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Estimating the defect in Jensen’s Inequality

By A. M. FINK (Ames)

Abstract. We consider how much the difference of the two sides of Jensen’s In-
equality might be. It has a connection with Griiss Inequality.

Griiss’ Inequality gives an estimate on the defect in the Chebyshev Inequality
and has found some application elsewhere, see for example [1]. Here we consider
the defect in Jensen’s Inequality.

To be more precise, let all the integrals exist and p be a normalized measure,
ie. f; du = 1. Then define

T(f,g)E/abfgdu—/abfdu/abgdu- (1)

Chebyshev showed that if f and g are both increasing (or both decreasing) then
T(f,9) > 0. Now we know that T'(f,g) > 0 if

[f(z) = f(y)]lg(z) — g(y)] > 0 for all pairs z,y. (2)

Griiss considered how positive T" could be. We will cite some of the results below.
Similarly, we want to look at Jensen’s Inequality,

¢>< / b fdu> </ " o) 3)

which we know to hold when ¢ is convex, f is in Lo, and g > 0 and normalized.
So

E(p, o) = / o) - ¢< / b fdu) (4)
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is non-negative for such (¢, f, ). Then we ask, how positive can it be?
Jensen’s inequality follows from the graph of a convex function lying above
its tangent lines. Explicitly

O(t) = ¢(s) + (t — 5)¢'(s)

for any ¢ and s. Here we must retain equality. So we begin with assuming that
¢" exists on [a,b] and write

¢(t) = d(s) + (t — 5)¢'(s) + / (t = u)¢" (u)dp. (5)

In (5) we replace t by f(t) and s by M(f) = f: fdp, and integrate with respect
to u. We arrive at

b f(t)
/ o(t)du(t) = / / ¢ (w)dudp(t) (6)
from which we obtain the representation
f(t
E(¢, f,u dud 7
o / / [ o (u)dudp(t). (7)

The integrand of the outside integral is non-negative. For let A = {t | f(t) >
M(f)} and B = [a,b]\A. Then

f(t)
E(6, f,p) = /A / (F() — )¢ (u)dudp(t)
M(f)
+ /B / (u— F(£))¢" (u)dudu(t). (8)

Let S(t) = % so that S”(t) = 1.
Theorem 1. Let ¢ be convex with ¢ continuous, f € Lo, and u > 0 with
b
J, dp=1. Then
B, f.1) < 19" E(S, f, 1) (9)

Equality hold for ¢ = S.

PRrROOF. The proof is immediate from (8). Since all quantities are non-
negative we may majorize E by replacing ¢” with ||¢"||, factoring it out of the
integrals, and we get E with ¢” replaced by 1, i.e. ¢ = S. O
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Now the quantity E(S, f, u) is interesting.

(S, £, 1) =%[/abf2du— (/abfduﬂ.

The quantity in brackets is the defect in the Cauchy—-Schwarz Inequality for f
and 1. It somehow measures how much f and 1 are independent functions.

Moreover, E(S, fu) = £T(f, f) so there is a connection with the Chebyshev
and Griiss Inequalities. We now cite the relevant things about these. GRUSS [2]
in his original paper does not notice that (with x4 > 0 and normalized)

b b
T(9) = [ [ 1@ = £@lale) - 9w)lduta)duty).

This was known much earlier, see the chapter on Chebyshev’s Inequality in [3].
By the Cauchy—Schwarz we have T'(f,g) < T(f, f)%T(g,g)%. However he arrives
at this inequality in other ways and provides a couple of upper bounds. He shows
that (still with g normalized)

T(f, f) < [max f — M(f)][M(f) — min f]. (10)
Since min f < M(f) < max f, this last expression is at most %(max -
min f)2. Furthermore, equality holds here if f(t) = sgn(t — &) where ["dy =
fﬁb dp = 3.
Corollary 1. Let ¢ be convex f bounded and integrable, and p > 0 and
normalized, then

B, f,1) < 316" loe [miax f — M(F)] [M(F) ~ min f]

< éH(ZSNHOO[maXf — minf]2.

These are all best possible constants.

For Griiss’ proof and other results one may consult either [3, p. 296] or [4].

The above results are straight forward for measures for which p > 0. We
know however, that there are other situations when E(¢, f,1) > 0. Suppose
that f is monotone and bounded, ¢ convex, and p end positive, i.e.

¢ b
L(t) = / dp >0, and, R(t)= / dp>0 for a<t<b. (11)
a t

Then E(¢, f, ) > 0. See e.g. [3, p. 13] or [5], but it is a result known to Steffenson
in the discrete case earlier. The above arguments need to be modified since the
measure is no longer non-negative and the argument of the theorem fails.
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Theorem 2. If ¢ is convex with ¢" continuous, f’ exists and is strictly

one sign, and p Is a normalized measure satisfying (11), then the estimate of
Theorem 1 holds.

PrOOF. We take the case when f’ > 0. There is a ¢ € (a,b) such that
f(t) < M(f) on [a,c) and f(t) > M(f) on [c,b]. To see this, we must show that

fla) < M(f) < f(b). Recalling that L(b) =

integration

and

Now

b b
/ fd = F(b) — / f'Ldt < £(b)

/fdu f(a /fRdt>f()

(6, f,11) / /M(f)u— ¢ (u)dudpu(t)

/ / " 10) — e (e dt

M(f) ()
-/ / (u— FO)dp(t) ¢" (u)du
f(a)

/ " / [ 00— 0iu@) ¢y

The inner integrals are by interchange of order

and

So we may again majorize ¢’ by its norm as in the proof of Theorem 1.

£ (w) ()
[ ws@du = [ roLd=o

b b
/ (F() — w)dpu(t) = / FORM@E > 0.
F=H(w) 1 (u)

R(a) =1 we have by interchange of

O

Again the estimate which involves S(t) is T'(f, f). Since (f, f) clearly satis-
fies (2), this is non-negative and we may look for a Griiss type estimate. All of

the results in [2] or [3] require that p > 0. However, in [4] we looked at some

results for end positive measures.
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Corollary 2. If (¢, f, u) satisfy the hypothesis of Theorem 2, then

B(p. f,p) < 3FIFB) ~ F@0" o

and

B¢, f,1) < NI 13116l

where F = max,<i<z<p L(t)R(z) and N = f; RLydz, Li(z) = [ L(t)dt Both
estimates have the best possible constants.

PROOF. These are direct applications of Theorems 11 and 16 of [4]. O

It is possible using the identities (7) and (12) to get estimates using Holder’s
Inequality with [|¢”||, but they are not so nice and it is difficult to get best
possible estimates.
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