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On the average number of divisors
of the Euler function

By FLORIAN LUCA (Morelia) and CARL POMERANCE (Hanover)

Abstract. We let ϕ(·) and τ(·) denote the Euler function and the number-of-

divisors function, respectively. In this paper, we study the average value of τ(ϕ(n))

when n ranges in the interval [1, x].

1. Introduction

For a positive integer n, let ϕ(n) denote the Euler function of n, and let τ(n),
ω(n) and Ω(n) denote the number of divisors of n, the number of prime divisors
of n, and the number of prime-power divisors of n, respectively. There have been
a number of papers that have discussed arithmetic properties of ϕ(n), many of
these inspired by the seminal paper of Erdős [5] from 1935. In particular, in [7]
(see also [6]), the normal number of prime factors of ϕ(n) is considered. It has
been known since Hardy and Ramanujan that the normal value of ω(n) (or Ω(n))
is ∼ log log n, and since Erdős and Kac that (f(n) − log log n)/

√
log log n has a

Gaussian distribution for f = ω or Ω. In [7], it is shown that ϕ(n) normally has
∼ 1

2 (log log n)2 prime factors, counted with or without multiplicity. In addition,
there is a Gaussian distribution for

f(ϕ(n))− 1
2 (log log n)2

1√
3
(log log n)3/2
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for f = ω and f = Ω. In [2], it is shown that the normal value of Ω(ϕ(n))−ω(ϕ(n))
is ∼ log log n log log log log n.

Note that it is an easy exercise to show that τ(n) is on average ∼ log n. That
is, ∑

n≤x

τ(n) ∼
∑

n≤x

log n.

However, from Hardy and Ramanujan, since 2ω(n) ≤ τ(n) ≤ 2Ω(n), we know that
for most numbers n, τ(n) = (log n)log 2+o(1), where log 2 = 0.693 . . . . Thus, τ(n)
is on the average somewhat larger than what it is normally. Similarly, for most
numbers n,

τ(ϕ(n)) = 2( 1
2+o(1))(log log n)2 .

One might suspect then that on average, τ(ϕ(n)) is somewhat larger. It comes
perhaps as a bit of a shock that the average order of τ(ϕ(n)) is considerably
larger.

Our main result is the following:

Theorem 1. Let

Dϕ(x) :=
1
x

∑

n≤x

τ(ϕ(n)).

Then, the estimate

Dϕ(x) = exp

(
cϕ(x)

(
log x

log log x

)1/2 (
1 + O

(
log log log x

log log x

)))
(1)

holds for large real numbers x where cϕ(x) is a number in the interval

[
7−1e−γ/2, 23/2e−γ/2

]
, (2)

and γ is the Euler constant.

We point out that Theorem 1 above has already been used in the proof of
Theorem 1 in [9] to give a sharp error term for a certain sum related to Artin’s
conjecture on average for composite moduli.

Recall that the Carmichael function of n, sometimes also referred to as the
universal exponent of n and denoted by λ(n), is the exponent of the multiplicative
group of invertible elements modulo n. If n = pν1

1 . . . pνk

k is the factorization of n,
then

λ(n) = lcm[λ(pν1
1 ), . . . , λ(pνk

k )],
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where if pν is a prime power then λ(pν) = pν−1(p − 1) except when p = 2 and
ν ≥ 3 in which case, λ(2ν) = 2ν−2.

It is clear that λ(n) | ϕ(n) and that ω(λ(n)) = ω(φ(n)). The function
Ω(ϕ(n)/λ(n)) = Ω(ϕ(n)) − Ω(λ(n)) was studied in [2]. In addition to the result
on Ω(ϕ(n))− ω(ϕ(n)) mentioned above, it is shown in [2] that

Ω(ϕ(n))− Ω(λ(n)) ∼ log log n log log log log n

on a set of n of asymptotic density 1.

In the recent paper [1], Arnold writes “it would be interesting to study exper-
imentally how are distributed the different divisors of the number ϕ(n) provided
by the periods T of the geometric progressions of residues modulo n”. It is clear
that the numbers T range only over the divisors of λ(n). We have the following
result.

Theorem 2. Let

Dλ(x) :=
1
x

∑

n≤x

τ(λ(n)).

(i) The estimate

Dλ(x) = exp

(
cλ(x)

(
log x

log log x

)1/2 (
1 + O

(
log log log x

log log x

)))

holds for large real numbers x where cλ(x) is a number in the interval shown

at (2).
(ii) With D∗

ϕ(x) = maxy≤x Dϕ(y), the estimate

Dλ(x) = o(D∗
ϕ(x))

holds as x →∞.

Concerning part (ii) of Theorem 2, we suspect that even the sharper estimate

Dλ(x) = o(Dϕ(x))

holds as x →∞, but we were unable to prove this statement.

We mention that in [3], in the course of investigating sparse RSA exponents,
it was shown that ∑

n≤x
Ω(n)=2

τ(ϕ(n)) ¿ x log x
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(see [3], page 347). In particular, the average value of the function τ(ϕ(n)) over
those positive integers n ≤ x which are the product of two primes is bounded
above by a constant multiple of log2 x/log log x.

Our methods can also be applied to study the average number of divisors
of values of other multiplicative functions as well. For example, assume that
f : N → Z is a multiplicative function with the property that there exists a
polynomial Pk ∈ Z[X] of degree k with P1(0) 6= 0 such that f(pk) = Pk(p) holds
for all prime numbers p and all positive integers k. For any positive integer n we
shall write τ(f(n)) for the number of divisors of the nonnegative integer |f(n)|,
with the convention that τ(0) = 1. In this case, our methods show that there
exist two positive constants α and β, depending only on the polynomial P1, such
that the estimate

1
x

∑

n≤x

τ(f(n)) = exp

(
c(x)

(
log x

log log x

)1/2 (
1 + O

(
log log log x

log log x

)))

holds for large values of x with some number c(x) ∈ [α, β]. In particular, the
same estimate as (1) holds if we replace the function ϕ(n) by the function σ(n).
Indeed, the lower bound follows exactly as in the proof of Theorem 1, while for
the upper bound one only needs to slightly adapt our argument.

We close this section by pointing out that it could be very interesting to
study the average value of the number of divisors of f(n) for some other integer
valued arithmetic functions f . We mention three instances.

Let a > 1 be a fixed positive integer and let f(n) be the multiplicative order
of a modulo n if a is coprime to n and 0 otherwise. We recall that the functions
ω(f(n)) and Ω(f(n)) were studied by Murty and Saidak in [11]. It would
be interesting to study the average order of τ(f(n)) in comparison with that of
τ(λ(n)).

Let E be an elliptic curve defined over Q. Let f(n) be the multiplicative
function which on prime powers pk equals pk +1−apk , the number of points of E
defined over the finite field Fpk with pk elements, including the point at infinity.

Let f(n) be the Ramanujan “τ function” which is the coefficient of qn in the
formal identity ( ∞∏

k=1

(1− qk)

)24

= 1 +
∑

n≥1

f(n)qn.

We believe that it should be interesting to study the average number of
divisors of f(n) for these functions f(n) and other multiplicative functions that
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arise from modular forms. Perhaps the methods from this paper dealing with
the “easy case” of ϕ(n) will be of help. A relevant paper here is by Murty and
Murty [10] in which, building on work of Serre [12], [13], the function ω(f(n))
is analyzed, where f(n) is the Ramanujan τ function.

Throughout this paper, we use c1, c2, . . . to denote computable positive
constants and x to denote a positive real number. We also use the Landau
symbols O and o, the Vinogradov symbols À and ¿, and the equal-order-
of-magnitude symbol ³ with their usual meanings. For a positive integer k

we use logk x for the recursively defined function log1 x := max{log x, 1} and
logk x := max{log(logk−1(x)), 1} where log denotes the natural logarithm func-
tion. When k = 1 we simply write log1 x as log x and we therefore understand
that log x ≥ 1 always. We write p and q for prime numbers. For two positive
integers a and b we write [a, b] for the least common multiple of a and b.

2. Some lemmas

Throughout this section, A, A1, A2, A3, B and C are positive numbers. We
write z := z(x) for a function of the real positive variable x which tends to infinity
with x in a way which will be made more precise below. We write Pz :=

∏
p≤z p.

The results in this section hold probably in larger ranges than the ones indicated,
but the present formulations are enough for our purposes.

For any integer n ≥ 2 we write p(n) and P (n) for the smallest and largest
prime factor of n, respectively, and we let p(1) = +∞, P (1) = 1.

Lemma 3. Assume that z ≤ log x/ log2 x. (i) For any A > 0 there exists

B := B(A) such that if QPz < x
logB x

, we then have

Ez(x) :=
∑

r|Pz

µ(r)
∑

n≤Q
r|n

(
π(x;n, 1)− π(x)

ϕ(n)

)
¿ x

logA x
. (3)

The constant implied in ¿ depends at most on A.

(ii) Let A, A1, A2 > 0 be arbitrary positive numbers. Assume that u is

a positive integer with p(u) > z, u < logA1 x and τ(u) < A2. There exists

B := B(A,A1, A2) such that if QPz < x
logB x

, then

Eu,z(x) :=
∑

r|Pz

µ(r)
∑

n≤Q
r|n

(
π(x; [u, n], 1)− π(x)

ϕ([u, n])

)
¿ x

logA x
. (4)
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The constant implied in ¿ depends at most on A, A1, A2.

Proof. Note that

∑

r|Pz

µ(r)
∑

n≤Q
r|n

(
ψ(x; n, 1)− x

ϕ(n)

)

=
∑

n1≤Pz

∑

n2≤Q

γn1δn2

(
ψ(x;n1n2, 1)− x

ϕ(n1n2)

)
, (5)

where γn1 := µ(n1) if P (n1) ≤ z and it is zero otherwise, and δn2 := 1 for all
n2 ≤ Q. Similarly,

∑

r|Pz

µ(r)
∑

n≤Q
r|n

(
ψ(x; [u, n], 1)− x

ϕ([u, n])

)

=
∑

n1≤Pz

∑

n2≤Q

γ′n1
δ′n2

(
ψ(x;n1n2, 1)− x

ϕ(n1n2)

)
, (6)

where γ′n1
:= γn1 and δ′n2

:= 0 if u - n2, and it is the cardinality of the set
{d ≤ Q | [d, u] = n2} otherwise. Note that if n2 ≤ Q, then δ′n2

= τ(u) ¿ 1 is a
constant (i.e., does not depend on n2) provided that δ′n2

is nonzero. The same
argument as the one used in the proof of Theorem 9 in [4] leads to the conclusion
that both (5) and (6) are of order of magnitude at most x/logA x provided that B

is suitably large (in terms of A and of A, A1 and A2, respectively). Now (3) and
(4) follow from (5) and (6) by partial summation and using the fact that these
sums are of order of magnitude at most x/logA x. ¤

From now on until the end of the paper we use c1 for the constant e−γ , where
γ is the Euler constant.

Lemma 4. Let A > 0 and 1 < z ≤ (log x)A. We have

Lz(x) :=
∑

n≤x
p(n)>z

1
n

= c1
log x

log z
+ O

(
log x

log2 z

)
, (7)

and

Mz(x) :=
∑

n≤x
p(n)>z

1
ϕ(n)

= c1
log x

log z
+ O

(
log x

log2 z

)
. (8)

The constants implied by the above O’s depend only on A.
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Proof. Write
Kz(x) :=

∑

n≤x
p(n)>z

1.

By Brun’s Sieve (see Theorems 2.2 on page 68 and 2.5 on page 82 in [8]), we have
that

Kz(x) = c1
x

log z
+ O

(
x

log2 z

)
if z < x1/ log2 x, (9)

and
Kz(x) ¿ x

log z
if 1 ≤ z ≤ x. (10)

We shall now assume that z < x1/ log3
2 x. Using partial summation, we have

Lz(x) =
∫ x

1

dKz(t)
t

=
1
x

Kz(x) +
∫ x

1

Kz(t)
t2

dt.

Clearly,
1
x

Kz(x) = O

(
1

log z

)
(11)

by estimate (9). We break the integral at x1/ log2 x. By estimate (10), we get

∫ x1/ log2 x

1

Kz(t)
t2

dt ¿ 1
log z

∫ x1/ log2 x

1

dt

t
¿ log x

log z log2 x
. (12)

For the second range we use estimate (9) to get
∫ x

x1/ log2 x

Kz(t)
t2

dt =
c1

log z

(
1 + O

(
1

log z

))∫ x

x1/ log2 x

dt

t

=
c1 log x

log z

(
1 + O

(
1

log z

))(
1 + O

(
1

log2 x

))
. (13)

Collecting together all estimates (11)–(13) we get

Lz(x) =
c1 log x

log z
+ O

(
log x

log2 z
+

log x

log z log2 x
+ log z

)
,

and it is easy to see that the above error is bounded above as in (7) when z ≤
(log x)A, as in the hypothesis of the lemma.

For (8), note that

Mz(x) =
∑

n≤x
p(n)>z

1
ϕ(n)

=
∑

n≤x
p(n)>z

1
n

∑

d|n

µ2(d)
ϕ(d)
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=
∑

d≤x
p(d)>z

µ2(d)
dϕ(d)

∑

m≤x/d
p(m)>z

1
m

=
∑

d≤x
p(d)>z

µ2(d)
dϕ(d)

Lz(x/d).

When d = 1, µ2(d)/dϕ(d) = 1, while when d > 1, since p(d) > z, it follows that

∑

d>1
p(d)>z

µ2(d)
dϕ(d)

≤
∑

d>z

1
dϕ(d)

¿ 1
z
,

where the last estimate above is due to Landau. Thus,

Mz(x) = Lz(x) +
∑

1<d≤x
z≤p(d)

µ2(d)
dϕ(d)

Lz(x/d) = Lz(x) + O

(
Lz(x)

z

)

= c1
log x

log z
+ O

(
log x

log2 z

)
,

which completes the proof of the lemma. ¤

For x, z > 0, let
Dz(x) = {n ≤ x : p(n) > z}

and let τz(m) be the number of divisors of m in Dz(m).

Lemma 5. Let A > 0 and 1 ≤ z ≤ A log x
log4

2 x
. We then have

Rz(x) :=
∑

p≤x

τz(p− 1) = c1
x

log z
+ O

(
x

log2 z

)
(14)

and

Sz(x) :=
∑

p≤x

τz(p− 1)
p

= c1
log x

log z
+ O

(
log x

log2 z

)
, (15)

where the constants implied in O above depend only on A.

Proof. Let y ≤ x be any positive real number. Our plan is to estimate
Rz(y), so proving (14), and then use partial summation to prove (15).

Note that

Rz(y) =
∑

p≤y

τz(p− 1) ≤
∑

p≤y

τ(p− 1) ≤ 2
∑

d≤√y

π(y; d, 1) ¿ y, (16)
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where the last estimate follows from the Brun–Titchmarsh inequality. (Corol-
lary 1 in [4] gives a more precise estimate.) We shall use this estimate when y is
relatively small. In general,

Rz(y) =
∑

p≤y

τz(p− 1) =
∑

p≤y

∑

d∈Dz(y)
d|p−1

1 =
∑

d∈Dz(y)

π(y; d, 1).

Assume now that y > ez log2 z. We write B for a constant to be determined
later. If y is large, we then split the sum appearing in Rz(y) at Q := y

Pz logB y
.

Then,
Rz(y) =

∑

d∈Dz(Q)

π(y; d, 1) +
∑

Q<d≤y
p(d)>z

π(y; d, 1) := R1 + R2. (17)

Note that if d > Q and p ≤ y is a prime with p ≡ 1 (mod d), then p = 1 + du

with u < y/Q = Pz logB y. Thus,

R2 ≤
∑

u≤Pz logB y

π(y; u, 1).

By the Brun–Titchmarsh inequality, we get

R2 ¿ π(y)
∑

u≤Pz logB y

1
ϕ(u)

¿ π(y) log(Pz logB y)

¿ y log2 y

log y
+

yz

log y
¿ y

log2 z
, (18)

where the last inequality above holds because y > ez log2 z.

We now deal with R1. We claim that

R1 = π(y)
∑

d∈Dz(Q)

1
ϕ(d)

+ O

(
y

log2 y

)
(19)

holds if B is suitably chosen.

Indeed, note that by the principle of inclusion and exclusion, we have

R1 =
∑

d≤Q
p(d)>z

π(y; d, 1) =
∑

r|Pz

µ(r)
∑

n≤Q
r|n

π(y; n, 1).

Thus,

R1 = Ez(y) +
∑

r|Pz

µ(r)
∑

n≤Q
r|n

π(y)
ϕ(n)

,
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where Ez(y) has been defined in Lemma 3. By Lemma 3, the estimate

R1 =
∑

r|Pz

µ(r)
∑

n≤Q
r|n

π(y)
ϕ(n)

+ O

(
y

logC y

)
= π(y)

∑

d∈Dz(Q)

1
ϕ(d)

+ O

(
y

logC y

)

holds with any value of C > 0 provided that B is chosen to be sufficiently large
with respect to C. We set C := 2, and we obtain (19). Since

Q =
y

Pz logB y
> y1/2 > exp

(
1
2
z log2 z

)
,

it follows that z ¿ Q/log2 Q, and we are therefore entitled to apply Lemma 4
and conclude that

R1 = c1
π(y) log Q

log z
+ O

(
π(y) log Q

log2 z

)
+ O

(
y

log2 y

)

= c1
y

log z
+ O

(
y

log2 z

)
. (20)

Combining (17)–(20), we get that

Rz(y) = c1
y

log z
+ O

(
y

log2 z

)
(21)

holds when y > ez log2 z, which in particular proves estimate (14). To arrive at
(15), we now simply use partial summation to get that

Sz(x) =
∫ x

1

dRz(t)
t

=
Rz(t)

t

∣∣∣
t=x

t=1
+

∫ x

1

Rz(t)
t2

dt

=
∫ ez log2 z

1

Rz(t)
t2

dt +
∫ x

ez log2 z

Rz(t)
t2

dt + O(1).

The first integral above is, by (16),

∫ ez log2 z

1

Rz(t)
t2

dt ¿
∫ ez log2 z

1

1
t

dt ≤ z log2 z ¿ log x

log2 z
, (22)

while the second integral above is, by (21),
∫ x

ez log2 z

Rz(t)
t2

dt =
c1

log z

∫ x

ez log2 z

1
t

dt + O

(
1

log2 z

∫ x

ez log2 z

1
t

dt

)
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= c1
log x

log z
− c1z log z + O

(
log x

log2 z

)

= c1
log x

log z
+ O

(
log x

log2 z

)
, (23)

and (15) now follows from (22) and (23). ¤

Lemma 6. (i) Let A and z be as in Lemma 5 and 1 ≤ u ≤ x be any positive

integer with p(u) > z. Then

Su,z(x) :=
∑

p≤x
p≡1 (mod u)

τz(p− 1)
p

¿ τ(u)
u

Sz(x) log x. (24)

(ii) Let A1 > 0, 0 < A2 < 1/2, u < logA1 x and logA2 x < z ≤
√

log x
log6

2 x
. Assume

that p(u) > z. Then

Ru,z(x) :=
∑

p≤x
p≡1 (mod u)

τz(p− 1) = c1
τ(u)
u

x

log z
+ O

(
x

u log2 z

)
(25)

and

Su,z(x) =
τ(u)
u

Sz(x)
(

1 + O

(
1

log z

))
. (26)

The implied constants depend at most on A and A1, A2, respectively.

Proof. To see inequality (24), we replace the prime summand p with an
integer summand n, so that

Su,z(x) ≤
∑

n≤x
n≡1 (mod u)

τz(n− 1)
n− 1

=
∑

n≤x
n≡1 (mod u)

1
n− 1

∑

d∈Dz(x)
d|n−1

1.

Thus,

Su,z(x) ≤
∑

d∈Dz(x)

∑

n≡1 (mod [u,d])
n≤x

1
n− 1

=
∑

d∈Dz(x)

1
[u, d]

∑

m≤x/[u,d]

1
m

¿ log x
∑

d∈Dz(x)

1
[u, d]

≤ log x
τ(u)
u

∑

d∈Dz(x)

1
d

=
τ(u)
u

Lz(x) log x ¿ τ(u)
u

Sz(x) log x,

where in the above inequalities we used Lemmas 4 and 5.
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For inequality (26), let us first notice that under the conditions (ii), we have
that Ω(u) ¿ 1; hence, τ(u) ¿ 1, and also that

uϕ(d)
ϕ(ud)

= 1 + O

(
1
z

)
(27)

holds uniformly in such positive integers u and all positive integers d.

The proof of (26) now closely follows the method of proof of (15). That is,
let x be large, assume that z is fixed, and for y ≤ x write

Ru,z(y) :=
∑

p≤y
p≡1 (mod u)

τz(p− 1) =
∑

d∈Dz(y)

π(y; [u, d], 1).

Let w := exp(
√

log x
log2 x ). Note that for large x the inequality z < log y

(log2 y)4 holds
whenever y > w. For y ≤ w, we use the trivial inequality

Ru,z(y) ¿ y log y

u
. (28)

Assume now that y > w. Since log y > log1/3 x holds for large x, and u < logA1 x,
we get that u < log3A1 y. We write B for a constant to be determined later and
we split the sum appearing in Ru,z(y) at Q := y

Pz logB y
. Thus,

Ru,z(y) =
∑

d∈Dz(Q)

π(y; [u, d], 1) +
∑

Q<d≤y
p(d)>z

π(y; [u, d], 1) := R1 + R2.

It is easy to see that
R2 ≤

∑

d≤Pz logB y

π(y; [u, d], 1).

Thus, by the Brun–Titchmarsh inequality,

R2 ¿ π(y)
∑

d≤Pz logB y

1
ϕ([u, d])

¿ π(y)
τ(u)
u

log(Pz log3A1+B y)

¿ y log2 y

u log y
+

yz

u log y
¿ y

u log2 z
, (29)

where we used τ(u) ¿ 1 together with (27).

We now deal with R1. We claim, as in the proof of Lemma 5, that

R1 = π(y)
∑

d∈Dz(Q)

1
ϕ([u, d])

+ O

(
y

u log2 y

)
(30)
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holds if B is suitably chosen.

Indeed, note that since u and Pz are coprime, by the principle of inclusion
and exclusion, we have

R1 =
∑

d≤Q
p(d)>z

π(y; [u, d], 1) =
∑

r|Pz

µ(r)
∑

n≤Q
r|n

π(y; [u, n], 1).

Thus,

R1 = Eu,z(y) +
∑

r|Pz

µ(r)
∑

n≤Q
r|n

π(y)
ϕ([u, n])

= Eu,z(y) + π(y)
∑

d∈Dz(Q)

1
ϕ([u, d])

, (31)

where Eu,z(y) is the sum appearing in Lemma 3. Estimate (30) now follows
from (4). Since

Q

u
>

y

Pzu logB x
>

y

Pz log3A1+B
> y1/2 > exp

(
1
2
z log4 z

)
,

it follows that z ¿ Q/(u log4(Q/u)), and we are therefore entitled to apply Lem-
mas 4 and 5 together with estimate (27) and conclude that

R1 = π(y)
∑

d∈Dz(Q)

1
ϕ([u, d])

+ O

(
y

u log2 y

)

= π(y)
∑

d1∈Dz(Q/u)

τ(u)
ϕ(ud1)

+ O

(
π(y)

∑

Q/u<d1≤Q
p(d)>z

1
ϕ(ud1)

)
+ O

(
y

u log2 y

)

= π(y)
τ(u)
u

Mz(Q/u) + O

(
π(y)
uz

Mz(Q)
)

+ O

(
π(y)

u
(Mz(Q)−Mz(Q/u))

)
+ O

(
y

u log2 y

)

= c1π(y)
τ(u)
u

log(Q/u)
log z

+ O

(
π(y) log u

u log z

)
+ O

(
π(y) log Q

u log2 z

)

= c1
τ(u)
u

y

log z
+ O

(
y

u log2 z

)
. (32)

Combining (28)–(32), we get that

Ru,z(y) = c1
τ(u)
u

y

log z
+ O

(
y

u log2 z

)
(33)
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holds when y > w, which proves estimate (25).

We now use partial summation to get that

Su,z(x) =
∫ x

1

dRu,z(t)
t

=
Ru,z(t)

t

∣∣∣
t=x

t=1
+

∫ x

1

Ru,z(t)
t2

dt

=
∫ w

1

Ru,z(t)
t2

dt +
∫ x

w

Ru,z(t)
t2

dt + O

(
1

u log z

)
.

The first integral above is, by (28),
∫ w

1

Ru,z(t)
t2

dt ¿ 1
u

∫ w

1

log t

t
dt ¿ log2 w

u
¿ log x

u log2
2 x

¿ log x

u log2 z
. (34)

Finally, the second integral above is, by (33),
∫ x

w

Ru,z(t)
t2

dt = c1
τ(u)
u

1
log z

∫ x

w

1
t

dt + O

(
1

u log2 z

∫ x

w

1
t

dt

)

= c1
τ(u)
u

1
log z

(log x− log w) + O

(
log x

u log2 z

)

= c1
τ(u)
u

log x

log z
+ O

(
log x

u log2 z

)
= c1

τ(u)
u

Sz(x)
(

1 + O

(
1

log z

))
,

which completes the proof of Lemma 6. ¤

Lemma 7. Let z = z(x) :=
√

log x
log6

2 x
. Let I(x) := (z, z5]. Let Q(x) be the set

of all prime numbers p with z < p ≤ x such that p − 1 is not divisible by the

square of any prime q > z, and p− 1 has at most 7 prime factors in the interval

I(x). Then for large x we have

S′z(x) :=
∑

p∈Q(x)

τz(p− 1)
p

> 0.7Sz(x).

Proof. Let Q1(x) be the set of those primes p such that q2 | p − 1 for
some q > z. Fix q. Assume first that q > logA x, where A is a constant to be
determined later. Then, by (24),

Sq2,z(x) ¿ log x

q2
Sz(x),

and therefore
∑

q>logA x

Sq2,z(x) ¿ (log x)Sz(x)
∑

q>logA x

1
q2
¿ Sz(x)

logA−1 x log2 x
.
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Choosing A = 1, we see that

∑

q>log x

Sq2,z(x) ¿ Sz(x)
log2 x

.

Assume now that q ∈ (z, log x]. By (26), it follows that Sq2,z(x) ¿ Sz(x)/q2, and
therefore ∑

z<q≤log x

Sq2,z(x) ¿ Sz(x)
∑
q>z

1
q2
¿ Sz(x)

z log z
¿ Sz(x)

log2 x
.

In particular, we have ∑
q>z

Sq2,z(x) = O

(
log x

log2
2 x

)
. (35)

We now let B be a positive integer to be fixed later, and assume that u is
a squarefree number having ω(u) = B, and such that all its prime factors are in
the interval I(x). Let UB be the set of such numbers u. Since B is fixed, we have
u < z5B < log5B/2 x, and therefore, by (26), we have

Su,z(x) =
2B

u
Sz(x)

(
1 + O

(
1

log2 x

))
.

Summing up over all possible values of u ∈ UB , we get

∑

u∈UB

Su,z(x) = Sz(x)2B

( ∑

u∈UB

1
u

)(
1 + O

(
1

log2 x

))
.

Clearly,

∑

u∈UB

1
u
≤ 1

B!

( ∑

p∈I(x)

1
p

)B

=
1
B!

(
log2(z

5)− log2 z + O

(
1

log z

))B

=
(log 5)B

B!

(
1 + O

(
1

log2 x

))
.

Hence,
∑

u∈UB

Su,z(x) ≤ (2 log 5)B

B!
Sz(x)

(
1 + O

(
1

log2 x

))
.

Since (2 log 5)8/8! < 0.286, we have for B = 8 and large x that
∑

u∈UB

Su,z(x) < 0.29Sz(x). (36)
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Thus, with (35) and (36), and using
∑

p≤z τz(p− 1)/p =
∑

p≤z 1/p ¿ log2 z,

S′z(x) =
∑

p∈Q(x)

τz(p− 1)
p− 1

≥ Sz(x)−
∑
q>z

Sq2,z(x)−
∑

u∈UB

Su,z(x)−
∑

p≤z

τz(p− 1)
p

> 0.7Sz(x)

for large x, which completes the proof of Lemma 7. ¤

3. The proof of Theorem 1

We shall analyze the expression

T (x) :=
∑

n≤x

τ(ϕ(n))
n

.

3.1. The upper bound. For every positive integer n we write β(n) :=
∏

p|n p.
Then n can be written as n = β(n)m where all prime factors of m are among
the prime factors of β(n). Moreover, ϕ(n) = mϕ(β(n)), and therefore τ(ϕ(n)) ≤
τ(m)τ(ϕ(β(n))). Thus,

T (x) ≤
∑

k≤x
µ(k)6=0

∑

m≤x/k

τ(m)τ(ϕ(k))
mk

=
∑

k≤x
µ(k)6=0

τ(ϕ(k))
k

∑

m≤x/k

τ(m)
m

¿ U(x) log2 x, (37)

where

U(x) :=
∑

n≤x
µ(n)6=0

τ(ϕ(n))
n

.

We now let z = z(x) be as in Lemma 7. For every positive integer n we write
τ ′z(n) for the number of divisors of the largest divisor of n composed only of primes
p ≤ z. Clearly, τ(n) = τz(n)τ ′z(n). If n ≤ x and pα‖n, then α + 1 < 2 log x. This
shows that

τ ′z(n) ≤ (2 log x)π(z) < exp
(

10
√

log x

log5
2 x

)
. (38)
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Using also the fact that τz(ab) ≤ τz(a)τz(b) holds for all positive integers a and
b, together with (37) and (38), we get that the inequality

T (x) ≤ Vz(x)exp
(

O

(√
log x

log5
2 x

))

holds, where

Vz(x) :=
∑

n≤x
µ(n)6=0

∏

p|n

τz(p− 1)
p

.

To find an upper bound on the last expression, we use Rankin’s method. Let
s = s(x) < 1 be a small positive real number depending on x to be determined
later, and note that

Vz(x) ≤ xs
∑

n≤x
µ(n)6=0

1
ns

∏

p|n

τz(p− 1)
p

= xs
∑

n≤x
µ(n) 6=0

∏

p|n

τz(p− 1)
p1+s

≤ xs
∏

p≤x

(
1 +

τz(p− 1)
p1+s

)
≤ exp

(
s log x +

∑

p≤x

τz(p− 1)
p1+s

)
.

We now find s in such a way as to minimize

fs(x) := s log x +
∑

p≤x

τz(p− 1)
p1+s

.

For this, recall that from the proof of Lemma 5, we have

∑

p≤x

τz(p− 1)
p1+s

=
∫ x

2

dRz(t)
t1+s

=
Rz(t)
t1+s

∣∣∣
t=x

t=2
+ (1 + s)

∫ x

2

Rz(t)
t2+s

dt

= (1 + s)
∫ x

2

Rz(t)
t2+s

dt + O

(
1

xs log z

)
. (39)

We shall later choose s := c
1/2
1√

log x log z
. In order to compute the above integral

(39), we split it at x0 := e1/(s log2 z). In the first (smaller) range, we use the fact
that Rz(t) ¿ t and that ts ≥ 1 to get

∫ x0

2

Rz(t)
t2+s

dt ¿
∫ x0

2

1
t

dt ≤ log x0 =
1

s log2 z
.
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Note that x0 ≥ ez log2 z for x sufficiently large. Thus, from the estimate of Rz(t)
from Lemma 5, we have

∫ x

x0

Rz(t)
t2+s

dt =
c1

log z

∫ x

x0

dt

t1+s
+ O

(
1

log2 z

∫ x

x0

dt

t1+s

)

=
c1

s log z
(x−s

0 − x−s) + O

(
1

s log2 z

)
=

c1

s log z
+ O

(
1

s log2 z

)
,

where we used the fact that xs
0 = exp(1/log2 z) = 1 + O(1/log2 z). Thus,

fs(x) = s log x +
c1(1 + s)
s log z

+ O

(
1

s log2 z

)
.

With our choice for s, we have

fs(x) = 2c
1/2
1

(
log x

log z

)1/2

+ O

(
log1/2 x

log3/2 z

)
.

Since z =
√

log x/log6
2 x, we get

fs(x) = 23/2c
1/2
1

(
log x

log2 x

)1/2 (
1 + O

(
log3 x

log2 x

))
.

Thus, we have obtained the upper bound

T (x) ≤ exp

(
23/2e−γ/2

(
log x

log2 x

)1/2 (
1 + O

(
log3 x

log2 x

)))
. (40)

Since Dϕ(x) ≤ xT (x), we have the upper bound in Theorem 1.

3.2. The lower bound. We write c2 for a constant to be computed later and
we set

v :=

⌊
c2

(
log x

log2 x

)1/2
⌋
− 2.

We write

y := exp
(

1
c2

(log xlog2 x)1/2

)
.

We now write z := z(y), where the function z is the one appearing in Lemma 7.
We write Q := Q(y) for the set of primes defined in Lemma 7. Recall that Q(y)
is the set of primes p ≤ y such that p − 1 is not divisible by the square of any
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prime q > z and p − 1 has at most 7 distinct prime factors in (z, z5]. Consider
squarefree numbers n having ω(n) = v and such that all their prime factors are
in Q. Let N be the set of those numbers. It is clear that if n ∈ N then n ≤ x/y2.
Let

VN ,z(x) :=
∑

n∈N

τz(ϕ(n))
n

. (41)

For a number n ∈ N , we write τ ′′(n) :=
∏

p|n τz(p− 1) and we look at the sum

WN :=
∑

n∈N

τ ′′(n)
n

.

By the binomial formula, and Stirling’s formula, it follows that

WN ≤ 1
v!

( ∑

p∈Q

τz(p− 1)
p

)v

³ 1√
v

(
e

v

∑

p∈Q

τz(p− 1)
p

)v

.

A simple calculation based on Lemmas 5 and 7 shows that

0.7e
Sz(y)

v
≤ e

v

∑

p∈Q

τz(p− 1)
p

≤ e
Sz(y)

v

and that
Sz(y)

v
= c3 + O

(
log3 x

log2 x

)
,

where c3 := 4c1
c2
2

. We now observe that

1
v!

( ∑

p∈Q

τz(p− 1)
p

)v

≤ WN +
1

(v − 2)!

( ∑

p∈Q

τz(p− 1)
p

)v−2
1
2

( ∑

p∈Q

τz(p− 1)2

p2

)

= WN + O

(
1
v!

( ∑

p∈Q

τz(p− 1)
p

)v( ∑

p∈Q

τz(p− 1)2

p2

))
.

Since p ∈ Q implies that p > z, and since for large x the inequality τz(p − 1) ≤
τ(p− 1) < p1/4 holds for all p > z, we get

∑

p∈Q

τz(p− 1)2

p2
≤

∑
p>z

1
p3/2

¿ 1
z1/2 log z

.
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Hence, the above argument shows that

WN =
1
v!

( ∑

p∈Q

τz(p− 1)
p

)v (
1 + O

(
1

z1/2 log z

))
À 1√

v

(
c4 + O

(
log3 x

log2 x

))v

,

where c4 := 0.7c3.
We now select the subset M of N formed only by those n such that there is

no prime number q > z5 such that q | p1 − 1 and q | p2 − 1 holds for two distinct
primes p1 and p2 dividing n. Note that this is equivalent to the fact that ϕ(n)
is not a multiple of a square of a prime q > z5. To understand the sum WM
restricted only to those n ∈ M, let us fix a prime number q. Then, summing up
τ ′′(n)/n only over those n such that q2 | ϕ(n) for the fixed prime q > z5, we get

Wq,N :=
∑

n∈N
q2|ϕ(n)

τ ′′(n)
n

¿ 1
(v − 2)!

( ∑

p∈Q

τz(p− 1)
p

)v−2

Sq,z(y)2 ¿ WNSq,z(y)2.

Assume first that q > logA y, where A is a constant to be determined later. In
this case, by Lemmas 6 and 5,

Sq,z(y) ¿ Sz(y) log y

q
¿ log2 y

q log z
,

and therefore

Wq,N ¿ WN
log4 y

q2 log2 z
. (42)

Summing up inequalities (42) for all q ≥ logA y, we get

∑

q≥logA y

Wq,N ¿ WN
log4 y

log2 z

∑

q>logA y

1
q2
¿ WN

(log y)A−4 log2
2 y

¿ WN
log y

,

provided that we choose A := 5.
When q < log5 y, then the same argument based again on Lemma 6, shows

that

Wq,N ¿ WN
log2 y

q2 log2 z
,

and therefore

∑

z5<q<log5 y

Wq,N ¿ WN
log2 y

log2 z

∑

q>z5

1
q2
¿ WN

log2 y

z5 log3 z
¿ WN

log27
2 y

log1/2 y
.
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This shows that

WM :=
∑

n∈M

τ ′′(n)
n

≥ WN −
∑

q>z5

Wq,N = WN (1 + o(1))

À 1√
v

(
c4 + O

(
log3 x

log2 x

))v

. (43)

Notice now that if n ∈M then

τz(ϕ(n)) ≥ τz5(ϕ(n)) =
∏

p|n
τz5(p− 1) ≥

∏

p|n

(
τz(p− 1)

27

)
≥ 1

27v
τ ′′(n). (44)

Thus, with (41) and (43), we get

VM,z(x) ≥ 1
27v

WM À 1√
v

(
c5 + O

(
log3 x

log2 x

))v

,

where c5 := 2−7c4. So, we see that

TN ,z(x) ≥ exp

(
c6

(
log x

log2 x

)1/2 (
1 + O

(
log3 x

log2 x

)))
, (45)

holds for large x with

c6 := c2 log
(

0.7 · 4e1−γ

c2
227

)
. (46)

To see the lower bound in Theorem 1, we look at integers np, where n ∈ M
and p is prime with y < p ≤ x/n. Each such integer np arises in a unique way,
and the number of primes p corresponding to a particular n is π(x/n) − π(y) ≥
1
2π(x/n) À x/(n log x). Further, τ(ϕ(np)) > τz(ϕ(n)). Thus,

Dϕ(x) À x

log x
VN ,z(x). (47)

So, letting c2 = (2.8/27)1/2e−γ/2 > 1
7e−γ/2, we have c6 = c2, and from (45) and

(47), we have the lower bound in Theorem 1 for all large x.

4. The proof of Theorem 2

Part (i) follows immediately from the proof of Theorem 1. Indeed, λ(n) |
ϕ(n), therefore τ(λ(n)) ≤ τ(ϕ(n)) holds for all positive integers n. In particular,
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Dλ(x) ≤ Dϕ(x). For the lower bound, it suffices to note that if M is the set
of integers constructed in the proof of the lower bound for Dϕ(x), then ϕ(n) is
not divisible by the square of any prime p > z5. In particular, the inequality
τz(λ(n)) = τ ′′(n)/27v also holds (compare with (44)). Thus, the lower bound on
Dλ(x) follows from the proof of the lower bound for Dϕ(x).

To see (ii), we put

κ = b10 log2 xc and w =
√

log x

log2
2 x

,

and let E1(x) be the set of n ≤ x such that either 2κ | n or there exists a prime
p | n with p ≡ 1 (mod 2κ), and E2(x) be the set of n ≤ x with ω(n) ≤ w. Since
τ(φ(ab)) ≤ τ(φ(a))τ(φ(b)), we have

∑

n∈E1(x)

τ(λ(n))
n

≤
∑

n∈E1(x)

τ(ϕ(n))
n

≤ τ(2κ)
2κ

∑

m≤x/2κ

τ(ϕ(m))
m

+
∑

p≤x
p≡1 (mod 2κ)

τ(p− 1)
p

∑

m≤x/p

τ(ϕ(m))
m

.

We majorize the inner sums with T (x), so that

∑

n∈E1(x)

τ(λ(n))
n

≤
(

κ + 1
2κ

+ S2κ,1(x)
)

T (x) ¿ κ log x

2κ
S1(x)T (x)

¿ log2 x log2 xT (x)
(log x)10 log 2

¿ T (x)
log2 x

, (48)

where in the above estimates we used Lemmas 5 and 6 to estimate S2κ,1(x) and
S1(x), respectively, and the fact that 10 log 2 > 4.

Furthermore, by the multinomial formula and the Stirling formula,

∑

n∈E2(x)

τ(λ(n))
n

≤
∑

n∈E2(x)

τ(ϕ(n))
n

≤
∑

k≤w

∑

n≤x
ω(n)=k

τ(ϕ(n))
n

≤
∑

k≤w

1
k!

( ∑

pα≤x

τ(ϕ(pα))
pα

)k

≤
∑

k≤w

1
k!

( ∑

p≤x

τ(ϕ(p− 1))
p

+
∑

2≤p
2≤α

τ(ϕ(pα))
pα

)k
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≤
∑

k≤w

1
k!

(S1(x) + O(1))k ≤
∑

k≤w

(
eS1(x) + O(1)

k

)k

.

Let c7 be the constant implied by the last O(1). Since S1(x) À log x, the function
k 7→ ( eS1(x)+c7

k )k is increasing for k ≤ w once x is large. Thus,
∑

n∈E2(x)

τ(λ(n))
n

≤ w

(
eS1(x)+ c7

w

)w

= exp
(
w log

(
eS1(x)+ c7

w

)
+ log w

)

= exp
((

1
2

+ o(1)
) √

log x

log2 x

)
= o

(
T (x)
log2 x

)
, (49)

where the last estimate above follows from estimate (45) and T (x) ≥ VN ,z(x).
Finally, if we set E3(x) for the set of all positive integers n ≤ x not in

E1(x) ∪ E2(x), we then notice that if n ∈ E2(x), then 2α ‖ ϕ(n), where α ≥
ω(n)− 1 ≥ w − 1, and 2β ‖ λ(n), where β < κ. Hence,

τ(ϕ(n))
τ(λ(n))

≥ (α + 1)
β + 1

À
√

log x

log3
2 x

.

Thus,
1
x

∑

n∈E3(x)

τ(λ(n)) ¿ log3
2 x√

log x
Dϕ(x), (50)

while estimates (48), (49) and partial summation show that

log2 x

x

∑

n∈E1(x)∪E2(x)

τ(λ(n)) ≤ log2 x
∑

n∈E1(x)∪E2(x)

τ(λ(n))
n

¿ T (x) =
∫ x

1

d(tDϕ(t))
t

≤ Dϕ(x) +
∫ x

1

Dϕ(t)
t

dt

¿ D∗
ϕ(x)

(
1 +

∫ x

1

dt

t

)
¿ D∗

ϕ(x) log x.

Therefore
1
x

∑

n∈E1(x)∪E2(x)

τ(λ(n)) ¿ D∗
ϕ(x)

log x
. (51)

Clearly, summing up estimates (50) and (51) we get

Dλ(x) ¿ log3
2 x√

log x
D∗

ϕ(x),

and the proof of Theorem 2 is complete.
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[7] P. Erdős and C. Pomerance, On the normal number of prime factors of ϕ(n), Rocky Mtn.
J. of Math. 15 (1985), 343–352.

[8] H. Halberstam and H.-E. Richert, Sieve methods, Academic Press, 1974.

[9] S. Li, An improvement of Artin’s conjecture on average for composite moduli, Mathematika
51, no. 1–2 (2004), 97–109.

[10] M. R. Murty and V. K. Murty, Prime divisors of Fourier coefficients of modular forms,
Duke Mathematical Journal 51 (1984), 57–76.

[11] M. R. Murty and F. Saidak, Non-abelian generalizations of the Erdős–Kac theorem,
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