e∗n) + h∗ (e∗n) ⊗ zn ∈ X∗∗ ⊗π,s X∗∗.

Let Q ∈ (X∗∗ ⊗π,s X∗∗)∗ ⊂ L(X∗∗,X∗∗∗). Since X∗∗∗ contains no copy of
�∞, the operator Q ◦ h∗ is completely continuous, so

|Q (zn ⊗ h∗ (e∗n))| = |〈Q (h∗ (e∗n)) , zn〉| ≤ C · ‖Q (h∗ (e∗n))‖ −→
n

0,

and (Φn) is weakly null.
Define

S : X∗∗ ⊗π,s X∗∗ −→ P(2X)∗

by 〈
S

( m∑
i=1

λiwi ⊗ wi

)
, P

〉
=

m∑
i=1

λiP̃ (wi),

where P̃ ∈ P(2X∗∗) is the Aron–Berner extension of P [DG, Theorem 3].
We have

∥∥∥∥S

( m∑
i=1

λiwi ⊗ wi

)∥∥∥∥
= sup

{∣∣∣∣
m∑

i=1

λiP̃ (wi)
∣∣∣∣ : P ∈ P(2X), ‖P‖ ≤ 1

}
≤

m∑
i=1

|λi| · ‖wi‖2,

from which we obtain that S is continuous.
Since X∗ is complemented in P(2X) [AS, Proposition 5.3], if X∗ does

not have the DPP, neither does P(2X) and the proof is finished. Assume
now that X∗ has the DPP, then

〈S (zn ⊗ h∗ (e∗n) + h∗ (e∗n) ⊗ zn) , Pn〉 = 2 ̂̃
P n (zn, h∗ (e∗n))

= 〈φn, zn〉 〈j(en), h∗ (e∗n)〉 + 〈φn, h∗ (e∗n)〉 〈j(en), zn〉 −→
n

1,

and the space P(2X) does not have the DPP. �
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Remark 7. (a) Theorem 6 is also true for the space Pwb(2X).
(b) Theorem 6 is also true for the spaces P(mX) and Pwb(mX), where

m ∈ N (m ≥ 2).

Examples 8. The following spaces X satisfy the conditions of Theo-
rem 6:

(a) Every L∞-space X containing a copy of �1.
(b) X = A, the disc algebra.
(c) X = H∞.
(d) Every C∗-algebra X with the DPP containing a copy of �1.

Corollary 9. Let X be a Banach space with the DPP such that X∗

contains a complemented copy of �1 and X∗∗ contains no complemented

copy of �1. The following assertions are equivalent:

(a) X contains no copy of �1;

(b) Pwb(2X) has the Schur property;

(c) Pwb(2X) has the DPP;

(d) P(2X) has the Schur property;

(e) P(2X) has the DPP;

(f) P(2X) = Pwb(2X);
(g) X∗ has the Schur property.

Proof. (a) ⇔ (g) is well-known [D1, Theorem 3].
(g) ⇒ (d). By [Ry1, Corollary 3.4], (X⊗π X)∗ has the Schur property.

Therefore, its complemented subspace (X⊗π,sX)∗ ∼= P(2X) has the Schur
property.

(d) ⇒ (b) ⇒ (c) and (d) ⇒ (e) are obvious.
(e) ⇒ (g). Suppose that X∗ does not have the Schur property. By

Theorem 6, the space P(2X) does not have the DPP.
(c) ⇒ (g) by the same argument as in (e) ⇒ (g), using Remark 7,(a).
(a) ⇒ (f) by [GG1, Corollary 3.8].
(f) ⇒ (a) by [Gu, Theorem 4]. �

Remark 10. (a) The infinite-dimensional L∞-spaces satisfy all the hy-
potheses of Corollary 9.

(b) Corollary 9 is also true for the spaces Pwb(mX) and P(mX)
(m ∈ N).
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(c) It was shown in [BV, Theorem 2.8] that the space H∞ ⊗π,s H∞
does not have the DPP, so P(2H∞) does not have the DPP either. By
Corollary 9, neither does Pwb(2H∞). For the properties of H∞, see [B3,
B5]. The same is true for the disc algebra [B5].

(d) The C∗-algebras with the DPP satisfy the conditions of Corol-
lary 9.

(e) If X is an L∞-space without the Schur property, all the assertions
of Corollary 9 are equivalent to:

(∗) X ⊗π,s X has the DPP.
Indeed, (e) ⇒ (∗) is obvious. Suppose now that X contains a copy of �1.
Then, by [BV, Theorem 2.8], X ⊗π,s X does not have the DPP. Hence, (∗)
implies (a).

We shall now study conditions so that the duals Pwb(2X)∗ and P(2X)∗

fail the DPP. We give two preliminary results which may be of independent
interest.

Denote by L(2X) the space of all bilinear forms on X, and by Lwb(2X)
the subspace of all bilinear forms which are weakly continuous on bounded
sets. We shall use the following isometric equalities: L(2X) ≡ L(X,X∗)
and Lwb(2X) ≡ K(X,X∗) (for the latter, see [GG3, Proposition 12]).

Proposition 11. Suppose that X∗ has the bounded approximation

property. Then the space Pwb(2X)∗ is isomorphic to a complemented

subspace of P(2X)∗.

Proof. Consider the operators

Pwb(2X) I−−−−→ Lwb(2X) U−−−−→ Pwb(2X)

such that I(P ) = P̂ for P ∈ Pwb(2X), and U(A) = Q for A ∈ Lwb(2X),
where Q(x) := A(x, x) (x ∈ X). Then UI is the identity map on Pwb(2X).
Analogously, we define the operators

P(2X) J−−−−→ L(2X) V−−−−→ P(2X)

where V J is the identity map on P(2X). Note that JV leaves the sym-
metric bilinear forms invariant.
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Using the bounded approximation property of X∗, by the proof of [J,
Lemma 1], there are operators

K(X,X∗)∗ L−−−−→ L(X,X∗)∗ R−−−−→ K(X,X∗)∗

such that RL is the identity map on K(X,X∗)∗, R is the restriction oper-
ator, and

〈L(Φ),K〉 = 〈Φ,K〉

for all Φ ∈ K(X,X∗)∗ and K ∈ K(X,X∗) ⊆ L(X,X∗).
Given φ ∈ Pwb(2X)∗ and P ∈ Pwb(2X), we have

〈I∗RV ∗J∗LU∗(φ), P 〉 =
〈
RV ∗J∗LU∗(φ), P̂

〉
=

〈
V ∗J∗LU∗(φ), P̂

〉
=

〈
LU∗(φ), JV (P̂ )

〉
=

〈
L(φ ◦ U), P̂

〉
=

〈
φ ◦ U, P̂

〉
=

〈
φ,U(P̂ )

〉
= 〈φ, P 〉,

hence I∗RV ∗J∗LU∗ is the identity map on Pwb(2X)∗, and J∗LU∗I∗RV ∗

is a projection on P(2X)∗ with range isomorphic to Pwb(2X)∗. �

Recall now that P(mc0) = Pwb(mc0) [Ar, Corollary, page 215]. Let
X be a closed subspace of a Banach space Y ; we say that X is locally
complemented in Y if X∗∗ is complemented in Y ∗∗ under the natural em-
bedding [K, Theorem 3.5]. It is shown in [CaG] that a Banach space
has the Dunford–Pettis property if and only if all its locally comple-
mented subspaces have it. In the same paper, it is proved that �∞⊗π,s �∞
is a locally complemented subspace of (c0 ⊗π,s c0)∗∗. Since �∞ ⊗π,s �∞
does not have the Dunford–Pettis property [BV, Theorem 2.6], the space
(c0 ⊗π,s c0)∗∗ ∼= P(2c0)∗ does not have it either.

Denote by Pw∗(mX∗∗) the space of all scalar-valued m-homogeneous
polynomials on X∗∗ such that, for every bounded net (zα) ∈ X∗∗ weak-star
converging to z, we have P (zα) → P (z). It is shown in [Mo, Proposition 3]
that there is a surjective isometric isomorphism

L : Pwb(mX) −→ Pw∗(mX∗∗)

such that L(P ) is an extension of P ∈ Pwb(mX) to X∗∗.
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Proposition 12. Let m ∈ N and suppose that X∗ contains a com-

plemented copy of �1. Then Pwb(mc0) is isomorphic to a complemented

subspace of Pwb(mX).

Proof. There are operators

�1
i−−−−→ X∗ π−−−−→ �1

such that π ◦ i is the identity map on �1. Taking adjoints, we have

�∞
π∗−−−−→ X∗∗ i∗−−−−→ �∞

where i∗ ◦ π∗ is the identity map on �∞.
Let

Pw∗(m�∞) L−−−−→ Pw∗(mX∗∗) S−−−−→ Pw∗(m�∞)

be the operators given by L(P ) := P ◦ i∗ for P ∈ Pw∗(m�∞), and S(Q) :=
Q ◦ π∗ for Q ∈ Pw∗(mX∗∗). Since i∗ and π∗ are weak-star-to-weak-star
continuous, L and S are well defined. Then

S(L(P )) = S(P ◦ i∗) = P ◦ i∗ ◦ π∗ = P for P ∈ Pw∗(m�∞),

so S ◦ L is the identity map on Pw∗(m�∞) and L ◦ S is a projection.
Hence, Pw∗(m�∞) ≡ Pwb(mc0) is isomorphic to a complemented subspace
of Pw∗(mX∗∗) ≡ Pwb(mX). �

Theorem 13. Suppose that X∗ has the bounded approximation prop-

erty and contains a complemented copy of �1. Then the spaces Pwb(2X)∗

and P(2X)∗ do not have the DPP.

Proof. By Proposition 12, P(2c0)∗ is isomorphic to a complemented
subspace of Pwb(2X)∗. Since P(2c0)∗ does not have the DPP, the space
Pwb(2X)∗ does not have it either.

Assume first that X∗ has the Schur property. Then P(2X) = Pwb(2X)
[GG1, Corollary 3.8]. So P(2X)∗ does not have the DPP.

Assume now that X∗ does not have the Schur property. By Proposi-
tion 11, Pwb(2X)∗ is isomorphic to a complemented subspace of P(2X)∗.
Therefore, P(2X)∗ does not have the DPP. �
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Note that the bounded approximation property of X∗ is only used
to prove that P(2X)∗ fails the DPP when X∗ does not have the Schur
property.

Examples 14. From Corollary 9 and Theorem 13, we obtain a class of
Banach spaces X such that Pwb(mX) and P(mX) have the Schur property
while Pwb(mX)∗ and P(mX)∗ do not have the DPP. The following spaces
X belong to this class:

(a) X = C(K) for K a dispersed compact Hausdorff space [PS, The-
orem 2].

(b) The space X constructed in [BL] not isomorphic to a comple-
mented subspace of a C(K) space, such that X∗ ≡ �1.

(c) The somewhat reflexive L∞-space X containing no copy of c0,
constructed in [BD], such that X∗ ∼= �1.

(d) X = Y ⊗π Z, where Y ∗ and Z∗ have the Schur property, Y ∗∗ (or
Z∗∗) has the bounded approximation property, and Y ∗ (or Z∗) contains
a complemented copy of �1. Indeed, X∗ has the Schur property [Ry1,
Corollary 3.4]. Since Y ∗∗ or Z∗∗ contains a (complemented) copy of �∞,
so does Y ∗∗ ⊗π Z∗∗. By the bounded approximation property of Y ∗ or
Z∗, Y ∗∗ ⊗π Z∗∗ is isomorphic to a subspace of X∗∗ = (Y ⊗π Z)∗∗ [CaG].
Therefore, X∗ contains a complemented copy of �1.

We can take as Y a subspace of c0 which is not an L∞-space (for
instance, Y may be a subspace of c0 without the approximation property
[LT, Theorem 2.d.6]). Since c0 has the hereditary DPP [D1, Theorem 4],
Y ∗ has the Schur property. Let Z = c0. Then X := Y ⊗π Z belongs to
our class.

We could also take as Y Hagler’s space [H] whose dual has the Schur
property, and Z = c0. Since Y ∗∗ contains a complemented copy of �1 [H,
Lemma 9], Y is not an L∞-space.

Recall that the first example of a Banach space with the DPP such
that its dual fails the DPP was given by Stegall [S].

It is easy to see [CG, page 233] that, if X is an L1-space, then Pwb(mX)
and P(mX) are L∞-spaces, and so these spaces and all their duals have
the DPP.

The authors are grateful to the referees for comments and suggestions
that have led to the improvement of the paper.
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