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The extensibility of D(−1)-triples {1, b, c}
By YASUTSUGU FUJITA (Sendai)

Abstract. Let b = 5, 10, 17, 26, 37 or 50. In this paper, we show that for those

integers c greater than 1 such that both c − 1 and bc − 1 are squares, the system of

simultaneous Pell equations

z2 − cx2 = c− 1, bz2 − cy2 = c− b

has only the trivial solutions (x, y, z) = (0,±√b− 1,±√c− 1 ). This implies that there

do not exist integers c, d (> 1) such that the product of any two distinct elements of

the set {1, b, c, d} diminished by 1 is a square. We also show that in case b is a positive

integer with
√

b− 1 a prime, if it is true for the smallest eight c’s with c > 1 for which

the set {1, b, c} has the property above, then the same is true for all such c’s.

1. Introduction

Diophantus raised the problem of finding four (positive rational) numbers a1,
a2, a3, a4 such that aiaj +1 is a square for each 1 ≤ i < j ≤ 4 and gave a solution
{1/16, 33/16, 68/16, 105/16}. The first set of four positive integers {1, 3, 8, 120}
with the property above was found by Fermat. Replacing “+1” by “+n” leads to
the following definition.

Definition 1.1. Let n be a nonzero integer. A set of m distinct positive
integers {a1, . . . , am} is called a D(n)-m-tuple (or a Diophantine m-tuple with the
property D(n), or a Pn-set of size m) if aiaj +n is a square for each 1 ≤ i < j ≤ m.
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In 1993, Dujella showed that if n 6≡ 2 (mod 4) and n /∈ S := {−4,−3,

−1, 3, 5, 8, 12, 20}, then there exists a D(n)-quadruple ([7]), and conjectured that
if n ∈ S, then there does not exist a D(n)-quadruple ([8]). In the case of n = −1,
there are several results supporting the validity of this conjecture. It is known
that the following D(−1)-triples can not be extended to D(−1)-quadruples:

{1, 5, 10} (by Mohanty and Ramasamy [14]); {1, 2, 5} (by Brown [5]);
{1, 2, 145}, {1, 2, 4901}, {1, 5, 65}, {1, 5, 20737}, {1, 10, 17}, {1, 26, 37}
(by Kedlaya [13]); {1, 5, 422} (by Abu Muriefah and Al-Rashed [2]).

Dujella, in 1998, proved that the pair {1, 2} can not be extended to a D(−1)-
quadruple ([9, Corollary 1]), and recently Dujella and Fuchs showed the fol-
lowing.

Theorem 1.2 ([10, Theorem 1b]). There does not exist a D(−1)-quadruple

{a, b, c, d} with 2 ≤ a < b < c < d.

Thus, it is enough to examine the extensibility of D(−1)-triples {1, b, c} with
b ≥ 5. In this paper, we show the following.

Theorem 1.3. There does not exist a D(−1)-quadruple {1, b, c, d} with b =
5, 10, 17, 26, 37 or 50.

Our proof of this theorem goes along the lines of that of [9, Corollary 1] or
of Theorem 1.2. For b = 5, Abu Muriefah and Al-Rashed have already had
a partial result on the non-extensibility of the D(−1)-triples {1, 5, c} ([1, Theo-
rem 2.1]). We also obtained a similar but stronger result on the non-extensibility
of D(−1)-triples {1, b, c} with

√
b− 1 a prime (or with b = 17 or 37) (see Corol-

lary 3.10), together with which applying the reduction method due to Dujella

and Pethő ([11]) to each case of b = 5, 10, 17, 26, 37 and 50 completes the proof
of Theorem 1.3.

Remark 1.4. Dujella told us that Filipin [12] filled a gap in [1] to show the
non-extensibility of the triples {1, 5, c}, and he further showed that of the triples
{1, 10, c}; Filipin sent us the manuscript [12]. We would like to thank them.

2. The simultaneous Pell equations

Let {1, b, c} be a D(−1)-triple. Then there exist positive integers r, s, t such
that b− 1 = r2, c− 1 = s2, bc− 1 = t2, and we have

t2 − bs2 = r2. (1)
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Let (tk, sk) (sk < sk+1, k = 0, 1, 2, . . . ) denote the positive solutions of (1). Then
there exists an integer k such that c = ck := s2

k + 1. Suppose {1, b, c, d} is a
D(−1)-quadruple. Then there exist integers x, y, z such that

d− 1 = x2, bd− 1 = y2, cd− 1 = z2.

Eliminating d, we obtain the simultaneous Pell equations

{
z2 − cx2 = c− 1, (2)

bz2 − cy2 = c− b. (3)

Thus, Theorem 1.3 is a corollary of the following.

Theorem 2.1. Let b = 5, 10, 17, 26, 37 or 50 and c = ck as above. Then the

simultaneous Pell equations (2) and (3) have only the trivial solutions (x, y, z) =
(0,±√b− 1,±√c− 1 ).

We will prove Theorem 2.1 in the forthcoming sections.

3. An upper bound for c

Throughout this section, let b ≥ 5 and assume that c = ck is minimal for
which the equations (2) and (3) have a nontrivial solution.

By Lemma 1 in [10], the positive solutions (z, x) of (2) and (z, y) of (3) are
respectively given by

z + x
√

c = (z(i)
0 + x

(i)
0

√
c )(s +

√
c )2m (i = 1, . . . , i0, m ≥ 0), (4)

z
√

b + y
√

c = (z(j)
1

√
b + y

(j)
1

√
c )(t +

√
bc )2n (j = 1, . . . , j0, n ≥ 0), (5)

where
0 < z

(i)
0 < c, 0 < z

(j)
1 < c (6)

for all i and j. (We call (z(i)
0 , x

(i)
0 ) (1 ≤ i ≤ i0) and (z(j)

1 , y
(j)
1 ) (1 ≤ j ≤ j0) the

fundamental solutions of (2) and (3), respectively.) By (4), there exist i and m

such that

z = v(i)
m , where

v
(i)
0 = z

(i)
0 , v

(i)
1 = (2c− 1)z(i)

0 + 2scx
(i)
0 , v

(i)
m+2 = 2(2c− 1)v(i)

m+1− v(i)
m ,

(7)
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and by (5), there exist j and n such that

z = w(j)
n , where

w
(j)
0 = z

(j)
1 , w

(j)
1 = (2bc−1)z(j)

1 +2tcy
(j)
1 , w

(j)
n+2=2(2bc−1)w(j)

n+1−w(j)
n .

(8)

By induction we have

v(i)
m ≡ (−1)mz

(i)
0 (mod 2c), w(j)

n ≡ (−1)nz
(j)
1 (mod 2c). (9)

Further, the sequences {v(i)
m } and {w(j)

n } satisfy the following relations.

Lemma 3.1 (cf. [10, Lemma 2]).

v(i)
m ≡ (−1)m(z(i)

0 − 2cm2z
(i)
0 − 2csmx

(i)
0 ) (mod 8c2),

w(j)
n ≡ (−1)n(z(j)

1 − 2bcn2z
(j)
1 − 2ctny

(j)
1 ) (mod 8c2).

In what follows, we will assume v
(i)
m = w

(j)
n (and omit the superscripts (i)

and (j)). Putting d0 := (z2
0 + 1)/c, we see from (6) that d0 ≤ c and from (2) and

(3) that
d0 − 1 = x2

0, bd0 − 1 = y2
1 , cd0 − 1 = z2

0

(see the proof of Lemma 3 in [10]). Since d0 = x2
0 + 1 is a positive integer, the

minimality of c = ck implies the following.

Lemma 3.2 (cf. [10, Lemma 4]). z0 = z1 =
√

c− 1 (= s) and x0 = 0,

y1 = ±√b− 1(= ±r).

Lemma 3.3. (i) m ≡ n (mod 2).
(ii) n ≤ m ≤ 2n.

(iii) If n 6= 0 and b <
√

c, then we have 4
√

c /
√

b− 1 < n.

Proof. (i) It is obvious from (9).
(ii) It is exactly Lemma 6 in [10].
(iii) By (i), Lemmas 3.1 and 3.2, we have

s− 2cm2s ≡ s− 2bcn2s± 2
√

b− 1ctn (mod 8c2),

which implies

s(m2 − bn2) ≡ ±
√

b− 1tn (mod 4c). (10)
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Since s =
√

c− 1 and t =
√

bc− 1, we have

(c− 1)(m2 − bn2)2 ≡ (b− 1)(bc− 1)n2 (mod 4c),

which implies

(m2 − bn2)2 ≡ (b− 1)n2 (mod c). (11)

Now, suppose n ≤ 4
√

c/
√

b− 1. By (ii), we have

|s(m2 − bn2)| ≤ √
c− 1(b− 1)n2 < c, (m2 − bn2)2 ≤ (b− 1)2n4 ≤ c.

On the other hand, by the assumption b <
√

c we know that
√

b− 1tn ≤
√

bc− 1 4
√

c < c, (b− 1)n2 ≤ √
c < c.

It follows from (10) and (11) that

s(m2 − bn2) = −
√

b− 1tn, (m2 − bn2)2 = (b− 1)n2.

Hence we have

s2(m2 − bn2)2 = (b− 1)t2n2 = t2(m2 − bn2)2,

which together with n 6= 0 implies t2 = s2, which is a contradiction. ¤

From this lemma, it is easy to see the following.

Proposition 3.4. Let x, y, z be positive integer solutions of the simultane-

ous Pell equations (2) and (3). If b <
√

c, then we have
(

4
√

c√
b− 1

− 1
)

log(4c− 3) < log y.

Proof. Let z = vm = wn. x > 0 implies m > 0. It follows from (4) and
Lemma 3.2 that

x =
s

2
√

c

{
(s +

√
c )2m − (s−√c )2m

}
,

which together with y2 − bx2 = b− 1 > 0 implies

y > x
√

b =
s
√

b

2
√

c

{
(s +

√
c )2m − (s−√c )2m

}

> (s +
√

c )2(m−1)
{
(s +

√
c )2 − (s−√c )2

}

> (s +
√

c )2(m−1) > (4c− 3)m−1.

Hence the proposition follows from Lemma 3.3 (iii). ¤
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In order to get an upper bound for log y, we need the following theorem,
which is a slightly modified version of Rickert’s theorem (or of a special case of
Bennett’s theorem).

Theorem 3.5 (cf. [5, Theorem 3.2], [15, Theorem] or [17, Theorem]). Let b

and N be integers with b ≥ 5 and N ≥ 2.39b7. Then the numbers

θ1 :=

√
1 +

1− b

N
and θ2 :=

√
1 +

1
N

satisfy

max
{∣∣∣∣θ1 − p1

q

∣∣∣∣ ,

∣∣∣∣θ2 − p2

q

∣∣∣∣
}

>

{
32.1

b2(b− 1)2

2b− 1
N

}−1

q−1−λ (12)

for all integers p1, p2, q with q > 0, where

λ :=
log 16.1b2(b−1)2N

2b−1

log 3.37N2

b2(b−1)2

< 1.

Proof. Note that the condition N ≥ 2.39b7 implies λ < 1. All we have to
do is find those real numbers satisfying the assumption in the following lemma.

Lemma 3.6 (cf. [5, Lemma 3.1], [15, Lemma 2.1]). Let θ1, . . . , θm be arbi-

trary real numbers and θ0 = 1. Assume that there exist positive real numbers l,

p, L, P and positive integers D, f with f dividing D and with L > D, having the

following property. For each positive integer k, we can find rational numbers pijk

(0 ≤ i, j ≤ m) with nonzero determinant such that f−1Dkpijk (0 ≤ i, j ≤ m) are

integers and

|pijk| ≤ pP k (0 ≤ i, j ≤ m),
∣∣∣∣

m∑

j=0

pijkθj

∣∣∣∣ ≤ lL−k (0 ≤ i ≤ m).

Then

max
{∣∣∣∣θ1 − p1

q

∣∣∣∣ , . . . ,

∣∣∣∣θm − pm

q

∣∣∣∣
}

> cq−1−λ

holds for all integers p1, . . . , pm, q with q > 0, where

λ =
log(DP )
log(L/D)

and c−1 = 2mf−1pDP
(
max{1, 2f−1l})λ

.
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Note that l, p, L, P , pijk in [5, Lemma 3.1] denote f−1l, f−1p, L/D, DP ,
f−1Dkpijk in the lemma above (or in [15, Lemma 2.1]), respectively. In our
situation, we take m = 2 and θ1, θ2 as in Theorem 3.5. The only difference from
Theorem 3.2 in [5] is that we may take f = 2 and D = 2b2(b− 1)2N , whereas in
[5] f = 1 and D = 4b2(b− 1)2N are taken (note that Ck in [5] denotes f−1Dk in
our notation). The validity of this substitution follows from the fact that b(b− 1)
is even. Indeed, let pij(x) be those polynomials appearing in [15, Lemma 3.3],
which have rational coefficients of degree at most k ([15, (3.7)]). Following [15],
we take pijk = pij(1/N) for varying values of k. Denoting b(b− 1) = 2b′ with an
integer b′, we see from the expression (3.7) in [15] of pij(1/N) that

2l1(b′)l2Nkpij(1/N) ∈ Z

for some integers l1, l2; further, we see l1 ≤ 3k − 1 in the same way just as the
proof of Lemma 4.3 in [15] and l2 ≤ 2k is easy to find. Hence we obtain

2−1 · 2k{b(b− 1)}2kNkpij(1/N) ∈ Z.

Thus, by exactly the same arguments as the ones following Lemma 3.1 in [5] (with
a0 = 1− b, a1 = 0, a2 = 1), the numbers

p =
(

1 +
1

2N

)1/2

, P =
8

2b− 1

(
1 +

3
2N

)
,

l =
27
64

(
1− b− 1

N

)−1

, L =
27
4

(
1− b− 1

N

)2

N3

and f = 2, D = 2b2(b − 1)2N , pijk = pij(1/N) satisfy the assumption in
Lemma 3.6. Since N ≥ 2.39 and b ≥ 5, we have

DP ≤ 16.1b2(b− 1)2N
2b− 1

, 2pDP ≤ 32.1b2(b− 1)2N
2b− 1

,
L

D
≥ 3.37N2

b2(b− 1)2
.

Therefore, Theorem 3.5 immediately follows from Lemma 3.6. ¤

The following is essentially the same as Lemma 6 in [9].

Lemma 3.7. Let N = t2 and θ1, θ2 be as in Theorem 3.5. Then all positive

integer solutions x, y, z of the simultaneous Pell equations (2) and (3) satisfy

max
{∣∣∣∣θ1 − bsx

ty

∣∣∣∣ ,

∣∣∣∣θ2 − bz

ty

∣∣∣∣
}

<
b− 1
y2

.
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Proof. Since θ1 = s
√

b/t and θ2 =
√

bc/t, we have

∣∣∣∣θ1 − bsx

ty

∣∣∣∣ =
s
√

b

t

∣∣∣∣1−
x
√

b

y

∣∣∣∣

=
s
√

b

t

∣∣∣∣1−
bx2

y2

∣∣∣∣ ·
∣∣∣∣1 +

x
√

b

y

∣∣∣∣
−1

<
b− 1
y2

and

∣∣∣∣θ2 − bz

ty

∣∣∣∣ =
1
t

∣∣∣∣
√

bc− bz

y

∣∣∣∣ =
b

t

∣∣∣∣c−
bz2

y2

∣∣∣∣ ·
∣∣∣∣
√

bc +
bz

y

∣∣∣∣
−1

<
b

t
· c− b

y2
· 1
2
√

bc
<

1
2y2

· bc− 1√
bc(bc− 1)

<
1

2y2
.

These complete the proof of Lemma 3.7. ¤

Proposition 3.8. If b ≥ 5 and c ≥ 2.4b6, then we have

log y <
2 log

1.9c

b− 1
· log(17b6c2)

log
0.41c

b6

.

Proof. We apply Theorem 3.5 with N = t2, p1 = bsx, p2 = bz and q = ty.
Note that c ≥ 2.4b6 implies N = t2 = bc−1 > 2.39b7. Theorem 3.5 and Lemma 3.7
together imply {

32.1
b2(b− 1)2

2b− 1
t2

}−1

(ty)−1−λ <
b− 1
y2

.

Noting λ < 1, we have

y1−λ < 32.1
b2(b− 1)3

2b− 1
t3+λ <

32.1b2(b− 1)3(bc− 1)2

2b− 1
.

It follows from
1

1− λ
=

log 3.37(bc−1)2

b2(b−1)2

log 3.37(2b−1)(bc−1)
16.1b4(b−1)4

that

log y <
log 3.37(bc−1)2

b2(b−1)2 · log 32.1b2(b−1)3(bc−1)2

2b−1

log 3.37(2b−1)(bc−1)
16.1b4(b−1)4

.
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Since

log
3.37(bc− 1)2

b2(b− 1)2
< 2 log

1.9c

b− 1
,

log
32.1b2(b− 1)3(bc− 1)2

2b− 1
< log(17b6c2),

log
3.37(2b− 1)(bc− 1)

16.1b4(b− 1)4
> log

0.418c

b6

(
1− 1

bc

)
≥ log

0.41c

b6
,

we obtain the proposition. ¤

We are now ready to bound above for c.

Theorem 3.9. Let b ≥ 5. If c is minimal for which the equations (2) and

(3) have a nontrivial solution, then we have c < 200b6.

Proof. Suppose c ≥ 200b6. Propositions 3.4 implies

log y >

(
2001/12c1/4

c1/12
− 1

)
log(4c− 3)

> 2001/12c1/6 log(4c− 3)
(

1− 1
2001/12c1/6

)
> 1.47c1/6 log(4c− 3)

and Proposition 3.8 implies

log y <
2 log(1.9c/4) · log(17c3/200)

log(0.41 · 200)
< 1.37 log(0.48c) log(0.44c).

Hence we have

f(c) := 1.37 log(0.48c) log(0.44c)− 1.47c1/6 log(4c− 3) > 0.

However, f(c) is a decreasing function for c(≥ 200b6) ≥ 200·56 with f(200·56) < 0,
which is a contradiction. ¤

It is to be noted that in case r =
√

b− 1 is an odd prime, the Pell equation
(1) has exactly the three fundamental solutions

(t, s) = (r, 0), (b− r,±(r − 1)). (13)

To see this, let (t, s) = (β, α) be a solution of (1) with gcd(α, β) = 1, which is
called primitive. Then Theorem 22 in [16] implies that there exists an integer j

such that
β ≡ jα (mod r2) and j2 ≡ b ≡ 1 (mod r2).
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(In this case, we say that (β, α) belongs to j.) Since gcd(j + 1, j − 1) divides
2 and r is an odd prime, the latter relation implies j ≡ ±1 (mod r2). On the
other hand, by Theorem 23 in [16] we see that the fundamental solutions of
(1) which are primitive are the ones that belong to the values ±1 of j mod r2;
(β, α) = (b − r,±(r − 1)) belong to ∓1 respectively. Since r is a prime, the
fundamental solution of (1) independent of the ones above is only the trivial one
(r, 0). Therefore, the fundamental solutions of (1) are given by (13).

Since we may take the fundamental solutions of (1) with 0 < t < b (cf. (2)
and (6)), it is easy to check in each case that the same is true for b = 5, 17 or 37.
Hence for these b’s, the positive solutions (t, s) of (1) are given by t + s

√
b =

{
b− r + (r − 1)

√
b
}(

2b− 1 + 2r
√

b
)ν

(ν = 0, 1, 2, . . . ),
{

b− r − (r − 1)
√

b
}(

2b− 1 + 2r
√

b
)ν

(ν = 1, 2, 3, . . . ), (14)

r
(
2b− 1 + 2r

√
b
)ν

(ν = 1, 2, 3, . . . ).

Since our numbering for the solutions takes as (t0, s0) the first solution above
with ν = 0, we have

t8 + s8

√
b = r (2b− 1 + 2r

√
b )3,

which implies

c8 = s2
8 + 1 =

[
(b− 1)

{
6(2b− 1)2 + 8b(b− 1)

}]2
+ 1

= 4(b2 − 2b + 1)(256b4 − 512b3 + 352b2 − 96b + 9) + 1

> b2

(
2− 4

b

)
· 256b4

(
2− 4

b

)
> 256b6 > 200b6.

Consequently we obtain

Corollary 3.10. Assume that
√

b− 1 is a prime or that b = 17 or 37. If

they have only the trivial solutions for c = ck with 0 ≤ k ≤ 7, then the equations

(2) and (3) have only the trivial solutions for c = ck with k ≥ 0.

Remark 3.11. In case b = 65, the Pell equation t2 − 65s2 = 64 of (1) has
exactly the five fundamental solutions

(t, s) = (8, 0), (18,±2), (57,±7).

Since t14 + s14

√
65 = 8(129 + 16

√
65)3 and c14 = s2

14 + 1 > 200 · 656, if they have
only the trivial solutions for c = ck with 0 ≤ k ≤ 13, then the equations (2) and
(3) with b = 65 have only the trivial solutions for c = ck with k ≥ 0.
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Since (t, s) = (b − r, r − 1) is a positive solution of (1) and the attached
c = b − (2r − 1) < b, c0 is always less than b. Hence, the non-extensibility
of D(−1)-triples {1, b, c} for b = 2, 5, 10, 17, 26, 37 and for the attached c’s with
c ≥ c1 implies that of {1, b, c0} for b = 5, 10, 17, 26, 37, 50 and for the attached
c0’s. Therefore, it is enough to show Theorem 2.1 for k ≥ 1.

Corollary 3.12. If it holds for c = ck with 1 ≤ k ≤ 7, then Theorem 2.1

holds for c = ck with k ≥ 0.

4. The reduction method

Throughout this section, let b = 5, 10, 17, 26, 37 or 50 and assume that (m ≥)
n ≥ 1 (that is, Theorem 2.1 is not valid) and that c = ck is minimal for which
Theorem 2.1 is not valid. By the non-extensibility of those D(−1)-triples listed
in Section 1, we may assume that c ≥ 26. Moreover, since t1 + s1

√
b equals the

middle expression of (14) with ν = 1, we may assume that

c ≥ (c1 =)b + 2r + 1. (15)

We will complete the proof of Theorem 2.1 by combining Corollary 3.12 with the
reduction method ([11]) of Dujella and Pethő (based on that of Baker and
Davenport).

By (7) and (8), we have

vm =
s

2
{
(s +

√
c )2m + (s−√c )2m

}
,

wn =
1

2
√

b

{
(s
√

b± r
√

c )(t +
√

bc )2n + (s
√

b∓ r
√

c )(t−
√

bc )2n
}

.

Putting

P = s(s +
√

c )2m, Q =
1√
b
(s
√

b± r
√

c )(t +
√

bc )2n,

we have

P−1 =
1
s
(s−√c )2m, Q−1 =

√
b

c− b
(s
√

b∓ r
√

c )(t−
√

bc )2n. (16)

It follows from vm = wn that

P + (c− 1)P−1 = Q +
c− b

b
Q−1.
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Let us bound the linear form “log(Q/P )” in logarithms.
First, we have

Q− P = (c− 1)P−1 − c− b

b
Q−1

> (c− 1)(P−1 −Q−1) = (c− 1)(Q− P )P−1Q−1.

Since we see from b ≥ 5, c ≥ 26, m ≥ n ≥ 1 and (15) that

P − (c− 1) = (c− 1)
{

(s +
√

c )2m

s
− 1

}

≥ (c− 1)
(
s + 2

√
c +

c

s
− 1

)
> 0,

Q ≥ 1√
b
(s
√

b− r
√

c )(t +
√

bc )2

>
c− b

2b
√

c
(4bc− 3) = 2

(
1− 3

4bc

)
(c− b)

√
c

> 1.9(2
√

b− 1 + 1)
√

c ≥ 9.5
√

c > 1, (17)

we have Q > P .
Secondly, since (16) and (17) imply P > Q− (c− 1)P−1 > Q− 1, we have

Q− P

Q
< Q−1 <

1
9.5
√

c
<

1
2
. (18)

On the other hand, by b ≥ 5 and (15) we have

Q−1 ≤
√

b

c− b
(s
√

b + r
√

c )(t +
√

bc )−2n ≤ 2b
√

c

c− b
(t +

√
bc )−2n

<
b(
√

b + 1)√
b− 1

(t +
√

bc )−2n < 1.62b(t +
√

bc )−2n. (19)

It follows from (18) and (19) that

0 < log
Q

P
= − log

(
1− Q− P

Q

)
< − log

(
1−Q−1

)

< Q−1 + Q−2 = (1 + Q−1)Q−1

<

(
1 +

1
9.5
√

c

)
1.62b(t +

√
bc )−2n

< 1.7b(t +
√

bc )−2n.
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Therefore, we have

0 < (Λ :=)n log α1 −m log α2 + log α3 < 1.7bα−n
1 , (20)

where

α1 := 2bc− 1 + 2
√

bc(bc− 1), α2 := 2c− 1 + 2
√

c(c− 1),

α3 :=

√
b(c− 1)±

√
(b− 1)c√

b(c− 1)
.

The following theorem of Baker and Wüstholz gives a lower bound for log Λ.

Theorem 4.1 ([4, Theorem]). For a linear form Λ 6= 0 in logarithms of l

algebraic numbers α1, . . . , αl with rational coefficients β1, . . . , βl, we have

log |Λ| ≥ −18(l + 1)! ll+1(32d)l+2h′(α1) · · ·h′(αl) log(2ld) log β,

where β := max{|β1|, . . . , |βl|}, d := [Q(α1, . . . , αl) : Q] and

h′(α) :=
1
d

max{h(α), | log α|, 1}

with the standard logarithmic Weil height h(α) of α.

Applying Theorem 4.1 with l = 3, d = 4, β = m ≤ 2n and

h′(α1) =
1
2

log α1 <
1
2

log(4bc), h′(α2) =
1
2

log α2 <
1
2

log(4c),

h′(α3) ≤ 1
4

{
log(b(c− 1))2 + log(α2

3)
}

=
1
2

log
{

b(c− 1) +
√

bc(b− 1)(c− 1)
}

<
1
2

log(2bc),

we have

log Λ > −18 · 4! · 34(32 · 4)5 · 1
2

log(4bc) · 1
2

log(4c) · 1
2

log(2bc)

× log 24 · log(2n),
which together with (20) implies

n− 1
log(2n)

< 4.8 · 1014 log(4bc) · log(4c). (21)

Corollary 3.12 and (21) give upper bounds for n:
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if b = 5, then c ≤ c7 = 974170 and n < 6 · 1018;
if b = 10, then c ≤ c7 = 34199105 and n < 9 · 1018;
if b = 17, then c ≤ c7 = 482812730 and n < 2 · 1019;
if b = 26, then c ≤ c7 = 3947106277 and n < 2 · 1019;
if b = 37, then c ≤ c7 = 22480504226 and n < 2 · 1019;
if b = 50, then c ≤ c7 = 99106595345 and n < 2 · 1019.

Now, dividing (20) by log α2 leads to the inequality

0 < nκ−m + µ < AB−n, (22)

where
κ :=

log α1

log α2
, µ :=

log α3

log α2
, A :=

1.7b

log α2
, B := α1.

The following is based on the Baker–Davenport lemma ([3, Lemma]).

Lemma 4.2 ([11, Lemma 5 a)]). Let N be a positive integer. Let p/q be

the convergent of the continued fraction expansion of κ such that q > 6N . Put

ε := ‖µq‖ −N ‖κq‖, where ‖ · ‖ denotes the distance from the nearest integer. If

ε > 0, then the inequality (22) has no solution in the range

log(Aq/ε)
log B

≤ n < N.

We apply Lemma 4.2 with N the upper bound for n in each case. In the first
step of reduction, we have to examine 36 · 2 = 72 cases (the doubling comes from
the signs “±” in α3), of which the second convergent of κ such that q > 6N is
needed only in three cases. Thus we obtain a new bound (n ≤)N1 with N1 ≤ 6
in each case. The second step of reduction (with N = N1) requires the second
convergent of κ such that q > 6N1 only in four cases. Thus we obtain a new bound
(n ≤)N2 with N2 = 0 or 1. The former contradicts the assumption. The latter
occurs only in five cases. Then the third step of reduction (with N = 1) requires
the second convergent of κ such that q > 6 only in one case and gives n < 1,
which contradicts the assumption. This completes the proof of Theorem 2.1.
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