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Tail estimates and a random embedding
of `n

p into `(1+ε)n
r , 0 < r < p < 2

By JULIO BERNUÉS (Zaragoza) and MARÍA LÓPEZ-VALDES (Zaragoza)

Abstract. We compute tail estimates for certain sums of r-powers of truncated

p-stable random variables (0 < r < p < 2). As an application we obtain, in the case

1 ≤ r < p < 2, an upper bound for K > 1 so that with “high probability” `n
p K-embedds

into `
(1+ε)n
r .

1. Introduction

The study of K-embeddings of finite dimensional (r-)normed spaces is one
of the central questions in Local Theory (we refer to [7] for an introduction to
this theory). We say that an n-dimensional (r-)normed space X K-embeds into
another m-dimensional (s-)normed space Y if there exist a 1-1 linear operator
T : X → Y so that ‖T‖ · ‖T−1‖ ≤ K (the inverse T−1 being defined on the range
of T ).

An important general procedure to study this problem is the use random
operators T in order to produce good random embeddings with “high probability”
and a crucial fact in that approach is the need of having good tail estimates of
the random variables involved. This is the case, for instance, of the so called
Milman’s version of Dvoretzky’s theorem, origin of the theory (see [1] or [7]),
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where (1+ε)-embeddings of X = `n
2 are considered and the smallest m = m(ε, n)

that makes it possible is estimated.
B. Kashin [2](1977) proved, using volumetric arguments, that ∀ ε > 0 and

1 < r < 2, there exists K = K(r, ε), independent of n, such that `n
2 K-embedds

into `
(1+ε)n
r . See also [10] for a proof via volumen ratio. These results, together

with the “isomorphic” version of Dvoretzky’s theorem stated in [8] (1995), mo-
tivated the problem of considering m = (1 + ε)n and estimating the smallest
K = K(ε, n) possible.

More recently, A. Naor and A. Zvavitch [9] (2001), proved that ∀ ε > 0
and 1 < p < 2, there exists C = C(p, ε) such that `n

p , C(log n)a-embedds with

“high probability” into `
(1+ε)n
1 , where a =

(
1− 1

p

)(
1+ 1

ε

)
. Finally, W. B. Johnson

and G. Schechtman [4] (2003) showed, using (deterministic) combinatorial and
change of density arguments, that ∀ ε>0 and 1 ≤ r < p < 2, there exists C =
C(p, r, ε) so that any n-dimensional subspace of Lp, C-embedds into `

(1+ε)n
r .

In Sections 2 and 3 of the paper we extend the probabilistic results in [9]
and compute tail estimates of (sums of) r-powers of truncated p-stable random
variables. New tools are needed in order to achieve those estimates. These results
are interesting in themselves as they might be applicable in other situations within
Local Theory.

In the last section we consider the question of “high probability” embeddings
of `n

p into `
(1+ε)n
r , 0 < r < p < 2. By using random operators T , our aim is to

estimate the smallest K for which ‖T‖ ‖T−1‖ ≤ K with “high probability”. This
means that ‖T‖ ‖T−1‖ ≤ K holds with probability (say) > 1

2 .
We use the geometric ideas in [9] (which nicely extend to the case 1 ≤ r <

p < 2, but fail to produce relevant results in the case r < 1). These geometric
arguments, combined with our probabilistic results yield the following,

Corollary. Let 1 ≤ r < p < 2 and ε > 0. There exists cp,r > 0 such that `n
p

K-embedds into `
(1+ε)n
r with “high probability” for K ≤ (cp,r log n)(1−

1
p )(1+ 1

ε ).

Observe that result in [4] is optimal in the sense that there exists a K-
embedding with K being independent of n. Our result is different as it produces
a “large” set of K-embeddings (at the cost of a slightly worse dependence of K).

1.1. Notation. All the random variables used are supposed to be defined on the
same probability space (Ω,Σ, P ). Fix 0 < r < p < 2 and m ≥ n ≥ 2. Constants
may be denoted by the same letters C, c, . . . and their dependency on parameters
p, r, . . . expressed by Cp, c(r), . . . although their value may differ from line to line.

Recall that a random variable φ with density function fφ is called normalized
symmetric p-stable if E(eitφ)=

∫∞
−∞ eitxfφ(x) dx = e−|t|

p

, t∈R. That is, the
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Fourier transform of fφ is the function e−|t|
p

. The following properties are well
known (see [7], Chapter 8).
• For some cp, Cp > 0, the tail distribution of φ satisfies P{|φ| ≥ t} ≤ cpt

−p,
t > 0 and, by inverting the Fourier transform, the density function verifies
‖fφ‖∞ ≤ Cp.

• E(|φ|r) < ∞ if and only if r < p.
• If φ1, . . . , φn are i.i.d. copies of φ and (a1, . . . , an) ∈ S`n

p
, the unit sphere

of `n
p , then

∑n
k=1 akφk and φ have the same distribution.

Define a random variable ψ by the distribution function

P{ψ < t} =





0 if t < −m1/p

P{−m1/p ≤ φ ≤ t}
P{|φ| ≤ m1/p} if |t| ≤ m1/p

1 if t > m1/p.

This distribution function makes ψ a symmetric random variable.
We define a random embedding Tω : `n

p → `m
r by

Tω(a) =
1

m1/r

m∑

i=1

(
n∑

j=1

ajψij(ω)

)
ei

where a = (a1, . . . , an) ∈ `n
p with canonical basis (ei)n

1 , ω ∈ Ω and (ψij) are
independent identically distributed (i.i.d.) copies of a truncated symmetric nor-
malized p-stable random variable ψ defined below. We will denote

‖Tω(a)‖r
r =

1
m

m∑

i=1

Ψr
i (ω) where Ψi =

∣∣∣∣∣
n∑

j=1

ajψij

∣∣∣∣∣.

2. The tail estimate P{ω ∈ Ω | ‖Tω(a)‖r
r < t}

Lemma 1. Let Ψ1, . . . , Ψm be independent, non negative random variables

with densities fΨ1 , . . . , fΨm such that max
1≤i≤m

‖fΨi‖∞ := A < ∞. Then for every

t > 0 and r > 0,

P

{
m∑

i=1

Ψr
i < t

}
≤ (CA)mtm/r

r
m−1

2 mm/r+1/2

for some absolute constant C > 0.
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Proof. Since P{Ψr
i < t} = P{Ψi < t1/r} =

∫ t1/r

0
fΨi

(s) ds, we have by

the chain rule that Ψr
i also has density function and fΨr

i
(t) = fΨi

(t1/r) t
1
r
−1

r , a.e.
Therefore, max1≤i≤m fΨr

i
(t) ≤ A

r t
1
r−1, a.e.

The density function f of
∑m

i=1 Ψr
i is f(s) = (fΨr

1
∗· · ·∗fΨr

m
)(s). If we denote

dx = dx1 . . . dxm−1, this convolution equals to

s∫

0

s−x1∫

0

. . .

s−x1···−xm−2∫

0

fΨr
1
(x1) . . . fΨr

m−1
(xm−1)fΨr

m
(s− x1 · · · − xm−1) dx

≤
(

A

r

)m
s∫

0

s−x1∫

0

. . .

s−x1···−xm−2∫

0

x
1
r−1
1 . . . x

1
r−1
m−1(s− x1 · · · − xm−1)

1
r−1 dx

=
(

A

r

)m

sm/r−1
m−1∏

i=1

β

(
i

r
,
1
r

)
=

(
A

r

)m

sm/r−1 Γ(1/r)m

Γ(m/r)

≤ (CA)msm/r−1

r
m+1

2 mm/r−1/2
.

Now apply this inequality to the formula P
{ ∑m

i=1 Ψr
i < t

}
=

∫ t

0
f(s) ds to

finish the proof. ¤

The next Lemma is stated in [9] for 1 < p < 2 but its proof also works for
0 < p ≤ 1.

Lemma 2 ([9]). Let ψ1, . . . , ψn independent identically distributed copies

of ψ. There exist a constant Cp > 0 such that for every a = (a1, . . . , an) ∈ S`n
p
,

the density function of Ψ :=
∣∣ ∑n

j=1 ajψj

∣∣ verifies fΨ(t) ≤ Cpf|φ|(t), a.e.

As a consequence we obtain the following

Corollary 1. There exists Cp > 0 such that for all t > 0 and

a = (a1, . . . , an) ∈ S`n
p
,

P{ω ∈ Ω | ‖Tω(a)‖r
r < t} ≤ Cm

p tm/r

m1/2
.

Proof. We have ‖Tω(a)‖r
r = 1

m

∑m
i=1 Ψr

i , where Ψi =
∣∣ ∑n

j=1 ajψij

∣∣. By
Lemma 2 and properties of φ we have ‖fΨi‖∞ ≤ Cp‖f|φ|‖∞ ≤ Cp‖fφ‖∞ ≤ Cp.
Now apply Lemma 1. ¤
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3. The tail estimate P{ω ∈ Ω | ‖Tω(u)‖r
r ≥ λ}

In the convex case, [9], one can take advantage of the relationship between a
random variable |X| and X. But this is no longer possible with the variable |X|r
and so, in order to obtain a suitable tail estimate, a different approach is needed.

First we estimate the moments of ψ.

Lemma 3. (a) E|ψ|q ≤ Cp
q

q−pm
q
p−1, if q > p.

(b) E|ψ|q ≤ Cp,q, if 0 < q < p.

(c) E|ψ|q ≤ 1 + Cp log m, if p = q.

Proof. For the part (a),

E|ψ|q =
∫ ∞

0

qtq−1P{|ψ| > t} dt ≤
∫ m

1
p

0

qtq−1 P{|φ| > t}
P{|φ| ≤ m

1
p }

dt.

Since P{|φ| ≤ m
1
p }= 1 − P{|φ| > m

1
p }≥ 1 − cp

m (≥ c > 0 for large m), we
conclude that P{|φ| ≤ m

1
p } ≥ cp for all m and so,

E|ψ|q ≤ qCp

∫ m
1
p

0

tq−1 dt

tp
= Cp

q

q − p
m

q
p−1.

(b) is similar, E|ψ|q =
∫ 1

0
qtq−1P{|ψ|>t} dt +

∫∞
1

qtq−1P{|ψ|>t} dt ≤ 1 +

Cp

∫ m
1
p

1
qtq−1 dt

tp = 1 + q Cp

q−p (m
q
p−1 − 1) ≤ Cp,q.

Finally, take limits in this expression as q → p to obtain (c). ¤

In order to estimate the r-moments of sums of independent copies of ψ, we
will use the following general result.

Proposition 1 ([6], p. 171). Let (Xi)k
1 be a sequence of symmetric inde-

pendent variables. There exists an absolute constant c > 0 such that for all

q > 1,

(
E

∣∣∣∣∣
k∑

i=1

Xi

∣∣∣∣∣

q)1/q

≤ c
q

log q

(
E

∣∣∣∣∣
k∑

i=1

Xi

∣∣∣∣∣ +

(
E max

1≤i≤k
|Xi|q

)1/q)
.

Lemma 4. Let Ψ = 1
k1/p

∣∣ ∑k
i=1 ψi

∣∣ with (ψi) i.i.d. copies of ψ and k ≤ m.

If p/r is not an integer, there exists Cp,r > 0 such that

E

(
exp

((
k

m

) r
p

Ψr

))
≤ 1 + Cp,r

(
k

m

)r/p

.
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Proof. Set t = ( k
m )r/p. We need to prove E(etΨr

) ≤ 1 + Cp,rt. We use
Taylor series expansion,

E(etΨr

) =
∑

j<p/r

E(Ψrj)tj

j!
+

∑

j>p/r

E(Ψrj)tj

j!
.

If rj < p, Lemma 2 implies E(Ψrj) =
∫∞
0

trjfΨ(t) dt ≤ CpE(|φ|rj) ≤ Cp,r.
If p < rj ≤ 2, let (εi)k

i=1 be i.i.d. copies of a Rademacher variable (and also
independent from (ψi)). Then, by symmetry and Khintchine’s inequality,

E

∣∣∣∣∣
k∑

i=1

ψi

∣∣∣∣∣

rj

= EεE

∣∣∣∣∣
k∑

i=1

εiψi

∣∣∣∣∣

rj

≤ (C
√

rj)rjE

∣∣∣∣∣
k∑

i=1

ψ2
i

∣∣∣∣∣

rj/2

.

Thus, E
∣∣ ∑k

i=1 ψ2
i

∣∣rj/2 ≤ kE(ψrj) ≤ Cp,r
k
mmrj/p (we use Hölder’s inequality and

the fact that rj ≤ 2 in the first inequality and Lemma 3 in the second one) and
so,

∑
p<rj≤2

E(Ψrj)tj

j! ≤ Cp,rt
p/r.

Finally, for rj > 2 we use Lemma 3 and Proposition 1. Since (ψi)k
1 are also i.d.

we have E(max1≤i≤k |ψi|q) ≤ E
( ∑k

i=1 |ψi|q
)

= kE(|ψ|q) and
(
E

∣∣ ∑k
i=1 ψi

∣∣)2 ≤
E

(∣∣ ∑k
i=1 ψi

∣∣2) = kE(ψ2) ≤ Cp
k
mm2/p.

Therefore, by the inequality (a + b)q ≤ 2q−1(aq + bq), a, b > 0, q ≥ 1,

E(Ψrj)tj=
1

mrj/p
E

∣∣∣∣∣
k∑

i=1

ψi

∣∣∣∣∣

rj

≤
(

Crj

m
1
p log rj

)rj(
Crj

p

(
k

m

)rj
2

m
rj
p + kE(|ψ|rj)

)

≤ Cj
r,p

(
rj

log rj

)rj
((

k

m

) rj
2

+
k

m

)
≤ Cj

r,p

(
rj

log rj

)rj

tp/r.

Since the series
∑

rj≥2

Cj
r,p

j! ( rj
log rj )rj converges, the result follows. ¤

Observation. In our main application, Corollary 4, we only consider the
case 1 ≤ r < p < 2. In such range p/r is not an integer.

Define a special subset of S`n
p
,

Fp =
{

η

‖η‖p

∣∣ 0 6= η = (η1, . . . ηn), ηj ∈ {0, +1,−1}
}

.

Corollary 2. If p/r is not an integer, there exists Cp,r > 0 such that for

every λ > Cp,r and every u ∈ Fp with k non zero coordinates,

P{ω ∈ Ω | ‖Tω(u)‖r
r > λ} ≤ exp

(
−λ

2
kr/pm1−r/p

)
.
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Proof. By definition of the set Fp and the symmetry of ψ, we can sup-
pose u has non negative coordinates, that is, the distribution of Ψr

i is equal to
the distribution of |ψi1+···+ψik|r

kr/p . Thus, P{‖Tω(u)‖r
r > λ} equals to

P
{
et‖Tω(u)‖r

r−tλ > 1
} ≤ e−tλE

(
et‖Tω(u)‖r

r
)

= e−tλ
(
E(e

t
m |Ψ1|r )

)m

for every t > 0. For t = kr/pm1−r/p, this yields to

e−tλ
(
E(e( k

m )r/p|Ψ1|r )
)m ≤ e−tλ

(
1+ Cp,r

(
k

m

)r/p
)m

≤ e−tλeCp,rkr/pm1−r/p

by Lemma 4 and the inequality (1 + x) ≤ ex. Now take λ > 2Cp,r. ¤

Corollary 3. If p/r is not an integer, there exists Cp,r > 0 and c > 0 such

that for every λ > Cp,r,

P{∃u ∈ Fp; ‖Tω(u)‖r
r > λ} ≤ n exp(−cλn1−r/p)

Proof. By Corollary 2,

P{∃u ∈ Fp; ‖Tω(u)‖r
r > λ} ≤

∑

u∈Fp

P{‖Tω(u)‖r
r > λ}

≤
n∑

k=1

(
n

k

)
2k exp(−λ

2
kr/pm1−r/p) ≤

n∑

k=1

(
n

k

)
exp(−c1λkr/pn1−r/p).

The arguments used in [9] to estimate this sum, also work in our case and yield
to

(
n
k

)
exp(−c1λkr/pn1−r/p) ≤ exp(−cλn1−r/p) for all 1 ≤ k ≤ n. ¤

4. Embedding `n
p into `(1+ε)n

r

Recall that `n
p K-embeds into `m

r if there exist a 1− 1 operator T : `n
p → `m

r

so that ‖T‖ · ‖T−1‖ ≤ K. Hölder’s inequality implies that the identity operator
is a n

1
r− 1

p -embedding.
Our aim is to estimate K so that ‖Tω‖ ‖T−1

ω ‖ ≤ K with probability > 1/2.
We divide into 5 steps the way the tail estimates are applied to obtain the em-
beddings. We point out that we can carry out the probabilistic computations in
the general case 0 < r < p < 2 (and p/r not an integer). After the geometric
arguments (Step 5) we will be forced to restrict to the case 1 ≤ r (and, as we
observed before, in that case p/r is not an integer).
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Write s = min{r, 1} and q = min{p, 1}. Let ε > 0 and fix m=(1+ ε)n. Sup-
pose that p/r is not an integer. The s-convex hull of Fp, denoted by, s- conv(Fp)
is the set of finite sums of the form

∑
λiui with ui ∈ Fp, λi ≥ 0 and

∑
λs

i ≤ 1.

Recall, [3], that for all 0 < δ < 1 there exists a δ-net N ⊂ S`n
p
, that is, a set

such that mina∈N ‖x− a‖q
p ≤ δ, ∀x ∈ S`n

p
, of cardinality |N | ≤ (

3
δ

)n/q.

Step 1. ∃ cp,r > 0, such that P{‖Tω(u)‖s
r ≤ cp,r, ∀u ∈ s- conv(Fp)} > 3/4.

Indeed, P{∃u ∈ Fp; ‖Tω(u)‖s
r > λ} = 1 − P{‖Tω(u)‖s

r ≤ λ, ∀u ∈ Fp} and
by Corollary 3, ∃ cp,r > 0 such that P{‖Tω(u)‖s

r ≤ cp,r, ∀u ∈ Fp} > 3/4. Now,
by definition of s-convex hull the result follows.

Step 2. There exists cp,r > 0 such that if t > 0 and δ := 3(cp,rt)mq/nr with
0 < δ < 1, then if N ⊂ S`n

p
is a δ-net as above, we have

P{‖Tω(a)‖r
r ≥ t, ∀a ∈ N} >

3
4
.

We have P{‖Tω(a)‖r
r < t, for some a ∈ N} = P

( ⋃
a∈N

{‖Tω(a)‖r
r < t}).

By Corollary 1 this probability is ≤ (
3
δ

)n
q Cr

pt
m
r

m
1
2

< 1
4 .

Step 3. If B`n
p
⊂A(s- conv(Fp)) with A >1, then P{‖Tω‖≤ cp,rA}> 3

4 .
‖Tω‖ = sup{‖Tω(a)‖r | a ∈ B`n

p
} ≤ sup{‖Tω(a)‖r | a ∈ A(s- conv(Fp))} =

A sup{‖Tω(a)‖r | a ∈ (s- conv(Fp))} and the result follows by Step 1.

Step 4. ∃ ω ∈ Ω and cp,r > 0 such that ‖Tω‖ ‖T−1
ω ‖ ≤ c

1/ε
p,r A1+1/ε.

By steps 2 and 3 and probability > 1/2,

‖Tω‖s
r ≤ cp,rA

s and ‖Tω(a)‖r
r ≥ t, ∀ a ∈ N .

Now, for all x ∈ S`n
p

let a ∈ N be such that ‖x− a‖q
p ≤ δ. Then, ‖Tω(x)‖s

r ≥
‖Tω(a)‖s

r−‖Tω(x−a)‖s
r ≥ ts/r−Asδs/q = ts/r− cp,rA

sts(1+ε)/r. Observe we can
now take t > 0 such that t−sε/r = 2cp,rA

s and therefore ‖Tω(x)‖s
r ≥ c

1/ε
p,r A−s/ε.

Step 5. Finally, we estimate the best A possible in Step 3.

It is enough to consider b = (b1, . . . , bn) ∈ S`n
p

with b1 ≥ · · · ≥ bn ≥ 0. Write

b = λ(b)
n∑

k=1

λk

(
k∑

i=1

ei

k1/p

)
with λk ≥ 0 and

n∑

k=1

λs
k = 1
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where (ei)n
1 is the canonical basis in Rn and λ(b) is determined so that ‖b‖p=1.

Clearly, bi = λ(b)
∑n

k=i
λk

k1/p and λk = k1/p

λ(b) (bk − bk+1) with the convention
bn+1 = 0. Now, the s-hull condition implies that λ(b)s =

∑n
i=1 is/p(bi − bi+1)s.

So our problem is to estimate the maximun of the function F (b) =
∑n

i=1 is/p

(bi−bi+1)s, subject to the conditions b1≥ . . .≥ bn≥ 0 and G(b) :=
∑n

i=1 bp
i−1 = 0.

Such maximun point must verify, for some Lagrange multiplier a ∈ R,

∇(G(b)− aF (b)) = 0 and F (b) = 0.

Case s = 1. Let p′ be such that 1
p + 1

p′ = 1. We have λ(b) =
∑n

k=1(k
1/p −

(k−1)1/p)bk and by differentiation, we deduce a = λ(b)
p and bp−1

k = k1/p−(k−1)1/p

λ(b) .

Therefore, λ(b)p′ =
∑n

k=1(k
1/p − (k − 1)1/p)p′ that is, λ(b)p′ ∼ 1

pp′ (
∑n

k=1
1
k ) ∼

1
pp′ log n. So, in this case we have A is of order cp(log n)1/p′ .

Case s < 1. In this case, we cannot proceed as before. Moreover, if we
consider ak = 1

kα and the vector in S`n
p

with coordinates bk = ak

‖(ak)‖p
, we have

by the mean value theorem λ(b)r ∼
Pn

k=1
1

kαr

(
Pn

k=1
1

kαp )r/p . Choosing 0 < αp < 1 yields

λ(b)r ∼ n1−r/p. In this case A is of order cp,rn
1
r− 1

p .

Observe that in the case s < 1, the computations above produce no significant
improvement, but for s = 1 we have proved the following result:

Corollary 4. Let 1 ≤ r < p < 2 and ε > 0. There exists cp,r > 0 such that

`n
p K-embedds into `

(1+ε)n
r with “high probability” for K ≤ (cp,r log n)(1−

1
p )(1+ 1

ε ).

Remark. The same techniques, by straightforward changes in Steps 2 and 3,
prove the existence of K-embeddings with probability > 1−α (and constants also
depending on α). For simplicity we did not introduce a new parameter and just
stated “high probability” for α = 1/2.
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