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On the characterization of n-polyadditive functions

By KATALIN KOVÁCS (Budapest)

Abstract. The paper investigates the class of arithmetical functions satisfying the

equation
P

1≤i1<i2<···<ik≤n
(−1)kf(ai1ai2 . . . aik

) = 0. The set of solutions contains the

completely additive and the completely quadritive functions.

In 1999 Imre Ruzsa [1] introduced a new class of functions which is wider

than the class of the additive functions:

Definition. f : N+ → R is quadritive if

f(abc) = f(ab) + f(ac) + f(bc) − f(a) − f(b) − f(c)

for all a, b, c pairwise coprime numbers.

He also proved several theorems concerning quadritive functions. We con-

tinue the generalization towards further dimensions.

Definition. For a positive integer n the function f : N+ → R is

n-polyadditive if

F (a1, . . . , an) :=

n
∑

k=0

∑

1≤i1<i2<···<ik≤n

(−1)kf(ai1ai2 . . . aik
) = 0 (1)

for all a1, a2, . . . , an positive integers.
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Remark. If f is 1-polyadditive then f = f(1) (a constant). If f is 2-

polyadditive then f = g + f(1) with a completely additive function g. If f is

3-polyadditive then f = h + f(1) with a completely quadritive function h.

Notation. An := the set of n-polyadditive functions

∇af(m) := f(am) − f(m).

Theorem 1.

(1a) If f ∈ Ak then f ∈ At for all t ≥ k.

(1b) f ∈ An if and only if ∇af ∈ An−1 for all a ∈ N+.

(1c) f ∈ An if and only if ∇a1∇a2 . . .∇an
f = 0 for all a1, a2, . . . , an positive

integers.

(1d) For any f, g ∈ An and α, β ∈ R, also αf + βg ∈ An.

(1e) If f ∈ Ak, g ∈ At then fg ∈ Ak+t−1.

Theorem 2. If f is n-polyadditive and f(1) = 0 then

(2a)

f(mk) =
n−1
∑

s=1

(−1)s−1

{(

n − 1

s

)

f(mk−s) +

(

n − 1

s − 1

)

f(mn−s)

}

(2)

for all k ≥ n and m ∈ N+.

(2b)

f(mk) =

n−1
∑

t=1

(−1)n−1−t

(n − 1 − t)!t!

n−1
∏

i=0, i6=t

(k − i)f(mt) (k, m ∈ N+). (3)

(2c) f
(
∏s

i=1
pαi

i

)

with primes pi is a linear combination of the elements in

T = T (p1, . . . , ps) =
{

f(pβ1

1
· · · pβs

s )
∣

∣

s
∑

i=1

βi ≤ n − 1
}

with integer coefficients.

(2d) If f is completely additive then f j is n-polyadditive for j < n and f j is not

n-polyadditive for j ≥ n if f 6= 0.

Corollaries. (2a) =⇒ If f ∈ An then the values of f(mz) for all z ≥ n

are determined by f(m), f(m2), . . . , f(mn−1) (a linear combination with integer

coefficients).

(1a) and (2d) =⇒ An−1 ( An.
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Theorem 3. If f is n-polyadditive and f(1) = 0 then to any m > 1 there

exist αm,t ∈ R (t = 1, . . . , n − 1) such that for all k > 0

f(mk) =
n−1
∑

t=1

αm,t logt(mk). (4)

Proof of Theorem 1. (1a) The identity

F (a1, . . . , an−1, an, an+1)

= F (a1, . . . , an−1, an) + F (a1, . . . , an−1, an+1) − F (a1, . . . , an−1, anan+1)

implies f ∈ An =⇒ f ∈ An+1.

(1c) It can be easily checked by induction that

∆(m) = ∇a1 . . .∇an
(f(m)) =

n
∑

j=0

∑

1≤i1<i2<···<ij≤n

(−1)n−jf(ai1ai2 . . . aij
m).

Now ∆(1) = F (a1, . . . , an) = 0 ⇒ f ∈ An. On the other hand f ∈ An ⇒

f ∈ An+1 by (1a), i.e. F (a1, . . . , an, m) = 0 ⇒ ∆(m) = C(a1, . . . an) by (1).

∆(1) = 0 ⇒ C(a1, . . . , an) = 0.

(1b) This follows immediately from (1c).

(1d) is a direct consequence of (1c) or (1).

(1e) We prove by induction. For k = 1 it is true with an arbitrary t ∈ N+. Let

us assume that it is true for k + t < n. We use the identity

∇a(fg) = f∇ag + g∇af + ∇af∇ag.

As f ∈ Ak, considering (1b) ∇af ∈ Ak−1. As g ∈ At by the hypothesis of

the induction g∇af ∈ Ak+t−2. Considering (1a) g∇af is in Ak+t−1. f∇ag

and ∇af∇ag ∈ Ak+t−1 can be proven similarly. Using the identity and (1d)

∇a(fg) ∈ Ak+t−1. �

Proof of Theorem 2. (2a) For k ≥ n we substitute a1 = mk−n+1, ai = m

(i = 2, . . . , n) in (1):

f(mk) =
n−1
∑

t=1

(−1)n−1−t

{(

n − 1

t − 1

)

f(mk−n+1mt−1) +

(

n − 1

t

)

f(mt)

}

.
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By the substitution s = n − t we get

f(mk) =

n−1
∑

s=1

(−1)s−1

{(

n − 1

s

)

f(mk−s) +

(

n − 1

s − 1

)

f(mn−s)

}

.

Especially for k = n we have

f(mn) =
n−1
∑

t=1

(−1)n−1−t

(

n

t

)

f(mt).

(2b) For 1 ≤ k < n the product coefficient of f(mt) in (3) differs from 0 (and is

equal to 1) only for t = k.

For k = n (3) is true as

f(mn) =

n−1
∑

t=1

(−1)n−1−t n!

(n − 1 − t)!t!(n − t)
f(mt)

=
n−1
∑

t=1

(−1)n−1−t

(

n

t

)

f(mt)

what we proved in (2a).

Let us assume that (3) is true for n ≤ v < k. To verify that (3) is valid also for

v = k we substitute (3) into (2). We have to prove that

− f(mk) +

n−1
∑

s=1

(−1)s−1

{(

n − 1

s

)

f(mk−s) +

(

n − 1

s − 1

)

f(mn−s)

}

=

n−1
∑

s=0

(−1)s−1

{

(

n − 1

s

) n−1
∑

t=1

(−1)n−1−t

(n − 1 − t)!t!

n−1
∏

i=0,i6=t

(k − s − i)f(mt)

}

+

n−1
∑

t=1

(−1)n−1−t

(

n − 1

n − t − 1

)

f(mt) = 0. (5)

The coefficient of f(mz) (z = 1, . . . , n − 1) in (5) is

(−1)n−z−1

(n − z − 1)!z!

{

n−1
∑

s=0

(−1)s−1

(

n − 1

s

) n−1
∏

i=0, i6=z

(k − s − i) + (n − 1)!

}

.
�
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Lemma.

Dn = dn,k,z =

n−1
∑

s=0

(−1)s−1

(

n − 1

s

) n−1
∏

i=0, i6=z

(k − s − i) = −(n − 1)!

for all z = 1, . . . , n − 1 and k > n.

Proof of the Lemma. We prove by induction. For n = 2 we have −k +

(k − 1) = −1. We assume that Dt = −(t − 1)! for t ≤ n. First we prove that

ndn,k,z − dn+1,k,z = 0 for z ≤ n − 1 and k > n + 1. We have that

n−1
∑

s=0

(−1)s−1

(

n

s

)

(n − s)

n−1
∏

i=0, i6=z

(k− s− i)−

n
∑

s=0

(−1)s−1

(

n

s

) n
∏

i=0, i6=z

(k− s− i)

=

n−1
∑

s=0

(−1)s−1

(

n

s

)

(2n − k)

n−1
∏

i=0, i6=z

(k− s− i) + (−1)n

(

n

n

) n
∏

i=0, i6=z

(k−n− i)

= (2n− k)

n
∑

s=0

(−1)s−1

(

n

s

) n−1
∏

i=0, i6=z

(k− s− i)= (2n− k)

n−1
∑

s=0

(−1)s−1

(

n−1

s

)

·

n−1
∏

i=0, i6=z

(k − s − i) + (2n − k)

n
∑

s=1

(−1)s−1

(

n − 1

s − 1

) n−1
∏

i=0, i6=z

(k − s − i)

= (2n − k)[dn,k,z − dn,k−1,z] = 0

using the substitution s′ = s − 1 and k′ = k − 1 in the second sum.

For z = n we have

dn+1,k,n =(dn+1,k,n− dn+1,k,n−1)−n! =
n

∑

s=0

(−1)s−1

(

n

s

)n−2
∏

i=0

(k− s− i)−n!

=

n−1
∑

s=0

(−1)s−1

(

n−1

s

)n−2
∏

i=0

(k−s−i)+

n
∑

s=1

(−1)s−1

(

n−1

s−1

)n−2
∏

i=0

(k−s−i)−n!

= dn,k,n−1 +

n
∑

s=1

(−1)s−1

(

n − 1

s − 1

) n−2
∏

i=0

[(k − 1) − (s − 1) − i] − n!

= dn,k,n−1 − dn,k−1,n−1 − n! = −n! .

(2c) First we prove the existence of the evaluation with integer coefficients. For

α1 + · · · + αs ≤ n − 1 the assertion is trivial. Let us assume that it is also true
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for α1 + · · ·+ αs ≤ z with some z ≥ n. If α1 + · · ·+ αs = z + 1 : f(pα1
1 . . . pαs

s ) =

f(a1 . . . az+1) with ai > 1 (i = 1, . . . , z + 1). By (1a) f ∈ Az+1, hence

f(a1 . . . az+1) =

z
∑

k=1

∑

1≤i1<i2<···<ik≤z+1

(−1)n−k−1f(ai1ai2 . . . aik
).

All the terms on the right hand side are determined by the values of the elements in

T = T (p1, . . . , ps) by the inductional hypothesis and the coefficients are integers.

(2d) f j ∈ Aj+1 is an easy consequence of (1e), hence by (1a) f j is in An for

all j < n.

Now assume indirectly that j ≥ n and f j ∈ An. As f 6= 0 there exists a

prime p such that f(p) 6= 0. For any k we have f j(pk) = kjf j(p), since f is

completely additive. Then by (3) we obtain

kjf j(p) = f j(pk) =

n−1
∑

z=1

(−1)n−1−z

(n − 1 − z)!z!

n−1
∏

i=0, i6=z

(k − i)zjf j(p).

Dividing by f j(p) we see that the right hand side consists of terms bounded by

kn−1nj , hence the right hand side is bounded by c(n) · kn−1. But the left hand

side is kj ≥ kn, which is a contradiction, if k is large enough. �

Proof of Theorem 3. For any fixed m > 1 the substitution k =1, . . . , n−1

in (4) forms a system of linear equations with determinant (n − 1)!V (1, . . . ,

n− 1) log
n(n−1)

2 m 6= 0 (V denotes the Vandermonde-determinant), i.e. the values

αm,t for t < n are uniquely determined. We prove that these numbers satisfy (4)

also for k ≥ n. We prove by induction. By (2a) for k ≥ n

f(mk) =

n−1
∑

s=1

(−1)s−1

{(

n − 1

s

)

f(mk−s) +

(

n − 1

s − 1

)

f(mn−s)

}

,

hence it is enough to prove that

n−1
∑

t=1

αm,t logt(mk) =

n−1
∑

s=1

(−1)s−1

{

(

n − 1

s

) n−1
∑

t=1

αm,t logt(mk−s)

+

(

n − 1

s − 1

) n−1
∑

t=1

αm,t logt(mn−s)

}

(k = n, n + 1, . . . ).

It is enough to examine the coefficients of αm,t logt m, i.e. to prove that

−

n−1
∑

s=0

(−1)s

(

n − 1

s

)

(k − s)t +
n−2
∑

s=0

(−1)s

(

n − 1

s

)

(n − 1 − s)t = 0 (6)
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for k = n, n + 1, . . . .

We show that each of the two sums in (6) is 0 for t ≤ n − 2, and is (n − 1)!

for t = n − 1.

Denote by H(r, n − 1, t) the number of those t-digit integers which contain

all digits 0, 1, . . . , n − 2 in an r-base number system (r ≥ n − 1). Then the first

sum of (6) is H(k, n−1, t), and the second sum is H(n−1, n−1, t), if we perform

the calculation by the logical sieve: the sifting properties are that the digit i

(i = 0, 1, . . . , n − 2) is missing. On the other hand, clearly H(r, n − 1, t) = 0 for

t < n − 1 and H(r, n − 1, n − 1) = (n − 1)! . �

I am indebted to Imre Ruzsa and Robert Freud for their valuable remarks.
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