
Publ. Math. Debrecen

69/4 (2006), 451–455

Estimating the defect in Jensen’s Inequality

By A. M. FINK (Ames)

Abstract. We consider how much the difference of the two sides of Jensen’s In-

equality might be. It has a connection with Grüss Inequality.

Grüss’ Inequality gives an estimate on the defect in the Chebyshev Inequality
and has found some application elsewhere, see for example [1]. Here we consider
the defect in Jensen’s Inequality.

To be more precise, let all the integrals exist and µ be a normalized measure,
i.e.

∫ b

a
dµ = 1. Then define

T (f, g) ≡
∫ b

a

fgdµ −
∫ b

a

fdµ

∫ b

a

gdµ. (1)

Chebyshev showed that if f and g are both increasing (or both decreasing) then
T (f, g) ≥ 0. Now we know that T (f, g) ≥ 0 if

[f(x) − f(y)][g(x) − g(y)] ≥ 0 for all pairs x, y. (2)

Grüss considered how positive T could be. We will cite some of the results below.
Similarly, we want to look at Jensen’s Inequality,

φ

( ∫ b

a

fdµ

)
≤

∫ b

a

φ(f)dµ (3)

which we know to hold when φ is convex, f is in L∞, and µ ≥ 0 and normalized.
So

E(φ, f, µ) ≡
∫ b

a

φ(f)dµ − φ

( ∫ b

a

fdµ

)
(4)
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is non-negative for such (φ, f, µ). Then we ask, how positive can it be?
Jensen’s inequality follows from the graph of a convex function lying above

its tangent lines. Explicitly

φ(t) ≥ φ(s) + (t − s)φ′(s)

for any t and s. Here we must retain equality. So we begin with assuming that
φ′′ exists on [a, b] and write

φ(t) = φ(s) + (t − s)φ′(s) +
∫ t

s

(t − u)φ′′(u)dµ. (5)

In (5) we replace t by f(t) and s by M(f) ≡ ∫ b

a fdµ, and integrate with respect
to µ. We arrive at

∫ b

a

φ(t)dµ(t) = φ(M(f)) +
∫ b

a

∫ f(t)

M(f)

[f(t) − u]φ′′(u)dudµ(t) (6)

from which we obtain the representation

E(φ, f, µ) =
∫ b

a

∫ f(t)

M(f)

[f(t) − u]φ′′(u)dudµ(t). (7)

The integrand of the outside integral is non-negative. For let A ≡ {t | f(t) ≥
M(f)} and B ≡ [a, b]\A. Then

E(φ, f, µ) =
∫

A

∫ f(t)

M(f)

(f(t) − u)φ′′(u)dudµ(t)

+
∫

B

∫ M(f)

f(t)

(u − f(t))φ′′(u)dudµ(t). (8)

Let S(t) = t2

2 so that S′′(t) ≡ 1.

Theorem 1. Let φ be convex with φ′′ continuous, f ∈ L∞, and µ ≥ 0 with∫ b

a
dµ = 1. Then

E(φ, f, µ) ≤ ‖φ′′‖∞E(S, f, µ). (9)

Equality hold for φ = S.

Proof. The proof is immediate from (8). Since all quantities are non-
negative we may majorize E by replacing φ′′ with ‖φ′′‖, factoring it out of the
integrals, and we get E with φ′′ replaced by 1, i.e. φ = S. �
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Now the quantity E(S, f, µ) is interesting.

E(S, f, µ) =
1
2

[∫ b

a

f2dµ −
( ∫ b

a

fdµ

)2
]
.

The quantity in brackets is the defect in the Cauchy–Schwarz Inequality for f

and 1. It somehow measures how much f and 1 are independent functions.
Moreover, E(S, fµ) = 1

2T (f, f) so there is a connection with the Chebyshev
and Grüss Inequalities. We now cite the relevant things about these. Grüss [2]
in his original paper does not notice that (with µ ≥ 0 and normalized)

T (f, g) =
1
2

∫ b

a

∫ b

a

[f(x) − f(y)][g(x) − g(y)]dµ(x)dµ(y).

This was known much earlier, see the chapter on Chebyshev’s Inequality in [3].
By the Cauchy–Schwarz we have T (f, g) ≤ T (f, f)

1
2 T (g, g)

1
2 . However he arrives

at this inequality in other ways and provides a couple of upper bounds. He shows
that (still with µ normalized)

T (f, f) ≤ [max f − M(f)][M(f) − min f ]. (10)

Since min f ≤ M(f) ≤ max f , this last expression is at most 1
4 (max f −

min f)2. Furthermore, equality holds here if f(t) = sgn(t − µ) where
∫ µ

a
dµ =∫ b

µ dµ = 1
2 .

Corollary 1. Let φ be convex f bounded and integrable, and µ ≥ 0 and

normalized, then

E(φ, f, µ) ≤ 1
2
‖φ′′‖∞

[
max f − M(f)

][
M(f) − min f

]
≤ 1

8
‖φ′′‖∞

[
max f − min f

]2
.

These are all best possible constants.
For Grüss’ proof and other results one may consult either [3, p. 296] or [4].
The above results are straight forward for measures for which µ ≥ 0. We

know however, that there are other situations when E(φ, f, µ) ≥ 0. Suppose
that f is monotone and bounded, φ convex, and µ end positive, i.e.

L(t) ≡
∫ t

a

dµ ≥ 0, and, R(t) ≡
∫ b

t

dµ ≥ 0 for a ≤ t ≤ b. (11)

Then E(φ, f, µ) ≥ 0. See e.g. [3, p. 13] or [5], but it is a result known to Steffenson
in the discrete case earlier. The above arguments need to be modified since the
measure is no longer non-negative and the argument of the theorem fails.
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Theorem 2. If φ is convex with φ′′ continuous, f ′ exists and is strictly

one sign, and µ is a normalized measure satisfying (11), then the estimate of

Theorem 1 holds.

Proof. We take the case when f ′ > 0. There is a c ∈ (a, b) such that
f(t) ≤ M(f) on [a, c) and f(t) ≥ M(f) on [c, b]. To see this, we must show that
f(a) < M(f) < f(b). Recalling that L(b) = R(a) = 1 we have by interchange of
integration ∫ b

a

fdµ = f(b) −
∫ b

a

f ′Ldt < f(b)

and ∫ b

a

fdµ = f(a) +
∫ b

a

f ′Rdt > f(a).

Now

E(φ, f, µ) =
∫ c

a

∫ M(f)

f(t)

[u − f(t)]φ′′(u)dudµ(t)

+
∫ b

c

∫ f(t)

M(f)

[f(t) − u]φ′′(u)du dµ(t)

=
∫ M(f)

f(a)

∫ f−1(u)

a

(u − f(t))dµ(t) φ′′(u)du

+
∫ f(b)

M(f)

∫ b

f−1(u)

(f(t) − u)dµ(t) φ′′(u)du. (12)

The inner integrals are by interchange of order

∫ f−1(u)

a

(u − f(t))dµ(t) =
∫ f−1(u)

a

f ′(t)L(t)dt ≥ 0

and ∫ b

f−1(u)

(f(t) − u)dµ(t) =
∫ b

f−1(u)

f ′(t)R(t)dt ≥ 0.

So we may again majorize φ′′ by its norm as in the proof of Theorem 1. �

Again the estimate which involves S(t) is T (f, f). Since (f, f) clearly satis-
fies (2), this is non-negative and we may look for a Grüss type estimate. All of
the results in [2] or [3] require that µ ≥ 0. However, in [4] we looked at some
results for end positive measures.
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Corollary 2. If (φ, f, µ) satisfy the hypothesis of Theorem 2, then

E(φ, f, µ) ≤ 1
2
F [f(b) − f(a)]2‖φ′′‖∞,

and

E(φ, f, µ) ≤ N‖f ′‖2
∞‖φ′′‖∞,

where F = maxa≤t≤x≤b L(t)R(x) and N =
∫ b

a RL1dx, L1(x) =
∫ x

a L(t)dt Both

estimates have the best possible constants.

Proof. These are direct applications of Theorems 11 and 16 of [4]. �

It is possible using the identities (7) and (12) to get estimates using Hölder’s
Inequality with ‖φ′′‖p but they are not so nice and it is difficult to get best
possible estimates.
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