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On conjugation in some transformation and Brauer-type
semigroups

By GANNA KUDRYAVTSEVA (Kyiv) and VOLODYMYR MAZORCHUK (Uppsala)

Abstract. We give, in terms of (generalized) cyclic types, a criterion for two el-

ements of Tn, PT n, IS(N), Bn, PBn and Cn to be conjugate with respect to the

conjugation defined as the transitive closure of the xy ∼ yx relation.

1. Introduction

The notion of conjugation for semigroups can be defined (or generalized from
the corresponding notion for groups) in several ways. Perhaps the two most
commonly used notions are the relations ∼G and ∼S , whose definitions below are
taken from [La]. However, these relations are not the only notions of conjugations
considered for semigroups, see for example [Ch], [GT] for different notions.

Let S be a monoid and G its group of units. We will say that a and b from
S are G-conjugate and write a ∼G b if there exists g ∈ G such that a = g−1bg.
Obviously, ∼G is an equivalence relation on S. If S is a group, that is S = G,
then ∼G coincides with the usual group conjugation.

We call the elements a, b ∈ S primarily S-conjugate if there exist x, y ∈ S

such that a = xy and b = yx. This will be denoted by a ∼pS b. The relation
∼pS is reflexive and symmetric but not transitive in general. Denote by ∼S the
transitive closure of ∼pS . If a ∼S b we will say that the elements a and b are
S-conjugate. The fact that ∼pS is not transitive can be seen on the following
example: one can show that the zero element of the symmetric inverse semigroup
ISn is S-conjugate to any nilpotent element in this semigroup, however, such
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elements are rarely primarily S-conjugate, see [GK]. It is easy to see that in the
case of a group the relation ∼S coincides with the usual group conjugation and
thus the relations ∼G and ∼S coincide. However, in the general case one only has
the obvious inclusion ∼G⊂∼S .

The notion of G-conjugacy for semigroups is usually much easier to under-
stand than that of S-conjugacy. In many cases, for example for the classical
transformation semigroups Tn, PT n, and ISn (that is the full transformation
semigroup, the semigroup of all partial transformations, and the symmetric in-
verse semigroup on {1, 2, . . . , n}), the description of G-conjugacy is fairly straight-
forward, see for example [Li, Chapter 13]. In contrast to this the description of
S-conjugacy is usually a more subtle problem. In the present literature, as far as
we know, the only semigroup, where the S-conjugacy classes have been described,
is ISn (see [GK] or [GM, Theorem 9.1]). The aim of the present paper is to de-
scribe S-conjugacy classes in Tn, PT n, IS(N), where N = {1, 2, . . . }, and also in
certain Brauer-type semigroups. In particular, in what follows by conjugacy we
always mean S-conjugacy. It happens that in all of the cases we consider here one
can define a proper generalization of the notion of the cyclic type of an element,
after which the conjugacy criterion can be formulated in the same way as it is
formulated for the symmetric group. Though all the answers we have obtained
are rather similar, every class of semigroups mentioned above requires a thorough
special study because of their quite different nature.

We also would like to pose the following problem: describe the conjugacy
classes of T (N) and PT (N).

The paper is organized as follows: in Section 2 we collect some preliminaries
about S-conjugacy and in Section 3 we collect all necessary preliminaries about
transformation semigroups. The conjugacy classes in Tn and PT n are described
in Section 4. In Section 5 we describe the conjugacy classes in IS(N). In Section 6
we collect all necessary preliminaries about Brauer-type semigroups. Finally, in
Section 7 we describe the conjugacy classes in the semigroups Bn, PBn and Cn.

2. Preliminaries about S-conjugation

We start with some basic general facts about S-conjugacy.

Proposition 1. Let S be a semigroup and let x, y ∈ S. Then

(1) if x ∼pS y, then xi ∼pS yi for all i ∈ N.

(2) if e = xi and f = yj are idempotents and x ∼pS y, then e ∼pS f .
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Proof. Let x = ab and y = ba for some a, b ∈ S. Then xi = (ab)i =
a

(
(ba)i−1b

)
and yi = (ba)i =

(
(ba)i−1b

)
a implying xi ∼pS yi and proving (1).

To prove (2) we observe that e = xi = xij and f = yj = yij and that xij ∼pS yij

by (1). ¤

Lemma 2. Let S be a semigroup and e, f, g be three idempotents from S

such that e ∼pS f and e ∼pS g. Then f ∼pS g.

Proof. Let x, y, u, v ∈ S be such that e = xy, f = yx, e = uv, g = vu.
Since e is an idempotent we also have e = e2 = xyxy = xfy and analogously
f = yex, e = ugv, g = veu. This implies g = vxfyu and f = yugvx. Therefore
g = g2 = (vxf)(yug) and f = f2 = (yug)(vxf) and thus g ∼pS f . ¤

Corollary 3. Let S be a finite semigroup and x, y ∈ S be such that x ∼S y.

Let i, j ∈ N be such that e = xi and f = yj are idempotents. Then e ∼pS f .

Proof. Let x = x1, x2, . . . , xl = y be a sequence of elements from S such
that xi ∼pS xi+1 for i = 1, . . . , l − 1. Since S is finite, for every i = 2, . . . , l − 1
there exists mi ∈ N such that yi = xmi

i is an idempotent. Let y1 = e and yl = f .
From Proposition 1(2) we obtain yi ∼pS yi+1 for all i = 1, . . . , l − 1. Applying
Lemma 2 inductively, we get that e ∼pS yi for all i = 2, . . . , l. In particular,
e ∼pS f . ¤

We denote by D, L, R, and H the classical Green relations. For a semigroup,
S, and an idempotent, e ∈ S, we denote by G(e) the maximal subgroup of S,
corresponding to e. Recall, see for example [CP, § 1.7], that G(e) consists of all
x ∈ S such that xe = ex = x and xi = e for some i ∈ N.

Proposition 4. Let S be a finite semigroup and e, f be two idempotents

from S such that e ∼S f . Then

(1) e ∼pS f .

(2) eDf , in particular, there exist x, y ∈ S such that xLf , xRe, yLe, yRf ,

xy = e and yx = f .

(3) The map ϕ : G(e) → G(f), defined via ϕ(a) = yax, is an isomorphism with

inverse ψ : G(f) → G(e), ψ(b) = xby.

(4) For every a ∈ G(e) we have a ∼pS ϕ(a).

Proof. (1) is a special case of Corollary 3. Let x, y ∈ S be such that xy = e

and yx = f . Then e = e2 = xyxy = xfy and f = f2 = yxyx = yex. In
particular, eDf , and the rest of (2) follows from [CP, Theorem 2.17]. Now (3)
follows from [CP, Theorem 2.20]. Finally, let a ∈ G(e) and b = ϕ(a) = yax. Then
axy = ae = a, which implies a ∼pS b. This completes the proof. ¤
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Finally, we have the following useful statement, which, together with Propo-
sition 4(4), roughly describes the parts of S-conjugacy classes, which belong to
the maximal subgroups of S:

Proposition 5. Let S be a finite semigroup, e, f be two idempotents from

S, and a ∈ G(e), b ∈ G(f). Assume a ∼S b. Then a ∼pS b.

Proof. Since a ∈ G(e), b ∈ G(f), we have a ∼S b implies e ∼pS f by
Corollary 3. From Proposition 4(2) we thus get aDb.

Since a ∼S b, there exist t0, . . . , tl, x0, . . . , xl−1 and y0, . . . , yl−1 in S such that
a = t0, b = tl, and ti = xiyi, ti+1 = yixi for all i. Let N ∈ N be such that ei = tNi
is an idempotent for every i = 0, . . . , l. Such N obviously exists. Then ti ∼pS ti+1

implies ei ∼pS ei+1 for all i = 0, . . . , l by Proposition 1(1). In particular, from
Proposition 4(2) we have eiDej for all i, j ∈ {0, . . . , l}. Further, tN+1

i ∼pS tN+1
i+1

for all i = 0, . . . , l by Proposition 1(1). However, tN+1
0 = a, tN+1

l = b, and we
have tN+1

i ∈ G(ei) for all i = 0, . . . , l (since t2N+1
i = tN+1

i and t
N(N+1)
i = tNi ).

Substituting, if necessary, ti with tN+1
i we can assume that tiDtj for all i, j ∈

{0, . . . , l} and that all ti are group elements in the corresponding G(ei).
Let i ∈ {0, . . . , l − 1}. Then ei = tNi = (xiyi)N and ei+1 = tNi+1 = (yixi)N .

Thus we have

ti = t3N+1
i = (xiyi)3N+1 = (xiyi)Nxi(yixi)Nyi(xiyi)N = eixiei+1yiei,

ti+1 = t3N+1
i+1 = (yixi)3N+1 = (yixi)Nyi(xiyi)Nxi(yixi)N = ei+1yieixiei+1.

Further, we have

ti(xiyi)N−1xi =(xiyi)Nxi(yixi)Nyi(xiyi)N (xiyi)N−1xi = (xiyi)Nxi(yixi)N ,

implying eixiei+1Rti. Analogously one shows that ei+1yieiRti+1. Therefore,
substituting, if necessary, xi by eixiei+1 and yi by ei+1yiei, we can assume that
all ti, xi and yi belong to the same D-class, moreover, that eixiei+1 = xi and
ei+1yiei = yi for all i as well.

Let us now prove t0 ∼pS tl by induction on l. For l = 1 there is nothing
to prove. To establish the induction step it is enough to prove the statement for
l = 2. Since e1 = (y0x0)N = (x1y1)N , we have

t0 = x0y0 = (x0y0)N+1 = x0(y0x0)Ny0 = x0(x1y1)Ny0

= x0x1t
N−1
2 y1y0 = (x0x1)(tN−1

2 y1y0).

On the other hand,

(tN−1
2 y1y0)(x0x1) = tN−1

2 y1y0x0x1 = tN−1
2 y1x1y1x1 = tN+1

2 = t2,

which implies t0 ∼pS t2. Induction completes the proof. ¤
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3. Preliminaries about transformation semigroups

Let M be a set. The full transformation semigroup T (M) on M is the set
of all maps from M to M under the operation of composition of maps. The
symmetric inverse semigroup IS(M) is the set of all partial injective maps, i.e.
injective maps f : M ′ → M , where the domain dom(f) = M ′ of f is a subset
of M , under the operation of composition of partial maps. Both T (M) and IS(M)
contain the symmetric group S(M) as the group of units. Moreover, they can be
considered as (natural) extentions of S(M) to the class of all semigroups and all
inverse semigroups respectively. In particular, each semigroup is embeddable into
T (M) for some M and each inverse semigroup is embeddable into IS(M) for
some M . Combining the definitions of T (M) and IS(M) we get the semigroup
PT (M) of all partial but not necessarily injective maps from M to M . For
α ∈ PT (M) we denote by ran(α) the range of α. For α ∈ PT (M) to indicate
that x /∈ dom(α) we will sometimes write α(x) = ∅.

Let S denote one of the semigroups IS(M), T (M) or PT (M) and α ∈ S.
The graph of the action of α is the directed graph Γ(α), whose set V (α) of vertices
coincides with M , and where two vertices, x, y ∈ V (α), are joined by a directed
edge (x, y) if and only if α(x) = y. The following statement is obvious.

Proposition 6. Let α, β ∈ S. Then α ∼S(M) β if and only if the graphs

Γ(α) and Γ(β) are isomorphic as directed graphs.

Denote by K(α) the set of all connected components, i.e. maximal connected
directed subgraphs of Γ(α). We note that by a subgraph we will always mean
a full subgraph (i.e. the one which inherits all possible edges). Hence, every
K ∈ K(α) is uniquely determined by its set of vertices, which is a subset of M .
We will denote this subset also by K abusing notation (i.e. we identify K with its
set of vertices). Denote by αK the element of S defined as follows: dom(αK) =
(M \ K) ∪ (dom(α) ∩ K), αK(x) = α(x) if x ∈ dom(α) ∩ K, and αK(x) = x

if x /∈ K. The elements αK will be called connected elements and K will be
called the support of αK . Clearly, αK is uniquely determined by K and α and
for any connected element, different from the identity element id, its support is
uniquely determined. For id we will (slightly ambiguously) say that every one-
point subgraph of Γ(id) can be taken as its support. For example, consider the
element α ∈ PT ({1, . . . , 8}) with the following Γ(α):

3

²²
1 // 2 // 4 5

¦¦
6

((
7hh 8

(3.1)
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This graph has four connected components and gives rise to three non-trivial
connected elements (since one of the components is the identity). In particular,
we have the following Γ(α{1,2,3,4}):

3

²²
1 // 2 // 4 5

¦¦
6

¦¦
7

¦¦
8

¦¦

.

The following two statements are rather straightforward.

Lemma 7. For all K, K ′ ∈ K(α) we have αKαK′ = αK′αK , moreover,

α =
∏

K∈K(α)

αK .

The decomposition, given by Lemma 7 is called the connected decomposition
of α.

Proposition 8. Each element of S decomposes into a (possibly infinite)

product of connected elements with pairwise disjoint supports. This product is

unique up to permutations of factors and deletions of the unit element.

It is natural to consider Proposition 8 as an analogue of the cyclic decompo-
sition for elements of Sn.

4. Conjugation in the full finite transformation
semigroups Tn, ISn and PT n

Assume that M is finite and n = |M |. For such M we denote the semigroups
T (M), IS(M) and PT (M) by Tn, ISn and PT n respectively. Let α be an
element of one of the semigroups Tn, ISn or PT n. Let k ∈ N. We will call α

an oriented cycle of length k if there exists a set, K = {x1, x2, . . . , xk} ⊂ M such
that K ∈ K(α) is the cycle x1 → x2 → · · · → xk → x1 and α = αK . We denote
the oriented cycle by (x1, x2, . . . , xk). We start with the following easy lemma.

Lemma 9. (1) Let α ∈ Tn. Then every connected component of Γ(α)
contains exactly one directed full subgraph, which is an oriented cycle.

(2) Let α ∈ PT n or α ∈ ISn. Then every connected component of Γ(α)
contains at most one directed full subgraph, which is an oriented cycle.
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Proof. Assume first that α is an element of either Tn or PT n or ISn. Let
us show that no connected component of Γ(α) contains more than one oriented
full subgraph, which is an oriented cycle. Indeed, suppose that this is not true and
that some K ∈ K(α) contains at least two different cycles, say a1 → a2 → · · · →
as → a1 and b1 → b2 → · · · → bt → b1. Since every point is the source of exactly
one arrow, these two cycles do not intersect. Both cycles belong to K, which is
connected, hence there is a non-oriented finite path, ai = x1, x2, . . . , xl−1, xl =
bj , from some ai to some bj . Without loss of generality we can assume that
this path does not contain other points form our cycles. Since a1 belongs to
an oriented cycle and every point is a source of at most one arrow, the arrow
between a1 and x2 must terminate at a1. The same argument implies that the
arrow between x2 and x3 must terminate at x2 and so on. We will get that the
arrow between xl−1 and xl must terminate at xl−1. This implies that there are
at least two arrows starting at xl = bj , since the last point belongs to an oriented
cycle. A contradiction. This proves the second statement.

Let now α ∈ Tn and K ∈ K(α). Since each point is the beginning of exactly
one arrow, K has the same number of vertices and edges, and thus K is not a
tree. Hence, K has at least one cycle, which is oriented by the same argument as
above. This completes the proof. ¤

Let α ∈ Tn or α ∈ ISn or α ∈ PT n. For each i, 1 ≤ i ≤ n, let li denote the
number of cycles of length i in Γ(α). The vector ct(α) = (l1, l2, . . . , ln) will be
called the cyclic type of α. Sometimes it will be convenient to compare the cyclic
types of the elements from different semigroups and even for different n. In these
cases all li, which are not defined, will be considered to be equal to 0.

Let α ∈ ISn or α ∈ PT n and k ∈ N. We will call α an oriented chain of
length k if there exists a set, C = {c1, c2, . . . ck} ⊂ M , such that C ∈ K(α) is the
chain c1 → c2 → · · · → ck (in particular, ck /∈ dom(α)) and α = αK . Note that
this chain may contain exactly 1 element, for example the element 8 for α from
the example (3.1) (in this example α{8} is an oriented chain of length 1). We will
denote such α by [c1, c2, . . . , ck]. For such α we have c1 /∈ ran(α), α(ci) = ci+1,
i = 1, . . . , k − 1, ck /∈ dom(α), and α(a) = a for all a /∈ C.

From [GM, Theorem 4.1] it follows that a connected element from ISn is
either a chain or a cycle, and hence the unique decomposition of α ∈ ISn stated
in Proposition 8 is called the chain decomposition of α (in [Li] the author calls
it the chart decomposition). Let α ∈ ISn. For each i, 1 ≤ i ≤ n, let mi

denote the number of chains of length i in the chain decomposition of α. The
vector chat(α) = (m1,m2, . . . , mn) will be called the chain type of α. As a direct
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consequence from Proposition 6 we obtain that for α, β ∈ ISn one has α ∼Sn
β

if and only if ct(α) = ct(β) and chat(α) = chat(β) (see also [Li, Section 13]).
In [GK] it was shown that for α, β ∈ ISn one has α ∼ISn

β if and only
if ct(α) = ct(β), while there are no restrictions on the chain types of α and β.
The following theorem provides analogous statements for the semigroups Tn and
PT n, moreover, all the results can be formulated in a unified way.

Theorem 10. Let S denote one of the semigroups Tn, ISn or PT n and

α, β ∈ S. Then α ∼S β if and only if ct(α) = ct(β).

Proof. For the ISn case we refer the reader to [GK], and hence we can let
S be one of the semigroups Tn or PT n. Let α ∈ S. Since ran(α) ⊃ ran(α2) ⊃ . . . ,
and at most n inclusions are strict, it follows that there is a positive integer, k,
such that ran(αk) = ran(αk+i) for all i ≥ 1. The least k with this property will
be called the length of α and denoted by l(α). The set stran(α) = ran(αk) will
be called the stable range of α. Note that, if α =

∏
K∈K(α) αK is the connected

decomposition of α, then l(α) = maxK∈K(α) l(αK). We also note that l(α) = 1 if
and only if ran(α) = stran(α). Further, for each α the restriction of α to stran(α)
is a permutation on stran(α). To proceed we need the following statement, which
allows us to “splinter” all oriented chains of an element into oriented chains of
length one staying within a given S-conjugacy class.

Lemma 11. For each α ∈ S there exists α′ ∈ S such that α and α′ are

S-conjugate, Γ(α) and Γ(α′) have the same cycles, and l(α′) = 1.

Proof. Without loss of generality we can assume l(α) > 1. Fix K ∈ K(α)
such that l(αK) > 1. It follows from Lemma 9 that K contains either a unique
cycle, or no cycles at all. If K contains exactly one cycle, say a1 → a2 → · · · →
as → a1, beside this cycle K can contain only some subtrees terminating at the
points of the cycle. It follows easily from the definition of the stable range that
A = {a1, a2, . . . , as} = K ∩ stran(α) and that the length of αK equals the length
of the longest path from a point of K to the closest point of A. If K does not
contain any cycle (which is possible only if S = PT n), then it follows easily from
the definition of the stable range that K ∩ stran(α) = ∅ and that the length of
αK equals the length of the longest path in K.

Let K \ ran(α) = {c1, c2, . . . , ct} = C. For every i ∈ {1, . . . , t} set bi = α(ci)
and di = α(bi) (we note that in the case of PT n some of bi-s and di-s can be
undefined, in particular, if some bi is undefined then so is the corresponding di).
Set xK = αK , and define yK in the following way: set yK(ci) = di for every i (in
the case when di is undefined we say that yK(ci) is undefined) and yK(c) = c if
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c /∈ C. Then yKxK = αK , xKyK(ci) = αK(di) for every i, and xKyK(c) = αK(c)
for every c /∈ C. Set α

(1)
K = xKyK . From the construction of α

(1)
K we immediately

have that l(α(1)
K ) = l(αK)− 1.

Set x =
∏

K∈K(α) xK , y =
∏

K∈K(α) yK . Using Lemma 7 we easily get

α =
∏

K∈K(α)

αK =
∏

K∈K(α)

(yKxK) =
∏

K∈K(α)

yK

∏

K∈K(α)

xK = yx.

For α(1) =
∏

K∈K(α) α
(1)
K we repeat the arguments above and get α(1) = xy.

Hence, α ∼pS α(1). Moreover, from the above remark on l(α(1)
K ) it follows that

l(α(1)) = l(α) − 1. Now inductive arguments on the length of α show that α is
S-conjugate to some α′ satisfying the following conditions:
• α′(x) = α(x) for all x ∈ stran(α),
• for every K ∈ K(α) containing a cycle and for all x ∈ K we have α′(x) ∈

stran(α),
• for every K ∈ K(α) which does not contain any cycle and for all x ∈ K we

have that α′(x) is not defined. ¤

Assume now that ct(α) = ct(β). It follows from Lemma 11 that there exist
α′ and β′ such that ct(α) = ct(α′), ct(β) = ct(β′) and l(α′) = l(β′) = 1. Suppose
first that stran(α) 6= ∅. Fix any point a ∈ stran(α) = stran(α′). Set x = α′ and
define y as follows: y(c) = c if c ∈ stran(α′) and y(c) = a otherwise. We immedi-
ately get yx = α′ and xy = α′′, where α′′(c) = α′(c) = α(c) if c ∈ stran(α) and
α′′(c) = α(a) otherwise. Hence, we have that α ∼S α′′, moreover Γ(α) and Γ(α′′)
have the same cycles, and α′′(b) = α(a) for every b 6∈ stran(α′′). Analogously
we construct the element β′′. From the construction it follows that Γ(α′′) and
Γ(β′′) are isomorphic (for appropriate choices of a and the corresponding point
in the construction of β′′), which, by Proposition 6, implies α′′ ∼Sn β′′. Finally,
we obtain

α ∼S α′′ ∼S β′′ ∼S β,

and, therefore, α ∼S β.
Suppose now stran(α) = ∅. In this case we automatically have S = PT n

and α′ = β′ = 0 (0 ∈ PT n is the unique element satisfying dom(0) = ∅). Hence
α ∼PT n α′ = β′ ∼PT n β. This proves sufficiency of our conditions.

To prove necessity it is enough to consider α, β ∈ S such that α ∼pS β,
that is α = xy and β = yx for some x, y ∈ S. Using Proposition 1(1) we have
αk ∼pS βk for all k ∈ N. Choose k such that it is divisible by the lengths of all
cycles in both Γ(α) and Γ(β), and k > max{l(α), l(β)}. Then αk+1 and βk+1 are
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S-conjugate by Proposition 1(1). Moreover, they have length 1, ct(αk+1) = ct(α),
and ct(βk+1) = ct(β). Hence, it remains to show that ct(αk+1) = ct(βk+1).

Denote αk+1 by α1 and βk+1 by β1. From α1 ∼pS β1 it follows that there
exist x, y such that α1 = xy, β1 = yx. This implies α2

1 = xβ1y, and therefore
|ran(α1)| = |ran(α2

1)| ≤ |ran(β1)|. Analogously we obtain the opposite inequality:
|ran(β1)| ≤ |ran(α1)|, that is |ran(α1)| = |ran(β1)|. Let γ ∈ Sn be such that
it maps ran(β1) onto ran(α1). Set β2 = γβ1γ

−1 and x1 = xγ−1, y1 = γy. In
this notation β2 = y1x1, α1 = x1y1, in particular, β2 ∼pS α1. Since stran(β2) =
stran(α1), from the definition of the stable range it follows that both x1 and y1

must map stran(β2) to stran(β2). Hence we can consider the restrictions β2, α1,
y1 and x1 of β2, α1, y1, and x1 respectively to stran(β2). They all belong to
S(stran(β2)) and β2 = y1x1, α1 = x1y1. Therefore, β2 and α1 are S(stran(β2))-
conjugate. From the description of conjugacy classes in the symmetric group
S(stran(β2)) we have ct(β2) = ct(α1). To complete the proof we have only to
note that ct(β2) = ct(β1) and ct(α1) = ct(α1) by construction. ¤

In particular, we have the following easy corollary, which reveals a kind of
“stable behavior” of the notion of S-conjugacy for ISn, Tn or PT n:

Corollary 12. Let S = ISn, Tn or PT n and x ∈ S. Let i ∈ N be such that

e = xi is an idempotent. Then x ∼S xe.

Proof. It is easy to see that x and xe have the same cyclic types and the
statement follows from Theorem 10. ¤

5. Conjugation in the symmetric inverse semigroup
on a countable set

In this section M will denote a countable set. Let α ∈ IS(M). It turns
out that apart from the finite cycles and chains the graph Γ(α) can contain three
other types of connected components:
• infinite “bijective” connected components, which we will call infinite cycles;

such components have the form K = · · · → x−1 → x0 → x1 → . . . ,
where α(xi) = xi+1 for all i ∈ Z, and we will denote such component by
(. . . , x−1, x0, x1, . . . );

• infinite non-surjective connected components, which we will call injective
chains; such components have the form K = x1 → x2 → . . . , where α(xi) =
xi+1 for all i ∈ N and x1 /∈ ran(α), and we will denote such component by
[x1, x2, . . . ];
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• infinite surjective, but not “bijective”, connected components, which we will
call surjective chains, such components have the form K = · · · → x2 → x1,
where α(xi) = xi−1 for all i ∈ {2, 3, . . . } and x1 /∈ dom(α), and we will
denote such component by [. . . , x2, x1].

Using the arguments, analogous to those of [GM, Theorem 4.1], it is easy to
see that these five types of connected components exhaust all possible types of
connected components in Γ(α) if α ∈ IS(M). In particular, the notion of a chain
decomposition immediately extends to the elements of IS(M) with M countable.

Let α ∈ IS(M). For each positive integer i let li ∈ N ∪ {0, ω} denote the
number of cycles of length i in the chain decomposition of α, and let lω ∈ N∪{0, ω}
denote the number of infinite cycles in the chain decomposition of α. The vector
ct(α) = (lω, l1, l2, . . . ) is called the cyclic type of α.

For each positive integer i let mi ∈ N ∪ {0, ω} denote the number of chains
of length i in the chain decomposition of α, and let ms

ω ∈ N ∪ {0, ω}, mi
ω ∈

N∪{0, ω} denote the numbers of infinite surjective and injective chains in the chain
decomposition of α respectively. The vector chat(α) = (ms

ω,mi
ω,m1,m2, . . . ) is

called the chain type of α.

Proposition 13. Let α, β ∈ IS(M) be such that α ∼IS(M) β. Then

ct(α) = ct(β).

Proof. It is of course enough to consider the case when α ∼pIS(M) β. Then
α = xy, β = yx for some x, y ∈ IS(M). Fix any positive integer k. Denote by
lk(α) and lk(β) the numbers of cycles of length k in the cyclic types of α and β

respectively. Let us show that lk(α) ≤ lk(β) by constructing an injective map π

from the cycles of length k in α to the cycles of length k in β.
Take a cycle, K = (a1, a2, . . . , ak) ∈ Γ(α). Set bi = y(ai), 1 ≤ i ≤ k.

Since α(ai) = xy(ai) = x(bi), it follows that x(bi) = ai+1, 1 ≤ i ≤ k − 1, and
x(bk) = a1. Therefore, β(bi) = yx(bi) = y(ai+1) = bi+1, 1 ≤ i ≤ k − 1, and
β(bk) = yx(bk) = y(a1) = b1. Hence, Γ(β) has the cycle π(K) = (b1, b2, . . . , bk).
By construction, π is injective and thus lk(α) ≤ lk(β). Switching α and β we
obtain lk(β) ≤ lk(α). Hence, lk(α) = lk(β) for all k ≥ 1. That lω(α) = lω(β) is
proved similarly. Therefore, ct(α) = ct(β) and the proof is complete. ¤

Let α ∈ IS(M). Denote by Mi(α) the set of all (maximal) chains in Γ(α)
of length i, i ≥ 1, and by Ms

ω(α) and Mi
ω(α) the sets of all (maximal) surjective

and injective infinite chains respectively. Set

Mfin(α) =
⋃

i≥1

Mi(α), and M(α) = Ms
ω(α) ∪Mi

ω(α) ∪Mfin(α).
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We will say that the length of an infinite chain equals ω.

Lemma 14. For all α, β ∈ IS(M) we have: α ∼pIS(M) β if and only if

ct(α) = ct(β) and there is a partial bijection, π, from M(α) to M(β) such that

the following conditions are satisfied:

(i) M(α) \ dom(π) ⊂ M1(α);

(ii) M(β) \ ran(π) ⊂ M1(β);

(iii) π (M1(α) ∩ dom(π)) ⊂ M1(β) ∪M2(β);

(iv) π (Mi(α)) ⊂ Mi−1(β) ∪Mi(β) ∪Mi+1(β) for all i ≥ 2;

(v) π (Ms
ω(α)) = Ms

ω(β);

(vi) π
(
Mi

ω(α)
)

= Mi
ω(β).

Proof. Sufficiency. Let α, β ∈ IS(M) be such that ct(α) = ct(β) and
assume that there exists π satisfying (i)–(vi). Let us show thatα ∼pIS(M) β. For
this we are going to construct x, y ∈ IS(M) such that α = xy, β = yx.

Construction of x and y.

(1) If A = [a1, a2, . . . , at] ∈ dom(π), t > 1, is a finite chain such that
B = [b1, b2, . . . , bt−1] = π(A) ∈ Mt−1(β), then we set

x(b1) = a2, . . . , x(bt−1) = at, y(a1) = b1, . . . , y(at−1) = bt−1, y(at) = ∅.

(2) If A = [a1, a2, . . . , at] ∈ dom(π), t > 1, is a finite chain such that
B = [b1, b2, . . . , bt] = π(A) ∈ Mt(β), then we set

x(b1) = a2, . . . , x(bt−1) = at, x(bt) = ∅, y(a1) = b1, . . . , y(at) = bt.

(3) If A = [a1, a2, . . . , at] ∈ dom(π) is a finite chain such that we have
B = [b1, b2, . . . , bt+1] = π(A) ∈ Mt+1(β), then we set

x(b1) = a1, . . . , x(bt) = at, x(bt+1) = ∅, y(a1) = b2, . . . , y(at) = bt+1.

(4) If A = [. . . , a2, a1] is a surjective infinite chain and B = π(A) = [. . . , b2, b1],
then we set

x(b1) = ∅, x(b2) = a1, x(b3) = a2, . . . , y(a1) = b1, y(a2) = b2, . . . .

(5) If A = [a1, a2, . . . ] is an injective infinite chain and B = π(A) = [b1, b2, . . . ],
then we set

x(b1) = a2, x(b2) = a3, x(b3) = a4, . . . , y(a1) = b1, y(a2) = b2, . . . .
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(6) Fix any bijection, γ, from the union N of the supports of all cycles in Γ(α)
to the union N ′ of the supports of all cycles in Γ(β), which preserves cycles
(this is possible since ct(α) = ct(β)). For a ∈ N set y(a) = γ(a) and for
a ∈ N ′ set x(a) = α(γ−1(a)).

(7) Finally, for each a ∈ M , which forms the support of a chain, [a] /∈ dom(π),
we set y(a) = ∅, and for each a ∈ M , which forms the support of a chain,
[a] /∈ ran(π), we set x(a) = ∅.

It is straightforward to verify that x, y ∈ IS(M) and that α = xy, β = yx. Thus
α ∼pIS(M) β, which completes the proof of the sufficiency.

Necessity. Take α, β ∈ IS(M) such that α ∼pIS(M) β. By Proposition 13,
we have ct(α) = ct(β). Consider x, y ∈ IS(M) such that α = xy, β = yx. Fix
i ≥ 2. Consider a chain, A = [a1, a2, . . . , ai] ∈ Mi(α). For every j, 1 ≤ j ≤ i− 1,
one gets that aj ∈ dom(α) implies that y(aj) ∈ dom(x), and hence aj ∈ dom(y).
Denote bj = y(aj). In this notation aj+1 = xy(aj) = x(bj). Consider four possible
cases.

Case 1. a1 ∈ ran(x) and ai ∈ dom(y). Denote b0 = x−1(a1) and bi = y(ai).
Since a1 /∈ ran(α) and ai /∈ dom(α), it follows that b0 /∈ ran(y) and bi /∈ dom(x).
Thus we have that β = yx has the maximal chain B = [b0, b1, . . . , bi] ∈ Mi+1(β).
Let B = π(A).

Case 2. a1 ∈ ran(x) and ai /∈ dom(y). Denote b0 = x−1(a1). Similarly
to the Case 1 we obtain b0 /∈ ran(y). Then β = yx has the maximal chain
B = [b0, b1, . . . , bi−1] ∈ Mi(β). Let B = π(A).

Case 3. a1 /∈ ran(x) and ai ∈ dom(y). Denote bi = y(ai). Similarly to
the previous cases we get that the element β = yx has the maximal chain B =
[b1, . . . , bi] ∈ Mi(β). Let B = π(A).

Case 4. a1 /∈ ran(x) and ai /∈ dom(y). Similarly to the previous cases we
obtain that the element β = yx has the maximal chain B = [b1, . . . , bi−1] ∈
Mi−1(β). Let B = π(A).

In the cases when A is an infinite (surjective or injective) chain the construc-
tion of π(A) is analogous.

Let A = [a1] ∈ M1(α). In case when a1 ∈ dom(y)∩ran(x) we set b1 = x−1(a1)
and b2 = y(a1). We have b1 /∈ ran(y), β(b1) = b2 and b2 /∈ dom(x). Thus β has
the maximal chain B = [b1, b2]. Set B = π(A). Otherwise we set π(A) = ∅.

From the construction it follows immediately that the map π satisfies (i)–(vi).
This completes the proof. ¤
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Theorem 15. Let α, β ∈ IS(M). Then the following conditions are equiv-

alent:

(a) α ∼IS(M) β.

(b) ct(α) = ct(β), ms
ω(α) = ms

ω(β), mi
ω(α) = mi

ω(β), and there exist k ∈ N
and a partial bijection, π : Mfin(α) → Mfin(β), such that the following

conditions are satisfied:

(i) Mi(α) ⊂ dom(π) for all i ≥ k + 1;

(ii) Mi(β) ⊂ ran(π) for all i ≥ k + 1;

(iii) π (Mi(α) ∩ dom(π)) ⊂ M1(β) ∪ · · · ∪Mi+k(β) for all 1 ≤ i ≤ k;

(iv) π (Mi(α)) ⊂ Mi−k(β) ∪ · · · ∪Mi+k(β) for all i ≥ k + 1.

(c) ct(a) = ct(b), ms
ω(α) = ms

ω(β), mi
ω(α) = mi

ω(β), and there exist k ∈ N and

an infinite matrix (mi,j), where i ≥ −k + 1 and −k ≤ j ≤ k with entries

from N ∪ {0, ω}, such that

mt(α) =
k∑

j=−k

mtj ; mt(β) =
k∑

j=−k

mt−j,j (5.1)

for each t ≥ 1 (we assume that i + ω = ω + ω = ω for all i ∈ N).

Proof. (a)⇒(b): Assume that α ∼IS(M) β. Then, by definition, there exist
k ∈ N and a sequence, α = α0, α1, . . . , αk = β ∈ IS(M), such that α0 ∼pIS(M)

α1, . . . , αk−1 ∼pIS(M) αk. For i = 1, . . . , k − 1 let πi : M(αi) → M(αi+1) be a
partial bijection, given by Lemma 14. Set π = πk−1 ◦ · · · ◦ π0 : M(α) → M(β).
The equality ct(α) = ct(β) is implicit in Lemma 14, ms

ω(α) = ms
ω(β) follows

from Lemma 14(v), mi
ω(α) = mi

ω(β) follows from Lemma 14(vi). In particular,
π restricts to a partial bijection from Mfin(α) to Mfin(β). The conditions (bi)–
(biv) of our theorem follow from Lemma 14(i)–(iv). This proves the implication
(a)⇒(b).

(b)⇒(c): Assume that we are given π : Mfin(α) → Mfin(β), satisfying
(bi)–(biv) for some k ∈ N. For i ≥ −k + 1 and −k ≤ j ≤ k define

mi,j =





0, i < 0;

0, i < −j;

0, i = j = 0;

|Mj(β) \ π(Mfin(α))|, i = 0, 1 ≤ j ≤ k;

|Mi(α) \ dom(π)|, i = −j > 0;

|{c ∈ Mi(α) |π(c) ∈ Mi+j(β)}|, otherwise.
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Then the equalities from (5.1) follow directly from the definition and the fact
that π is a partial bijection. This proves the implication (b)⇒(c). Moreover, one
easily shows the reverse implication (c)⇒(b).

(c)⇒(a): We prove this statement by induction in k. If k = 1 then, since we
know that (c)⇒(b), we have α ∼pIS(M) β by Lemma 14 and hence α ∼IS(M) β.
Assume that m ≥ 2 and our statement is true for all k < m. Let us prove the
statement for k = m. Let α, β ∈ IS(M) be such that (c) is satisfied with k = m.
We are going to construct an element, γ ∈ IS(M), and two matrices, (m′

i,j) and
(m′′

i,j) such that for α, γ, and (m′
i,j) the condition (c) is satisfied with k = m− 1,

and for β, γ, and (m′′
i,j) the condition (c) is satisfied with k = 1.

Construction of γ: Since all our conditions are given in terms of cyclic and
chain types, it will be enough to specify these types for γ. So, we take some γ for
which ct(α) = ct(γ), ms

ω(α) = ms
ω(γ), mi

ω(α) = mi
ω(γ), and for which the lengths

of finite chains are prescribed as follows: For i ≥ −m+2 and −m+1 ≤ j ≤ m−1
define

m′
i,j =





mi,j , −m + 2 ≤ j ≤ m− 2;

mi,−m + mi,−m+1, j = −m + 1;

mi,m + mi,m−1, j = m− 1.

Then mi(α) =
∑m−1

j=−m+1 m′
i,j . For i ≥ 1 set

mi(γ) =
m−1∑

j=−m+1

m′
i−j,j .

In this was we completely prescribe all cycles and chains in γ. Now we take any
γ which satisfies this prescription. It obviously exists.

From the definition of mi(γ) we immediately have that α, γ, and (m′
i,j)

satisfy the condition (c) with k = m− 1. For i ≥ 0 and j = −1, 0, 1 define

m′′
i,j =





m−1∑

j=−m+1

mi−j,j , j = 0,

mi+m−1,−m, j = −1,

mi−m+1,m, j = 1.

Then for i ≥ 1 we have

mi(β) =
m∑

j=−m

mi−j,j = m′′
i+1,−1 + m′′

i,0 + m′′
i−1,1
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and

mi(γ) =
m−1∑

j=−m+1

m′
i−j,j = mi+m−1,−m +

m−1∑

j=−m+1

mi−j,j + mi−m+1,m

= m′′
i,−1 + m′′

i,0 + m′′
i,1.

Hence β, γ, and (m′′
i,j) satisfy (c) with k = 1. Now from the inductive assumption

we have α ∼IS(M) γ and γ ∼IS(M) β and hence α ∼IS(M) β by transitivity. This
completes the implication (c)⇒(a) and the proof of the theorem. ¤

Corollary 16. Let α ∈ IS(M). Then

(1) α is conjugate to some element from S(M) if and only if the cardinality

of the union of the supports of all cycles of α is ω and the lengths of all chains of

α are finite and uniformly bounded.

(2) α is conjugate to the zero element of IS(M) if and only if α does not have

any cycles and the lengths of all chains of α are finite and uniformly bounded.

6. Preliminaries about the Brauer-type semigroups

Let n ∈ N, M = {1, 2, . . . , n} and M ′ = {1′, 2′, . . . , n′}. We consider ′ : M →
M ′ as a fixed bijection and will denote the inverse bijection by the same symbol,
that is (a′)′ = a.

Denote by Bn = B(M) the set of all possible partitions of M ∪M ′ into two-
element subsets; by PBn = PB(M) the set of all possible partitions of M ∪M ′

into one- and two-element subsets; and by Cn = C(M) the set of all possible
partitions of M ∪M ′ into arbitrary subsets. It follows from the definition that we
have obvious inclusions Bn ⊂ PBn ⊂ Cn. If α ∈ Cn and a, b ∈ M ∪M ′ we will
write a ≡α b if an only if a and b belong to the same subset of the partition α.

Let α = X1 ∪ · · · ∪Xk and β = Y1 ∪ · · · ∪ Yl be two elements from Cn. We
define a new element γ = αβ ∈ Cn in the following way:

• for a, b ∈ M we have a ≡γ b if an only if a ≡α b or there is a sequence,
c′1, · · · , c′2s, s ≥ 1, of elements in M ′, such that a ≡α c′1, c1 ≡β c2, c′2 ≡α

c′3, . . . , c2s−1 ≡β c2s, and c′2s ≡α b;

• for a′, b′ ∈ M ′ we have a′ ≡γ b′ if an only if a′ ≡β b′ or there is a sequence,
c1, · · · , c2s, s ≥ 1, of elements in M , such that a′ ≡β c1, c′1 ≡α c′2, c2 ≡β

c3, . . . , c′2s−1 ≡α c′2s, and c2s ≡β b′;
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• for a ∈ M and b′ ∈ M ′ we have a ≡γ b′ if an only if there is a sequence,
c′1, · · · , c′2s−1, s ≥ 1, of elements in M ′, such that a ≡α c′1, c1 ≡β c2, c′2 ≡α

c′3, . . . , c′2s−2 ≡α c′2s−1, and c2s−1 ≡β b′.

One can think about the elements from Cn as a certain “microchips” with n

pins on the left hand side (corresponding to M) and n pins on the right hand side
(corresponding to M ′). Having α ∈ Cn we connect two pins in the corresponding
chip if and only if they belong to the same set of the partition α. The operation
described above can then be viewed as a “composition” of such chips: having
α, β ∈ Cn we identify (connect) the right pins of α with the corresponding left
pins of β, which uniquely defines a connection of the remaining pins (which are
the left pins of α and the right pins of β). Note that during the operation we
can obtain some “dead circles” formed by some identified pins from α and β

(for example the two lowest identified pins on Figure 1). These circles should be
disregarded. From such realization it follows immediately that the defined above
composition of elements from Cn is associative. The obtained semigroup is called
the semigroup of all partitions, see [Mar, Xi, Ma2].

It is easy to see that both Bn and PBn are subsemigroups of Cn. The
semigroup Bn is called the Brauer semigroup (or Brauer monoid) and was first
constructed in [Br]. The semigroup PBn is the partial Brauer semigroup, defined
in [Ma1]. PBn is also known as the rook Brauer monoid. The corresponding
finite-dimensional associative algebras and their deformations (Brauer algebras,
rook Brauer algebras) play important role in representation theory and have been
extensively studied. An example of multiplication of two elements in Bn is given
on Figure 1.

´
´

´
´

´
´

´

Q
Q

Q
Q

Q
Q

Q

©©©©©©©

³³³³³³³

=·

Figure 1. Chips and their multiplication.

It is easy to see that there are natural monomorphisms Sn ↪→ Bn and ISn ↪→
PBn, defined via Sn 3 σ 7→ {σ(1), 1′} ∪ · · · ∪ {σ(n), n′}.
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Let α ∈ Cn. A subset, X ⊂ M , will be called α-invariant provided that for
any a ∈ X ∪X ′ and any b ∈ M ∪M ′ the condition a ≡α b implies b ∈ X ∪X ′.
If X is invariant with respect to α, then we define the element α|X ∈ Cn in the
following way:

• for all a, b ∈ X ∪X ′ we have a ≡α|X b if and only if a ≡α b;

• for all a ∈ M \X and b ∈ M ∪M ′ we have a ≡α|X b if and only if b = a′.

The element α|X is called the restriction of α to X. We also define the element
α|X ∈ C(X) as follows:

• for all a, b ∈ X ∪X ′ we have a ≡α|X b if and only if a ≡α b.

Note that if X is α-invariant then M \X is α-invariant as well.
Let α ∈ Cn. A subset, X ∈ α, will be called a line provided that X ∩M 6= ∅

and X ∩ M ′ 6= ∅. The number of lines in α will be called the rank of α and
denoted by rank(α). For α ∈ Cn we define the stable rank strank(α) of α as
rank(αk), where k is such that α2k = αk. Obviously strank(α) ≤ rank(α).

Let π ∈ Cn be an idempotent and M = N1 ∪ · · · ∪ Nl be a decomposition
of M into a disjoint union of the minimal π-invariant subsets (for example, if
π is the leftmost element on Figure 1, then the corresponding decomposition is
{1, 3, 4} ∪ {2} ∪ {5, 6, 7, 8, 9} if one counts pins from above). We call Ni, i =
1, . . . , l, non-degenerate provided that there exist a, b ∈ Ni such that a ≡π b′, and
degenerate in the opposite case. Note that the number of non-degenerate Ni’s
is precisely strank(π) = rank(π). The union of all non-degenerate Ni’s will be
called the stable support of π. For α ∈ Cn the stable support of α is defined as the
stable support of αk such that α2k = αk. In [Ma1] the maximal subgroups of Bn

and PBn are determined ([Ma1, Theorem 1 and Theorem 2]). We now extend
this result by describing the maximal subgroups of Cn (and giving a unified proof
for all cases).

Proposition 17. Let S be Bn, PBn or Cn and π ∈ S be an idempotent.

Then the maximal subgroup G(π) of S, corresponding to π, is isomorphic to

Sstrank(π).

Proof. Recall that the maximal subgroup G(π), corresponding to π, con-
sists of all α ∈ Cn such that αk = π for some k and πα = απ = α. Let X

be the stable support of π. Let α ∈ S be such that πα = απ = α. Then for
any a, b ∈ (M \X) ∪ (M ′ \X ′) we obviously have a ≡α b if and only if a ≡π b.
Let N1, . . . , Nl be a complete list of non-degenerate minimal π-invariant subsets
of M .
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Let i ∈ {1, . . . , l}. Let us show that π|Ni = N
(1)
i ∪N

(2)
i ∪. . . where N

(j)
i ∩M =

∅ or N
(j)
i ∩M ′ = ∅ for every j > 1, moreover, N

(1)
i ∩M 6= ∅ and N

(1)
i ∩M ′ 6= ∅.

Indeed, the existence of N
(1)
i with the necessary properties follows immediately

from the non-degeneracy of Ni. The uniqueness of N
(1)
i follows easily from the

minimality of Ni and the fact that π is an idempotent.
For every i = 1, . . . , l set Ki = N

(1)
i ∩M and Pi = N

(1)
i ∩M ′. Since α ∈ G(π)

is equivalent to αk = π for some k and πα = απ = α, it follows that α ∈ G(π) if
and only if α satisfies the following conditions:
• for any minimal degenerate π-invariant subset N we have π|N = α|N ;

• α contains all N
(j)
i for i = 1, . . . , l and j > 1.

• there is a permutation, σ ∈ Sl, such that α contains the set Ki ∪ P ′σ(i).

We see that α depends only on σ ∈ Sl and it is easy to see that the corresponding
map is a group isomorphism. ¤

Remark 18. From the proof of Proposition 17 we even have that the group
G(π) acts on the set {1, 2, . . . , l}, the elements of which index Ni’s, in a natural
way, and that this action is similar to the standard action of Sl on {1, 2, . . . , l}.
In particular, we can speak about the cyclic types of the elements of G(π) in a
unambiguous way.

7. Conjugacy in the semigroups Bn, PBn and Cn

In this section we describe the conjugacy classes in Bn, PBn and Cn.
Call α ∈ Cn canonical of index ind(α) = k, 0 ≤ k ≤ n, if the following

conditions are satisfied:
• X = {1, 2, . . . , k} is α-invariant;
• α|X ∈ Sn;
• α contains {k + 1, k + 2}, {k + 3, k + 4}, . . . , and {(k + 1)′, (k + 2)′}, {(k +

3)′, (k + 4)′}, . . . .
• if k and n have different parities, then α contains {n} and {n′}.

If α is canonical then, by definition, its index coincides with the number of subsets
of α, which have form {a, b′}, where a ∈ M and b′ ∈ M ′. In particular, if α is
canonical then strank(α) = rank(α) = ind(α). Following Remark 18 we define
the cyclic type of α as ct(α) = ct(α|{1,...,ind(α)}). Note that the cyclic types of
elements with different indices are automatically different. Note also that any
canonical element, whose index has the same parity as n, belongs to Bn, and in
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the opposite case it belongs to PBn \Bn. Two examples of canonical elements
from C9 are given in Figure 2 (the pins of these elements are numbered 1, 2, . . . , n

from bottom to top). The element α has index 5 and the cyclic type (1, 2, 0, 0, 0),
the element β has index 6 and the cyclic type (1, 0, 0, 0, 1, 0).
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´

´
´

´
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hhhhhhh
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α β

Figure 2. Two canonical elements in C9.

Our main result about the canonical elements will be the following:

Proposition 19. Let S denote one of the semigroups Bn, PBn, or Cn.

Then each element from S is conjugate to a canonical element from S.

Further we show the following:

Proposition 20. Let S denote one of the semigroups Bn, PBn, or Cn, and

α, β be two canonical elements in S. Then α ∼S β if and only if ct(α) = ct(β).

Let S denote one of the semigroups Bn, PBn, or Cn. Using Proposition 19,
for every α ∈ S we can define the cyclic type ct(α) as ct(β), where β is canonical
and α ∼S β. By Proposition 20 the cyclic type of α is well-defined. Our main
result can now be formulated in the following way:

Theorem 21. Let S denote one of the semigroups Bn, PBn, or Cn and

α, β ∈ S. Then α ∼S β if and only if ct(α) = ct(β).

Proof. This is an immediate corollary of Proposition 19 and Proposition 20
and the fact that ∼S is an equivalence relation. ¤

Now we prove Proposition 19 and Proposition 20 starting from Proposi-
tion 20. We will need the following lemma:
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Lemma 22. (1) A canonical element, ξ ∈ S, is an idempotent if and only if

ξ contains {i, i′} for all i = 1, . . . , ind(ξ).
(2) Let ξ, ζ ∈ S be canonical idempotents. Then ξ ∼S ζ if and only if ξ = ζ.

Proof. The first statement and the “if” part of the second statement are
obvious. Hence we are left to prove the “only if” part of the second statement.
By Proposition 4(1), ξ ∼S ζ implies ξ ∼pS ζ. Let k = rank(ξ), l = rank(ζ),
ξ = xy and ζ = yx for some x, y ∈ S. As ξ is canonical, there should exist
a′1, . . . , a

′
k ∈ M ′ such that i ≡x a′i for all i = 1, . . . , k. Moreover, there should also

exist b1, . . . , bk ∈ M such that bi ≡y i′ for all i = 1, . . . , k. As ζ = yx, we obtain
bi ≡ζ a′i for all i = 1, . . . , k, in particular, l ≥ k. Because of the symmetry we
also obtain k ≥ l, that is k = l. This implies ξ = ζ. ¤

Lemma 23. Let ξ ∈ S be canonical and ζ ∈ S be arbitrary. Then ξ ∼S ζ

implies rank(ξ) ≤ rank(ζ) and strank(ξ) = strank(ζ).

Proof. Let i ∈ N be such that both x = ξi and y = ζi are idempotents.
Then Corollary 3 implies x ∼pS y. Let x = ab and y = ba for some a, b ∈ S. Then
x = ab = abab = ayb and y = ba = baba = bxa. This implies rank(x) = rank(y).
Since ξ is canonical we have rank(ξ) = strank(ξ) = rank(x). From y = ζi we have
rank(y) = strank(ζ) ≤ rank(ζ). The statement follows. ¤

Proof of Proposition 20. That ct(α) = ct(β) implies α ∼S β follows
from the definition of canonical elements and the description of the conjugacy
classes in the symmetric group. Now let α, β be two canonical elements in S

such that α ∼S β. From Lemma 23 we have rank(α) = rank(β) = k. From this
and the definition of the canonical element we immediately get that if e = αi and
f = βj are idempotents, then e = f and α, β ∈ G(e). Hence Proposition 5 implies
α ∼pS β. Now we almost repeat the arguments from Lemma 22. Assume α = xy

and β = yx for some x, y ∈ S. As α is canonical, there exist a′1, . . . , a
′
k ∈ M ′ such

that i ≡x a′i for all i = 1, . . . , k. Moreover, there also exist b1, . . . , bk ∈ M such
that bi ≡y i′ for all i = 1, . . . , k. As β = yx and is canonical, we obtain bi ≡β a′i
for all i = 1, . . . , k, which also implies {a1, . . . , ak} = {b1, . . . , bk} = {1, . . . , k}.
This shows that α|{1,...,k} and β|{1,...,k} must be conjugate as elements from Sk,
in particular, ct(α) = ct

(
α|{1,...,k}) = ct

(
β|{1,...,k}) = ct(β). This completes the

proof. ¤

Proof of Proposition 19. For X ⊂ M we denote by αX the idempotent
in Cn defined as follows:

αX = X ∪X ′ ∪
( ⋃

i/∈X

{i, i′}
)
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Let us first consider the cases S = Bn and S = PBn. Let α ∈ S. We
first claim that any α ∈ S is conjugate to some element β such that there exists
k ∈ {0, . . . , n} such that {1, . . . , k} is β-invariant and the following conditions are
satisfied:

(a) β|{1,...,k} ∈ Sk;

(b) β|{k+1,...,n} does not contain lines.

Observe that if there are no X ⊂ M , contained in α, then α ∈ Sn and the
statement is obvious for all n as α satisfies both (a) and (b). In the remaining
cases, we proceed by induction on n. Assume that X ⊂ M is contained in α.
Then αXα = α and hence ααX ∼pS α. Moreover, ααX contains both X and
X ′. Let l = |X|, X = {x1} if l = 1, and X = {x1, x2} if l = 2. Conjugating,
if necessary, with the (invertible) element, which switches ij with n − l + j and
stabilizes all other points, we obtain ααX ∼S α1, where {n, . . . , n − l + 1} is
α1-invariant and α1|{n,...,n−l+1} = {n, . . . , n− l + 1} ∪ {n′, . . . , (n− l + 1)′}. Now
we can apply induction to α1|{1,...,n−l} and the statement follows. The procedure
we have just described will be called the cleaning procedure.

Now take some β ∈ S such that β ∼S α and both (a) and (b) are satisfied.
Set k = rank(β) and let γ be any canonical element of rank k. Define

x =

( ⋃

X∈γ,X⊂M ′
X

)
∪

( ⋃

X∈β,X⊂M

X

)
∪

(
k⋃

i=1

{i, i′}
)

;

y =

( ⋃

X∈γ,X⊂M

X

)
∪

( ⋃

X∈β,X⊂M ′
X

)
∪

(
k⋃

i=1

{i, i′}
)

.

We have β = xβ and thus βx ∼S β, moreover, βxy = βx and thus yβx ∼S

βx ∼S β. By construction we also have that yβx is canonical. This completes
the proof in the cases S = Bn, PBn.

Now let us consider the case S = Cn. Assume that X ′ ⊂ M ′ is contained in α,
Then ααX = α and hence αXα ∼pS α. Following, in this setup, the definition of
the cleaning procedure, one defines the right cleaning procedure (this is necessary
since for Cn it might happen that X /∈ α for any X ⊂ M , whereas there exists
X ′ ⊂ M ′ such that X ′ ∈ α). Using the cleaning procedure, the right cleaning
procedure and the arguments from the previous paragraph we get that any α ∈ Cn

is conjugate to some β ∈ Cn such that the following conditions are satisfied:

• any X ∈ β|{1,...,k} is a line;

• β|{k+1,...,n} coincides with γ|{k+1,...,n} for some canonical element γ of rank k.
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It is now left to show that any element β ∈ Cn, consisting entirely of lines,
is conjugate to a canonical element. If n− rank(β) = 0 then β ∈ Sn and hence β

is canonical. Therefore in this case the statement is true for all n. Suppose now
that n − rank(β) > 0. We proceed by induction on n. The case n = 1 is trivial
since in this case Cn = PBn. Assume that n > 1. Then there exists X ∈ β such
that |X ∩M | > 1 and let a, b ∈ X ∩M be two different elements. Consider the
element

x = {a, b, b′} ∪ {a′} ∪
( ⋃

i/∈{a,b}
{i, i′}

)
. (7.1)

Then xβ = β and hence β ∼S βx, moreover, {a′} ∈ βx. We call this the deleting
procedure. Applying now the right cleaning procedure to βx we reduce n (since
{a′} ∈ βx) and thus we can apply the inductive assumption. The statement
follows. ¤

It happens that one can also define ct(α) intrinsically, that is only in terms
of the semigroup, generated by α, and without any reference to the canonical
elements.

Proposition 24. Let S denote one of the semigroups Bn, PBn, or Cn and

α ∈ S. Let i ∈ N be such that αi = π is an idempotent. Then ct(α) coincides

with the cyclic type of παπ ∈ G(π) ∼= Sstrank(α).

Proof. Let α ∈ S and i ∈ N be such that π = αi is an idempotent. Set
ct′(α) = ct(παπ). Let τ denote either the element αX from the (right) cleaning
procedure or the element x from (7.1). To prove our statement it is enough to
show that ct′(α) = ct′(α′), where α′ = τατ (this is the element obtained from α

after one step of the (right) cleaning or deleting procedure). To do this we will
need the following:

Lemma 25. The map F : S → S defined via F (y) = τyτ has the following

properties:

(i) For each k ≥ 1 we have F (αk) = (α′)k.

(ii) The element F (αi) = (α′)i is an idempotent, which we denote π′.

(iii) π′ππ′ = π′ and ππ′π = π, in particular, π ∼pS π′.

(iv) F induces an isomorphism from G(π) to G(π′), which further gives rise to the

similarity of the actions of G(π) and G(π′) on the set {1, 2, . . . , strank(α)}.
Proof. First we note that τα = α if τ is taken from the cleaning and deleting

procedure, and that ατ = α if τ is taken from the right cleaning procedure. We
consider the first case, the arguments in the second case are analogous.
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Since τα = α and τ2 = τ , we have

F (αk) = ταkτ = τατα · · · τατ = (α′)k,

which proves (i). From (i) we have (α′)2i = F (α2i) = F (αi) = (α′)i, which
implies (ii). Note that π′ = F (αi) = ταiτ = τπτ by (ii), and τπ = ταi = αi = π.
Thus we have

π′ππ′ = τπτπτπτ = τπππτ = τπτ = π′, ππ′π = πτπτπ = πππ = π,

which proves (iii).
Take now any element z ∈ G(π). Then z = πzπ and, using τπ = π, we have

F (z) = τzτ = τπzπτ = τππzππτ = τπτπzπτπτ = π′πzππ′.

Now the first part of (iv) follows from Proposition 4(3). Obviously, the ele-
ments α and α′ act in the same way on the indexing set of the minimal non-
degenerate π- (resp. π′-) invariant subsets (see Proposition 17 and Remark 18).
This means that F gives rise to the similarity of the actions of G(π) and G(π′)
on {1, 2, . . . , strank(α)}. ¤

Lemma 25(iv) implies that for any α ∈ S we have ct′(α) = ct′(β), where β is
canonical and conjugate to α. Since we obviously have ct′(β) = ct(β) it follows
that ct′(α) = ct(α) by the definition of ct. This completes the proof. ¤

In particular, we have an analogue of Corollary 12:

Corollary 26. Let α ∈ Cn and i ∈ N be such that π = αi is an idempotent.

Then α ∼S παπ.

Proof. Follows from Proposition 24 and Theorem 21. ¤
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