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On the characterization of n-polyadditive functions

By KATALIN KOVACS (Budapest)

Abstract. The paper investigates the class of arithmetical functions satisfying the
equation Zl<i1<i2<---<ik<n(—1)kf(ail @i, . . .ai, ) = 0. The set of solutions contains the
completely additive and the completely quadritive functions.

In 1999 IMRE RuUZzsA [1] introduced a new class of functions which is wider
than the class of the additive functions:

Definition. f :NT — R is quadritive if

flabe) = f(ab) + f(ac) + f(be) — f(a) = f(b) = f(c)

for all a, b, ¢ pairwise coprime numbers.

He also proved several theorems concerning quadritive functions. We con-
tinue the generalization towards further dimensions.

Definition. For a positive integer n the function f: NT — R is
n-polyadditive if

F(ay,...,an) ::Z Z (=1)*f(ai,aiy .. .a;,) =0 (1)

k=0 1<i3<iz<---<ipx<n

for all ay,as,...,a, positive integers.
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Remark. If f is l-polyadditive then f = f(1) (a constant). If f is 2-
polyadditive then f = g + f(1) with a completely additive function g. If f is
3-polyadditive then f = h 4 f(1) with a completely quadritive function h.

Notation. A, := the set of n-polyadditive functions
Vaf(m) := f(am) — f(m).

Theorem 1.
(la) If f € Ay, then f € A, for allt > k.
(1b) f € A, ifand only if V,f € A, _1 for alla € NT,

(le) f € A, if and only if V4, Va,...Va,f = 0 for all a1,as,...,a, positive
integers.

(1d) For any f,g € A, and a, 8 € R, also af + g € A,.
(le) If f € Ak, g € A; then fg € Agyi—1.

Theorem 2. If f is n-polyadditive and f(1) = 0 then
(2a)
k = s—1 n—1 k—s n—1 n—s
COED SER | G VI T (e VI ) S
s=1

for all k > n and m € Nt.

(2b)
n—1 n 1—¢ n—1
Z n_ll_t I£] H (k—z)f(mt) (k,mENJr). (3)
t=1 i=0, i#£t

(2¢) f(II;_, p") with primes p; is a linear combination of the elements in

T=T(p,..ps) = {707 pF) | Yo <n—1}
i=1

with integer coeflicients.
(2d) If f is completely additive then f7 is n-polyadditive for j < n and f7 is not
n-polyadditive for j > n if f # 0.

Corollaries. (2a) = If f € A, then the values of f(m?) for all z > n
are determined by f(m), f(m2),..., f(m™~!) (a linear combination with integer
coefficients).

(la) and (2d) = A,—1 € A4,.
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Theorem 3. If f is n-polyadditive and f(1) = 0 then to any m > 1 there
exist apm € R (¢ =1,...,n — 1) such that for all k > 0

n—1

F(m*) = 3" . log! (m"). (4)

t=1

PROOF OF THEOREM 1. (la) The identity

F(alu e 7an—17an7an+1)

=F(a1,...,an-1,apn) + Fla1,...,an—1,an+1) — F(ay,...,an-1,@nan41)

implies f € A, = f€ A 1.

(1c) It can be easily checked by induction that

A(m) = Vg, ...V, (f(m)) = Z Z (—=1)" flas, a,, . . .ai;m).

J=0 1< <i2<--<i;<n

Now A(1l) = F(a1,...,an) = 0 = f € A,. On the other hand f € A, =
f € Ant1 by (1a), ie. F(ay,...,an,m) = 0 = A(m) = C(ay,...a,) by (1).
A(l)=0= C(a1,...,an) =0.

(1b) This follows immediately from (1c).

(1d) is a direct consequence of (1c) or (1).

(le) We prove by induction. For k = 1 it is true with an arbitrary ¢ € N*. Let
us assume that it is true for k + ¢ < n. We use the identity

Va(fg) = fVag +9Vaf +VafVag.

As f € Ay, considering (1b) V.f € Ax_1. As g € A; by the hypothesis of
the induction gV,f € Agii—o. Considering (1a) gV.f is in Agii—1. fVag
and V,fV.g € Agt:t—1 can be proven similarly. Using the identity and (1d)
Va(fg) € Aryi—1. O

PROOF OF THEOREM 2. (2a) For k > n we substitute a; = m*~"*! a;, =m
(i=2,...,n) in (1):
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By the substitution s =n — ¢ we get

) = 5—1)“ {7 Dty (22 s}

(2b) For 1 < k < n the product coefficient of f(m!) in (3) differs from 0 (and is
equal to 1) only for ¢ = k.
For k =n (3) is true as

n—1 e nl .
flm®) =2 (=" T )
n—1
=3 ()

what we proved in (2a).
Let us assume that (3) is true for n < v < k. To verify that (3) is valid also for
v = k we substitute (3) into (2). We have to prove that

s+ S (1) st (27 ) o)

ko ) n—1 n—l n 1—t n—1
= —1 s— k_S_Z mt
s:o( ) {< ); n—1-—t)! 1(;[_#( ) ( )}
n—1
+y (- (nfﬁ 1)f<mf> = 0. )

t=1

The coefficient of f(m?) (z=1,...,n—1) in (5) is

-1 n—z—1 n—1 n—1 n—1
m{zo(—l) ( ) H k—s—1) (n—l)} 0

=0,1
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Lemma.
n—1 n—1 n—1
Dn—dn,k,z—Z(—l)s_1< ) II k=s-i)=-(n-1)
5=0 5 i=0, iz
forallz=1,....n—1 and k > n.

PRrROOF OF THE LEMMA. We prove by induction. For n = 2 we have —k +
(k—1) = —1. We assume that D; = —(t — 1)! for ¢ < n. First we prove that
ndy k2 — dpy1,k,z =0 for z <n —1and k > n + 1. We have that

nZl<—1>“<Z><n—s> i <k—5—i>‘i(‘”“<z>. [1 6

= o i 2 L
_ g( 1yt (Z‘) (2n — k)z_ﬁ#(k —s—i) 4 (—1)" (Z) i_}lz(k i)
=(2n—k) é(—l)s1 <Z> :);(k— s—i)=(2n- k>§< 1)“(”;1)

B Y Vi S

=(2n—K)[dn gz —dng-1.:]=0

using the substitution s’ = s — 1 and k¥’ = k — 1 in the second sum.

For z = n we have

n n—2
n .
dn+1,k,n - (dnJrl,k,n_ dnJrl,k,nfl) —nl! :Z(_1)571 < > H (k —S5— Z) —n!

S

5=0 i=0
n—1 n—1 n—2 n o1 n2
S (e () o
s=0 i=0 s—1 =0
n n 1 n—2
_ s—1 - .
= o+ 2D ("2)) 101 (o1~}
= dn,k,n—l - dn,k—l,n—l —n!l=-nl.

(2¢) First we prove the existence of the evaluation with integer coefficients. For
a1+ -+ as < n— 1 the assertion is trivial. Let us assume that it is also true
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fora; 4+ +as <zwithsome z>n. fa; +---+as;,=z+1: f(p7*...p%) =
flai...azq41) witha; >1 (¢ =1,...,2+1). By (1a) f € A,+1, hence
flar...az) =Y > (=) Y f(ai,ai, . . . as,).
k=1 1<iy<iz<---<ij<z+1

All the terms on the right hand side are determined by the values of the elements in
T =T(p1,-..,ps) by the inductional hypothesis and the coefficients are integers.

(2d) f7 € Aj41 is an easy consequence of (1e), hence by (la) f7 is in A,, for
all j < n.

Now assume indirectly that 5 > n and f/ € A,. As f # 0 there exists a
prime p such that f(p) # 0. For any k we have f7(pF) = k7 f7(p), since f is
completely additive. Then by (3) we obtain

o n—1 n 1—2 n—1 o
P =P =3 11_2),2, 1 -0
z=1 =0, i#z

Dividing by f7(p) we see that the right hand side consists of terms bounded by
k"~'nJ_ hence the right hand side is bounded by c(n) - k"~1. But the left hand
side is k% > k™, which is a contradiction, if k is large enough. (|

PROOF OF THEOREM 3. For any fixed m > 1 the substitution k=1,...,n—1
in (4) forms a system of linear equations with determinant (n — 1)1V (1,

n(n—1)
n—1)log 2 Y m # 0 (V denotes the Vandermonde-determinant), i.e. the values
Q¢ for t < n are uniquely determined. We prove that these numbers satisfy (4)
also for k > n. We prove by induction. By (2a) for k > n

oy =S [ (M ) st (27 s )

s=1

hence it is enough to prove that

n—1 n—1
n—1
Z m ¢ log' (m (=1)s7! { ( . ) Z Q. log! (m*~*%)

s=1 t=1
n— 1) =
+(S_1>;Oém_’tlogt(mns)} (k:n7n+17)

It is enough to examine the coefficients of ay, log’ m, i.e. to prove that

S (e Eer (o= o

s=0 s=0
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fork=n,n+1,....

We show that each of the two sums in (6) is 0 for ¢ <n — 2, and is (n — 1)!
fort=n—1.

Denote by H(r,n — 1,t¢) the number of those t-digit integers which contain
all digits 0,1,...,n — 2 in an r-base number system (r > n — 1). Then the first
sum of (6) is H(k,n—1,t), and the second sum is H(n—1, n—1,t), if we perform
the calculation by the logical sieve: the sifting properties are that the digit 4
(i =0,1,...,n — 2) is missing. On the other hand, clearly H(r,n — 1,¢t) = 0 for
t<n—1and Hir,n—1,n—1)=(n—1)!. O

I am indebted to Imre Ruzsa and Robert Freud for their valuable remarks.
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