On the characterization of \boldsymbol{n}-polyadditive functions

By KATALIN KOVÁCS (Budapest)

Abstract

The paper investigates the class of arithmetical functions satisfying the equation $\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n}(-1)^{k} f\left(a_{i_{1}} a_{i_{2}} \ldots a_{i_{k}}\right)=0$. The set of solutions contains the completely additive and the completely quadritive functions.

In 1999 Imre RuzsA [1] introduced a new class of functions which is wider than the class of the additive functions:

Definition. $f: \mathbb{N}^{+} \rightarrow \mathbb{R}$ is quadritive if

$$
f(a b c)=f(a b)+f(a c)+f(b c)-f(a)-f(b)-f(c)
$$

for all a, b, c pairwise coprime numbers.
He also proved several theorems concerning quadritive functions. We continue the generalization towards further dimensions.

Definition. For a positive integer n the function $f: \mathbb{N}^{+} \rightarrow \mathbb{R}$ is n-polyadditive if

$$
\begin{equation*}
F\left(a_{1}, \ldots, a_{n}\right):=\sum_{k=0}^{n} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n}(-1)^{k} f\left(a_{i_{1}} a_{i_{2}} \ldots a_{i_{k}}\right)=0 \tag{1}
\end{equation*}
$$

for all $a_{1}, a_{2}, \ldots, a_{n}$ positive integers.

[^0]Remark. If f is 1-polyadditive then $f=f(1)$ (a constant). If f is 2 polyadditive then $f=g+f(1)$ with a completely additive function g. If f is 3 -polyadditive then $f=h+f(1)$ with a completely quadritive function h.

Notation. $A_{n}:=$ the set of n-polyadditive functions $\nabla_{a} f(m):=f(a m)-f(m)$.

Theorem 1.

(1a) If $f \in A_{k}$ then $f \in A_{t}$ for all $t \geq k$.
(1b) $f \in A_{n}$ if and only if $\nabla_{a} f \in A_{n-1}$ for all $a \in \mathbb{N}^{+}$.
(1c) $f \in A_{n}$ if and only if $\nabla_{a_{1}} \nabla_{a_{2}} \ldots \nabla_{a_{n}} f=0$ for all $a_{1}, a_{2}, \ldots, a_{n}$ positive integers.
(1d) For any $f, g \in A_{n}$ and $\alpha, \beta \in \mathbb{R}$, also $\alpha f+\beta g \in A_{n}$.
(1e) If $f \in A_{k}, g \in A_{t}$ then $f g \in A_{k+t-1}$.
Theorem 2. If f is n-polyadditive and $f(1)=0$ then

$$
\begin{equation*}
f\left(m^{k}\right)=\sum_{s=1}^{n-1}(-1)^{s-1}\left\{\binom{n-1}{s} f\left(m^{k-s}\right)+\binom{n-1}{s-1} f\left(m^{n-s}\right)\right\} \tag{2a}
\end{equation*}
$$

for all $k \geq n$ and $m \in \mathbb{N}^{+}$.

$$
\begin{equation*}
f\left(m^{k}\right)=\sum_{t=1}^{n-1} \frac{(-1)^{n-1-t}}{(n-1-t)!t!} \prod_{i=0, i \neq t}^{n-1}(k-i) f\left(m^{t}\right) \quad\left(k, m \in \mathbb{N}^{+}\right) \tag{2b}
\end{equation*}
$$

(2c) $f\left(\prod_{i=1}^{s} p_{i}^{\alpha_{i}}\right)$ with primes p_{i} is a linear combination of the elements in

$$
T=T\left(p_{1}, \ldots, p_{s}\right)=\left\{f\left(p_{1}^{\beta_{1}} \cdots p_{s}^{\beta_{s}}\right) \mid \sum_{i=1}^{s} \beta_{i} \leq n-1\right\}
$$

with integer coefficients.
(2d) If f is completely additive then f^{j} is n-polyadditive for $j<n$ and f^{j} is not n-polyadditive for $j \geq n$ if $f \neq 0$.

Corollaries. $(2 \mathrm{a}) \Longrightarrow$ If $f \in A_{n}$ then the values of $f\left(m^{z}\right)$ for all $z \geq n$ are determined by $f(m), f(m 2), \ldots, f\left(m^{n-1}\right)$ (a linear combination with integer coefficients).
(1a) and $(2 \mathrm{~d}) \Longrightarrow A_{n-1} \subsetneq A_{n}$.

Theorem 3. If f is n-polyadditive and $f(1)=0$ then to any $m>1$ there exist $\alpha_{m, t} \in \mathbb{R}(t=1, \ldots, n-1)$ such that for all $k>0$

$$
\begin{equation*}
f\left(m^{k}\right)=\sum_{t=1}^{n-1} \alpha_{m, t} \log ^{t}\left(m^{k}\right) \tag{4}
\end{equation*}
$$

Proof of Theorem 1. (1a) The identity

$$
\begin{gathered}
F\left(a_{1}, \ldots, a_{n-1}, a_{n}, a_{n+1}\right) \\
=F\left(a_{1}, \ldots, a_{n-1}, a_{n}\right)+F\left(a_{1}, \ldots, a_{n-1}, a_{n+1}\right)-F\left(a_{1}, \ldots, a_{n-1}, a_{n} a_{n+1}\right)
\end{gathered}
$$

implies $f \in A_{n} \Longrightarrow f \in A_{n+1}$.
(1c) It can be easily checked by induction that

$$
\Delta(m)=\nabla_{a_{1}} \ldots \nabla_{a_{n}}(f(m))=\sum_{j=0}^{n} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{j} \leq n}(-1)^{n-j} f\left(a_{i_{1}} a_{i_{2}} \ldots a_{i_{j}} m\right)
$$

Now $\Delta(1)=F\left(a_{1}, \ldots, a_{n}\right)=0 \Rightarrow f \in A_{n}$. On the other hand $f \in A_{n} \Rightarrow$ $f \in A_{n+1}$ by (1a), i.e. $F\left(a_{1}, \ldots, a_{n}, m\right)=0 \Rightarrow \Delta(m)=C\left(a_{1}, \ldots a_{n}\right)$ by (1). $\Delta(1)=0 \Rightarrow C\left(a_{1}, \ldots, a_{n}\right)=0$.
(1b) This follows immediately from (1c).
(1d) is a direct consequence of (1c) or (1).
(1e) We prove by induction. For $k=1$ it is true with an arbitrary $t \in \mathbb{N}^{+}$. Let us assume that it is true for $k+t<n$. We use the identity

$$
\nabla_{a}(f g)=f \nabla_{a} g+g \nabla_{a} f+\nabla_{a} f \nabla_{a} g
$$

As $f \in A_{k}$, considering (1b) $\nabla_{a} f \in A_{k-1}$. As $g \in A_{t}$ by the hypothesis of the induction $g \nabla_{a} f \in A_{k+t-2}$. Considering (1a) $g \nabla_{a} f$ is in $A_{k+t-1} . f \nabla_{a} g$ and $\nabla_{a} f \nabla_{a} g \in A_{k+t-1}$ can be proven similarly. Using the identity and (1d) $\nabla_{a}(f g) \in A_{k+t-1}$.

Proof of Theorem 2. (2a) For $k \geq n$ we substitute $a_{1}=m^{k-n+1}, a_{i}=m$ $(i=2, \ldots, n)$ in (1):

$$
f\left(m^{k}\right)=\sum_{t=1}^{n-1}(-1)^{n-1-t}\left\{\binom{n-1}{t-1} f\left(m^{k-n+1} m^{t-1}\right)+\binom{n-1}{t} f\left(m^{t}\right)\right\}
$$

By the substitution $s=n-t$ we get

$$
f\left(m^{k}\right)=\sum_{s=1}^{n-1}(-1)^{s-1}\left\{\binom{n-1}{s} f\left(m^{k-s}\right)+\binom{n-1}{s-1} f\left(m^{n-s}\right)\right\}
$$

Especially for $k=n$ we have

$$
f\left(m^{n}\right)=\sum_{t=1}^{n-1}(-1)^{n-1-t}\binom{n}{t} f\left(m^{t}\right)
$$

(2b) For $1 \leq k<n$ the product coefficient of $f\left(m^{t}\right)$ in (3) differs from 0 (and is equal to 1) only for $t=k$.
For $k=n(3)$ is true as

$$
\begin{aligned}
f\left(m^{n}\right) & =\sum_{t=1}^{n-1}(-1)^{n-1-t} \frac{n!}{(n-1-t)!t!(n-t)} f\left(m^{t}\right) \\
& =\sum_{t=1}^{n-1}(-1)^{n-1-t}\binom{n}{t} f\left(m^{t}\right)
\end{aligned}
$$

what we proved in (2a).
Let us assume that (3) is true for $n \leq v<k$. To verify that (3) is valid also for $v=k$ we substitute (3) into (2). We have to prove that

$$
\begin{align*}
- & f\left(m^{k}\right)+\sum_{s=1}^{n-1}(-1)^{s-1}\left\{\binom{n-1}{s} f\left(m^{k-s}\right)+\binom{n-1}{s-1} f\left(m^{n-s}\right)\right\} \\
= & \sum_{s=0}^{n-1}(-1)^{s-1}\left\{\binom{n-1}{s} \sum_{t=1}^{n-1} \frac{(-1)^{n-1-t}}{(n-1-t)!t!} \prod_{i=0, i \neq t}^{n-1}(k-s-i) f\left(m^{t}\right)\right\} \\
& \quad+\sum_{t=1}^{n-1}(-1)^{n-1-t}\binom{n-1}{n-t-1} f\left(m^{t}\right)=0 \tag{5}
\end{align*}
$$

The coefficient of $f\left(m^{z}\right)(z=1, \ldots, n-1)$ in (5) is

$$
\frac{(-1)^{n-z-1}}{(n-z-1)!z!}\left\{\sum_{s=0}^{n-1}(-1)^{s-1}\binom{n-1}{s} \prod_{i=0, i \neq z}^{n-1}(k-s-i)+(n-1)!\right\}
$$

Lemma.

$$
D_{n}=d_{n, k, z}=\sum_{s=0}^{n-1}(-1)^{s-1}\binom{n-1}{s} \prod_{i=0, i \neq z}^{n-1}(k-s-i)=-(n-1)!
$$

for all $z=1, \ldots, n-1$ and $k>n$.
Proof of the Lemma. We prove by induction. For $n=2$ we have $-k+$ $(k-1)=-1$. We assume that $D_{t}=-(t-1)$! for $t \leq n$. First we prove that $n d_{n, k, z}-d_{n+1, k, z}=0$ for $z \leq n-1$ and $k>n+1$. We have that

$$
\begin{aligned}
& \sum_{s=0}^{n-1}(-1)^{s-1}\binom{n}{s}(n-s) \prod_{i=0, i \neq z}^{n-1}(k-s-i)-\sum_{s=0}^{n}(-1)^{s-1}\binom{n}{s} \prod_{i=0, i \neq z}^{n}(k-s-i) \\
& =\sum_{s=0}^{n-1}(-1)^{s-1}\binom{n}{s}(2 n-k) \prod_{i=0, i \neq z}^{n-1}(k-s-i)+(-1)^{n}\binom{n}{n} \prod_{i=0, i \neq z}^{n}(k-n-i) \\
& =(2 n-k) \sum_{s=0}^{n}(-1)^{s-1}\binom{n}{s} \prod_{i=0, i \neq z}^{n-1}(k-s-i)=(2 n-k) \sum_{s=0}^{n-1}(-1)^{s-1}\binom{n-1}{s} \\
& \quad \cdot \prod_{i=0, i \neq z}^{n-1}(k-s-i)+(2 n-k) \sum_{s=1}^{n}(-1)^{s-1}\binom{n-1}{s-1} \prod_{i=0, i \neq z}^{n-1}(k-s-i) \\
& =(2 n-k)\left[d_{n, k, z}-d_{n, k-1, z}\right]=0
\end{aligned}
$$

using the substitution $s^{\prime}=s-1$ and $k^{\prime}=k-1$ in the second sum.
For $z=n$ we have

$$
\begin{aligned}
& d_{n+1, k, n}=\left(d_{n+1, k, n}-d_{n+1, k, n-1}\right)-n!=\sum_{s=0}^{n}(-1)^{s-1}\binom{n}{s} \prod_{i=0}^{n-2}(k-s-i)-n! \\
& =\sum_{s=0}^{n-1}(-1)^{s-1}\binom{n-1}{s} \prod_{i=0}^{n-2}(k-s-i)+\sum_{s=1}^{n}(-1)^{s-1}\binom{n-1}{s-1} \prod_{i=0}^{n-2}(k-s-i)-n! \\
& =d_{n, k, n-1}+\sum_{s=1}^{n}(-1)^{s-1}\binom{n-1}{s-1} \prod_{i=0}^{n-2}[(k-1)-(s-1)-i]-n! \\
& =d_{n, k, n-1}-d_{n, k-1, n-1}-n!=-n!
\end{aligned}
$$

(2c) First we prove the existence of the evaluation with integer coefficients. For $\alpha_{1}+\cdots+\alpha_{s} \leq n-1$ the assertion is trivial. Let us assume that it is also true
for $\alpha_{1}+\cdots+\alpha_{s} \leq z$ with some $z \geq n$. If $\alpha_{1}+\cdots+\alpha_{s}=z+1: f\left(p_{1}^{\alpha_{1}} \ldots p_{s}^{\alpha_{s}}\right)=$ $f\left(a_{1} \ldots a_{z+1}\right)$ with $a_{i}>1(i=1, \ldots, z+1)$. By (1a) $f \in A_{z+1}$, hence

$$
f\left(a_{1} \ldots a_{z+1}\right)=\sum_{k=1}^{z} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq z+1}(-1)^{n-k-1} f\left(a_{i_{1}} a_{i_{2}} \ldots a_{i_{k}}\right)
$$

All the terms on the right hand side are determined by the values of the elements in $T=T\left(p_{1}, \ldots, p_{s}\right)$ by the inductional hypothesis and the coefficients are integers.
(2d) $f^{j} \in A_{j+1}$ is an easy consequence of (1e), hence by (1a) f^{j} is in A_{n} for all $j<n$.

Now assume indirectly that $j \geq n$ and $f^{j} \in A_{n}$. As $f \neq 0$ there exists a prime p such that $f(p) \neq 0$. For any k we have $f^{j}\left(p^{k}\right)=k^{j} f^{j}(p)$, since f is completely additive. Then by (3) we obtain

$$
k^{j} f^{j}(p)=f^{j}\left(p^{k}\right)=\sum_{z=1}^{n-1} \frac{(-1)^{n-1-z}}{(n-1-z)!z!} \prod_{i=0, i \neq z}^{n-1}(k-i) z^{j} f^{j}(p)
$$

Dividing by $f^{j}(p)$ we see that the right hand side consists of terms bounded by $k^{n-1} n^{j}$, hence the right hand side is bounded by $c(n) \cdot k^{n-1}$. But the left hand side is $k^{j} \geq k^{n}$, which is a contradiction, if k is large enough.

Proof of Theorem 3. For any fixed $m>1$ the substitution $k=1, \ldots, n-1$ in (4) forms a system of linear equations with determinant $(n-1)!V(1, \ldots$, $n-1) \log \frac{n(n-1)}{2} m \neq 0$ (V denotes the Vandermonde-determinant), i.e. the values $\alpha_{m, t}$ for $t<n$ are uniquely determined. We prove that these numbers satisfy (4) also for $k \geq n$. We prove by induction. By (2a) for $k \geq n$

$$
f\left(m^{k}\right)=\sum_{s=1}^{n-1}(-1)^{s-1}\left\{\binom{n-1}{s} f\left(m^{k-s}\right)+\binom{n-1}{s-1} f\left(m^{n-s}\right)\right\}
$$

hence it is enough to prove that

$$
\begin{gathered}
\sum_{t=1}^{n-1} \alpha_{m, t} \log ^{t}\left(m^{k}\right)=\sum_{s=1}^{n-1}(-1)^{s-1}\left\{\binom{n-1}{s} \sum_{t=1}^{n-1} \alpha_{m, t} \log ^{t}\left(m^{k-s}\right)\right. \\
\left.+\binom{n-1}{s-1} \sum_{t=1}^{n-1} \alpha_{m, t} \log ^{t}\left(m^{n-s}\right)\right\} \quad(k=n, n+1, \ldots)
\end{gathered}
$$

It is enough to examine the coefficients of $\alpha_{m, t} \log ^{t} m$, i.e. to prove that

$$
\begin{equation*}
-\sum_{s=0}^{n-1}(-1)^{s}\binom{n-1}{s}(k-s)^{t}+\sum_{s=0}^{n-2}(-1)^{s}\binom{n-1}{s}(n-1-s)^{t}=0 \tag{6}
\end{equation*}
$$

for $k=n, n+1, \ldots$.
We show that each of the two sums in (6) is 0 for $t \leq n-2$, and is $(n-1)$! for $t=n-1$.

Denote by $H(r, n-1, t)$ the number of those t-digit integers which contain all digits $0,1, \ldots, n-2$ in an r-base number system $(r \geq n-1)$. Then the first sum of (6) is $H(k, n-1, t)$, and the second sum is $H(n-1, n-1, t)$, if we perform the calculation by the logical sieve: the sifting properties are that the digit i $(i=0,1, \ldots, n-2)$ is missing. On the other hand, clearly $H(r, n-1, t)=0$ for $t<n-1$ and $H(r, n-1, n-1)=(n-1)$!.

I am indebted to Imre Ruzsa and Robert Freud for their valuable remarks.

References

[1] I. RuzsA, Additive functions with monotonic norm, Publ. Math. Debrecen 56(3-4) (2000), 547-558.

```
KATALIN KOVÁCS
DEPT. OF ALGEBRA AND NUMBER THEORY
EÖTVÖS UNIVERSITY
PÁZMÁNY PÉTER SÉTÁNY 1/C
H-1117 BUDAPEST
HUNGARY
E-mail: pkovacsk@cs.elte.hu
```


[^0]: Mathematics Subject Classification: 11A25.
 Key words and phrases: generalization of additive functions.
 Research partially supported by the Hungarian National Foundation for Scientific Research, Grant No. T043623.

