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On the diophantine equation x2 + 2α3β5γ7δ = yn

By ISTVÁN PINK (Debrecen)

Abstract. Let S = {p1, . . . , ps} be a set of distinct primes and denote by S the

set of non-zero integers composed only of primes from S. Further, denote by Q the

product of the primes from S. Let f ∈ Z[X] be a monic quadratic polynomial with

negative discriminant Df contained in S. Consider equation f(x) = yn (2) in integer

unknowns x, y, n with n ≥ 3 prime and y > 1. It follows from a general result of

[13] that in (2) n can be bounded from above by an effectively computable constant

depending only on Q. This bound is, however, large and is not given explicitly. Using

some results of Bugeaud and Shorey [8] we derive, apart from certain exceptions, a

good and completely explicit upper bound for n in (2) (see Theorems 1 and 2). Further,

combining our Theorem 2 with some deep results of Cohn [12] and de Weger [25] we

give all non-exceptional (see Section 1) solutions of equation x2 + 2α3β5γ7δ = yn (6),

where x, y, n, α, β, γ, δ are unknown non-negative integers with x ≥ 1, gcd(x, y) = 1

and n ≥ 3 (cf. Theorem 3). When, in (6), α ≥ 1 is also assumed then our Theorem 3

is a generalization of a result of Luca [19]. In this case all the solutions of equation (6)

are listed.

1. Introduction

There are many results concerning the generalized Ramanujan–Nagell equa-
tion

x2 + D = µyn, (1)

where D > 0 is a given integer, µ ∈ {1, 4} and x, y, n are positive integer
unknowns with n ≥ 3 and gcd(x, y) = 1. First consider the case µ = 1. Then
the first result was due to V. A. Lebesque [15] who proved that there are no
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solutions for D = 1. Ljunggren [16] solved (1) for D = 2, and Nagell [22],
[23] solved it for D = 3, 4 and 5. In his elegant paper [11], Cohn gave a fine
summary of work on equation (1). Further, he developed a method by which he
found all solutions of the above equation for 77 positive values of D ≤ 100. For
D = 74 and D = 86, equation (1) was solved by Mignotte and de Weger [20].
By using the theory of Galois representations and modular forms Bennett and
Skinner [5] solved (1) for D = 55 and D = 95. On combining the theory of
linear forms in logarithms with Bennett and Skinner’s method and with several
additional ideas, Bugeaud, Mignotte and Siksek [7] gave all the solutions of
(1) for the remaining 19 values of D ≤ 100. Bugeaud and Shorey [8] used a
beautiful result of Bilu, Hanrot and Voutier [6] to solve completely several
equations of type (1) both for µ = 1 and for µ = 4 when D is an odd positive
square-free integer, n ≥ 3 is an odd prime not dividing the class number of the
field Q(

√−D ) and D 6≡ 7 (mod 8) if µ = 1 (see Corollaries 3, 5 and 7 of [8]).
Let S = {p1, . . . , ps} denote a set of distinct primes and S the set of non-zero

integers composed only of primes from S. Denote by P and Q the greatest and
the product of the primes of S, respectively. In recent years, equation (1) has
been considered also in the more general case when D is no longer fixed but D ∈ S
with D > 0. It follows from Theorem 2 of [24] that in (1) n can be bounded from
above by an effectively computable constant depending only on f, P and s. In
[13] an effective upper bound was derived for n which depends only on Q. By
using the powerful method of Bilu, Hanrot and Voutier [6] equation (1) can
be completely solved for µ = 1 and some special sets of primes S. Namely, if in
(1) D ∈ S with S = {2} then all solutions of (1) were given by Cohn [10] and
Arif and Muriefah [1] and [3]. For S = {3}, equation (1) was solved completely
by Arif and Muriefah [2] and Luca [18]. When S = {q}, where q ≥ 5 is an
odd prime with q 6≡ 7 (mod 8), Arif and Muriefah [4] determined all solutions
of the equation x2 + q2k+1 = yn, where gcd(n, 3h0) = 1 and n ≥ 3. Here h0

denotes the class number of the field Q(
√−q ). For S = {2, 3}, Luca [19] gave

the complete solution of (1).
To formulate our results we introduce some notation. Let f(x) = x2+Ax+B

where A,B ∈ Z and denote by Df the discriminant of f . Set

∆ =




−Df

4
if Df is even,

−Df if Df is odd.

Suppose that ∆ ∈ S and ∆ > 0. Let c and d be non-zero integers such that
∆ = dc2 and d > 0 denotes the square-free part of ∆. Further, for any k ∈ Z and
rational prime p denote by ordp(k) the greatest power of p to which p divides k.
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Consider the equation
f(x) = yn (2)

in integer unknowns x, y, n with n ≥ 3 prime and y > 1. We say that a solution
(x, y, n) of (2) is exceptional if

ord2(Df ) = 2, y is even and d ≡ 7 (mod 8).

Write h for the class number of the imaginary quadratic field Q(
√−d ). Further,

denote by h(−4∆) the number of classes of positive binary quadratic forms with
discriminant −4∆ (for the definition see Section 2).

Theorem 1. If (x, y, n) is a non-exceptional solution of (2) with x 6= −A
2

and gcd(y, ∆) = 1 then, except for the infinite families of equations

x2 + Ax + B = yn

where (A,B, x, y, ∆, n) ∈ {(A, (A2 + 7)/4, (11−A)/2, 2, 7, 5), (A, (A2 + 7)/4,

(181−A)/2, 2, 7, 13), (A, (A2 + 11)/4, (31−A)/2, 3, 11, 5), (A, (A2 + 19)/4,

(559−A)/2, 5, 19, 7)}, where A is odd and (A, B, x, y, ∆, n) ∈ {(A, (A2+76)/4,

(44868−A)/2, 55, 19, 5), (A, (A2 +1364)/4, (5519292−A)/2, 377, 341, 5}, where A

is even, we have

n = 3 or n | h(−4∆).

Further, in the latter case

n ≤ max{3, P} if n - h

and

n <
4
π

√
Q log(2e

√
Q ) if n | h.

We note that the assumption x 6= −A
2 is necessary. Otherwise using (2) and

supposing that Df is even we get yn = ∆, whence by ∆ ∈ S we see that n cannot
be bounded.

Equation (2) can be reduced to an equation of the type

X2 + ∆ = µY n, (3)

where µ ∈ {1, 4},
gcd(X, Y ) = gcd(Y, ∆) = 1 (4)
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and
µ = 1 if Df is even, µ = 4 if Df is odd,

∆ ∈ S, ∆ > 0, X ≥ 1, Y > 1, n ≥ 3 prime.
(5)

We shall deduce Theorem 1 from the following Theorem 2. We say that a solution
(X, Y, n) of (3) is exceptional if

µ = 1, ord2(Df ) = 2, Y is even and d ≡ 7 (mod 8).

Theorem 2. If (X,Y, n) is a non-exceptional solution of equation (3) satisfy-

ing (4) and (5) then, except for (µ, Y, ∆, n) ∈ {(4, 2, 7, 5), (4, 2, 7, 13), (4, 3, 11, 5),
(4, 5, 19, 7), (1, 55, 19, 5), (1, 377, 341, 5)}, we have

n = 3 or n | h(−4∆).

Further, in the latter case

n ≤ max{3, P} if n - h

and

n <
4
π

√
Q log(2e

√
Q ) if n | h.

This should be compared with Corollaries 5 and 7 of Bugeaud and Shorey

[8], where equations of type (3) were considered with square-free ∆ > 0. In
Corollary 5 they showed that the equation x2 + 4∆ = yn has no solution with
n ≥ 5. Here ∆ is square-free and n is an odd prime not dividing the class number
of the field Q(

√−∆). Further, in Corollary 7 of [8] the authors considered the
equation (3), where µ ∈ {1, 4}, ∆ is an odd positive square-free integer and n ≥ 3
is an odd prime not dividing the class number of the field Q(

√−∆). Under these
assumptions they solved completely equation (3) in the case when

µ = 1, ∆ ≡ 1 (mod 4), n ≥ 3 or µ = 4, ∆ ≡ 7 (mod 8), n ≥ 3 or

µ = 4, ∆ ≡ 3 (mod 8), n ≥ 5.

In contrast with [8], in our Theorem 2 it is not assumed that ∆ is square-free.
Using the approach of [8] we give completely explicit upper bounds for n in (3)
depending only on P and Q. This allows us to solve completely equation (3)
in the case when S = {2, 3, 5, 7} and µ = 1. Combining Theorem 2 with some
results of Cohn [12] and de Weger [25], we give all non-exceptional solutions
of the equation

x2 + 2α3β5γ7δ = yn (6)
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where x, y, n, α, β, γ, δ are unknown non-negative integers with x ≥ 1, y ≥ 2,
gcd(x, y) = 1 and n ≥ 3. We recall that in this special case a solution is called
exceptional if α = 0, y is even and 3β5γ7δ is either of the form 7c2 or of the
form 15c2. We note that if our equation (6) is of the form x2 + 7c2 = yn or
x2 + 15c2 = yn and (x, y, n) is an exceptional solution of (6), then we cannot
use the parametrization for (x, y) provided by Lemma 2 (see e.g. [11]). Hence we
consider only the non-exceptional solutions of (6). We note that using another
approach Bugeaud, Mignotte and Siksek [7] solved the equations x2 + 7c2 =
yn and x2 + 15c2 = yn when 1 ≤ 7c2 < 15c2 ≤ 100.

Theorem 3. All non-exceptional solutions of equation (6) are listed in the

table occurring in Section 4.

If in (6) α ≥ 1 is assumed then, by gcd(x, y) = 1, y is odd. Hence the
solutions (x, y, n) of (6) are always non-exceptional. Thus in this case we can list
all the solutions of equation (6).

Corollary. All solutions of (6) with α ≥ 1 are listed in the table in Section 4.

We note that the solutions of equation (6) with α ≥ 1 are those which are not
marked with an asterisk in the table. Further, in this case our Theorem 3 is a
generalization of a result of Luca [19] mentioned above.

2. Auxiliary results

We keep the notations of the preceding section. For a non-zero integer m

denote by ω(m) the number of distinct prime factors of m. By definition, for
a, b, c ∈ Z, the discriminant of the binary quadratic form aX2 + 2bXY + cY 2 is
4b2 − 4ac, thus −4∆ is the discriminant of the form X2 + ∆Y 2. We say that a
binary quadratic form is positive if a > 0. The set of positive binary quadratic
forms of discriminant −4∆ is partitioned into a finite number of equivalence
classes which we denote by h(−4∆).

The next lemma is a special case of Lemma 1 of [8] (see also Le [14]).

Lemma 1. Consider equation

X2
1 + ∆Y 2

1 = µY Z1 (7)

in integer unknowns X1, Y1, Z1 with Z1 > 0 and gcd(X1, Y1) = 1. Then the

solutions of the above equation can be put into at most 2ω(Y )−1 classes. Further,

in each class there is a unique solution (X1, Y1, Z1) such that X1 > 0, Y1 > 0 and
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Z1 is minimal among the solutions of the class. This minimal solution satisfies

Z1 | h(−4∆), where h(−4∆) is the number of classes of positive binary forms of

discriminant −4∆.

Proof. See [8]. ¤

Lemma 2. Suppose that equation (3) has a solution under the assumptions

(4) and (5) with µ = 1. Denote by d > 0 the square-free part of ∆ = dc2. If d 6≡ 7
(mod 8) or d ≡ 7 (mod 8) and Y is odd then one of the following cases holds:

(a) there exist a1, b1 ∈ Z with b1 | c, b1 6= ±c such that Y = a2
1 + b2

1d and

±X + c
√−d = (a1 + b1

√−d )n;

(b) n | h, where h denotes the class number of the field Q(
√−d );

(c) d ≡ 3 (mod 8), n = 3 and there exist odd integers A1, B1 with B1 | c such

that Y = 1
4 (A2

1 + B2
1d), ±X + c

√−d = 1
8 (A1 + B1

√−d )3;

(d) (n, ∆, X) = (3, 3u2 ± 8, u3 ± 3u) or (n, ∆, X) = (3, 3u2 ± 1, 8u3 ± 3u), where

u ∈ Z;

(e) (n, ∆, X) = (5, 19, 22434) or (n,∆, X) = (5, 341, 2759646).

Proof. If d 6≡ 7 (mod 8) then the lemma is a reformulation of a theorem
of Cohn [12]. So, it remains the case when in (3) d ≡ 7 (mod 8) and Y is odd.
In this case we may apply a result of Ljunggren [17] (pp. 593–594) to conclude
that if in equation (3) n - h then there exist a1, b1 ∈ Z such that

±X + c
√
−d =

(
a1 + b1

√−d

2

)n

, a1 ≡ b1 (mod 2). (8)

If in (8) a1 and b1 are both odd then since d ≡ 7 (mod 8), we get

a2
1 + db2

1 ≡ 0 (mod 8),

whence, by

Y =
a2
1 + db2

1

4
,

it follows that Y is even, a contradiction. So a1 and b1 are both even and the
lemma is proved. ¤

The next lemma provides an upper bound for the class number of an imagi-
nary quadratic field.

Lemma 3. Let D > 0 be a square-free integer, and denote by h the class

number of the field K = Q(
√−D ). Then

h <
4
π

√
D(log 2e

√
D ).
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Proof. Denote by h(−4D) the class number of the unique quadratic order
in K with discriminant −4D. Then h(−4D) is the number of classes of posi-
tive quadratic forms of discriminant −4D (see e.g. Cohen [9], Definition 5.2.7).
Further, we have

h(−4D) <
4
π

√
D(log 2e

√
D )

(cf. e.g. Proposition 1 of [8]). Since h | h(−4D) (see e.g. [21]), the assertion
follows. ¤

Lemma 4. Denote by h(−4∆) the number of classes of positive binary forms

of discriminant −4∆. Then, for d ≡ 3 (mod 4),

h(−4∆) = h(−4c2d) = h2c
∏

p|2c

(
1− (−d/p)

p

)
1
u

,

where u = 3, if d = 3 and u = 1 otherwise; for d ≡ 1, 2 (mod 4),

h(−4∆) = h(−4c2d) = hc
∏

p|c

(
1− (−4d/p)

p

)
1
u

,

where u = 2, if d = 1 and u = 1 otherwise. Here ( ·p ) denotes the Kronecker

symbol.

Proof. See Mollin [21]. ¤

The next lemma is a deep result of de Weger [25]. It will be utilized in the
proof of Theorem 3.

Lemma 5. Let S = {2, 3, 5, 7}. Consider the equation U + V = W 2 in

unknowns U , V , W , where U , V or −V ∈ S ∩ Z>0, W ∈ Z>0. Suppose that

U ≥ V and that gcd(U, V ) is square-free. Then the above equation has exactly

388 solutions which are given explicitly in [25].

Proof. This is Theorem 7.2 of [25]. ¤

3. Proofs of theorems

Proof of Theorem 2. Consider equation (3) satisfying (4) and (5). We
follow the approach of [8] and we introduce two infinite sets. Denote by Fk the
Fibonacci sequence defined by F0 = 0, F1 = 1 and satisfying Fk = Fk−1 + Fk−2
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for all k ≥ 2 and by Lk the Lucas sequence defined by by L0 = 2, L1 = 1 and
satisfying Lk = Lk−1 + Lk−2 for all k ≥ 2. Then

F := {(Fk+ε, Lk−ε, Fk) | k ≥ 2, ε ∈ {±1}},

and

H := {(1, ∆, Y ) | there exist r, s ∈ Z>0 such that

s2 + ∆ = µY r and 3s2 −∆ = ∓µ}.

If (X, Y, n) is a non-exceptional solution of (3) then it corresponds to a solution
(X1, Y1, Z1) = (X, 1, n) of (7). Since by Lemma 1 the solutions of (7) can be put
into at most 2ω(Y )−1 classes we have to distinguish two cases. Firstly, if (X, 1, n) is
the minimal solution in the class then by Lemma 1 we have n | h(−4∆). Secondly,
if (X, 1, n) is not the minimal solution then there exist at least two solutions of (7)
in the class. By using Theorem 2 of [8] and noting that n is an odd prime we see
that in this case either (µ, Y, ∆, n) ∈ {(4, 2, 7, 3), (4, 7, 3, 3), (4, 2, 7, 5), (4, 2, 7, 13),
(4, 3, 11, 5), (4, 5, 19, 7), (1, 55, 19, 5), (1, 377, 341, 5)} or we have

n ∈ {1, 5} and (1,∆, Y ) ∈ F

or
n ∈ {r, 3r} and (1,∆, Y ) ∈ H, with r ∈ Z>0.

Since n is an odd prime we obtain that

n = 5 and (1, ∆, Y ) ∈ F or n = 3 and (1,∆, Y ) ∈ H.

If n = 5 and (1, ∆, Y ) ∈ F then by the definition of the set F we get

Fk−2 = 1, Lk+1 = ∆, Fk = Y

or
Fk+2 = 1, Lk−1 = ∆, Fk = Y.

We see that Fk+2 = 1 cannot hold since in this case it follows that k + 2 ∈ {1, 2}
and hence k = 0. Thus F0 = Y = 0 follows which contradicts the assumption
Y > 1. If Fk−2 = 1 we get k − 2 ∈ {1, 2}, whence k ∈ {3, 4} which implies by
Fk = Y that

(Y, ∆) ∈ {(2, 7), (3, 11)}.
Hence using (3) we get

X2 + 7 = µ · 25 and X2 + 11 = µ · 35.
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We see that if µ = 4 the above equations have solutions which are already listed
(i.e. (µ, Y, ∆, n)∈{(4, 2, 7, 5), (4, 3, 11, 5)}). If µ =1 then X2+11 = 35 is impossi-
ble, while the equation X2 +7 = 25 leads to an exceptional solution of (3), which
contradicts the assumption that (X, Y, n) is non-exceptional. Hence we obtain
that

n | h(−4∆) or n = 3,

according as (X, 1, n) is the minimal solution in the class or not. We recall that n

is an odd prime and ∆ = dc2 ∈ S. Thus if n | h(−4∆) but n - h then by Lemma 4
we obtain that n cannot exceed the greatest prime lying in S = {p1, . . . , ps}.
Hence

n ≤ max{3, P}.
If n | h then since d is the square-free part of ∆ we have

d ≤ Q = p1 · · · ps.

Hence using Lemma 3 the assertion follows. ¤

Proof of Theorem 1. Put f(x) = x2 +Ax+B, where A,B ∈ Z. One can
easily see that equation (2) leads to the equation of type (3)

X2 + ∆ = µY n, (9)

where

(X, ∆, µ, Y ) =





(
x +

A

2
,−Df

4
, 1, y

)
if Df is even,

(2x + A,−Df , 4, y) if Df is odd.

According to the definition of ∆ and the assumption x 6= −A
2 , we may suppose

that in equation (9)

∆ ∈ S, ∆ > 0, X ≥ 1, n ≥ 3 prime. (10)

Since, by assumption, gcd(Y, ∆) = 1 we can apply Theorem 2 to equation (9) and
we get Theorem 1. ¤

Proof of Theorem 3. There is no loss of generality by supposing that in
(6) n = 4 or n is an odd prime. Keeping the notations of the preceding sections we
have dc2 = ∆ = 2α3β5γ7δ, where d ∈ H with H = {1, 2, 3, 5, 6, 7, 10, 14, 15, 21, 30,
35, 42, 70, 105, 210}. Assume that n is an odd prime. Since (x, y, n) is a non-
exceptional solution of (6) and for every d ∈ H the class number h of the imaginary
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quadratic field Q(
√−d ) is 1 or a power of 2 by Theorem 2 we get n ≤ 7. Hence

(6) can have a solution only if n ∈ {3, 4, 5, 7}.
The case n ∈ {5, 7}. We recall that dc2 = ∆ = 2α3β5γ7δ, where d ∈ H with
H = {1, 2, 3, 5, 6, 7, 10, 14, 15, 21, 30, 35, 42, 70, 105, 210}.
Consider equation (6) with n = 5. Assume first that α ≥ 0, β ≥ 0, γ ≥ 6, δ ≥ 0.
By Lemma 2 we get

±x + c
√
−d = (a + b

√
−d )5 (11)

where a, b ∈ Z, b | c, y = a2 + db2. Hence, by comparing the imaginary parts of
(11) we obtain

5a4b− 10a2b3d + b5d2 = c. (12)

Since γ ≥ 6 we have ord5(c) ≥ 3.

Case 1. 1 ≤ ord5(b) ≤ ord5(c)− 2
Since b | c and ord5(b) ≤ ord5(c)−2, we see that c

5b ∈ Z and ord5

(
c
5b

) ≥ 1. Using
(12) we get

a4 − 2a2b2d +
b4

5
d2 =

c

5b
. (13)

Since ord5

(
c
5b

) ≥ 1 and ord5(b) ≥ 1, we obtain by (13) that 5 | a4, whence by
a | x we get 5 | x. Thus using equation (6) and the assumption γ ≥ 6, we obtain
that 5 | y which is impossible since x and y are relatively prime.

Case 2. ord5(b) = ord5(c).
In this case we have ord5(b) ≥ 3 since ord5(c) ≥ 3. By (12) it follows that

5a4 − 10a2b2d + b4d2 =
c

b
. (14)

Hence the left-hand side of (14) is divisible by 5 but the right-hand side is not, a
contradiction.

Case 3. ord5(b) = 0
By ord5(b) = 0 we have ord5(c) = ord5

(
c
b

) ≥ 3. Thus using (14) we see that
5 | b4d2 follows, whence by ord5(b) = 0 we get 5 | d. Hence from (14) we infer
that

a4 − 2a2b2d +
b4d2

5
=

c

5b
. (15)

Clearly b4d2

5 and c
5b are integers and ord5

(
c
5b

) ≥ 2. Thus by (15) it follows that
5 | a4, whence by a | x we get 5 | x. Thus using equation (6) and the assumption
γ ≥ 6, we obtain that 5 | y which contradicts gcd(x, y) = 1.

Case 4. ord5(b) = ord5(c)− 1
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By assumption we see that in (15) b4d2

5 and c
5b are integers and ord5( c

5b )=0. If
now ord2

(
c
5b

) ≥ 1 then clearly α ≥ 1 and by (15) we get

a4 ≡ b4d2

5
(mod 2). (16)

We may suppose that a is odd since otherwise we obtain by (6), a | x and α ≥ 1
that 2 ≤ gcd(x, y) contradicting the assumption gcd(x, y) = 1. Thus by (16) we
see that b and d are odd integers, whence it follows that 2 | y = a2 + db2. Using
equation (6) and α ≥ 1 we get 2 | x which cannot hold since x and y are relatively
prime integers.

Suppose now that ord2

(
c
5b

)
= 0 and ord3

(
c
5b

) ≥ 1. Then obviously β ≥ 1.
We may assume that 3 - d and 3 - b since otherwise we get by (15) that 3 | a4

whence 3 | x. Thus by (6) and β ≥ 1 we see that 3 | y which leads to a
contradiction.

By ∆ = dc2, y = a2 + db2 and (6) we have

x2 + dc2 = (a2 + db2)5 (17)

Clearly 3 - x since otherwise we obtain a contradiction by (6), β ≥ 1 and
gcd(x, y) = 1. Thus by 3 - x and β ≥ 1 we have

x2 + dc2 ≡ 1 (mod 3). (18)

If 3 | a, then by a | x, β ≥ 1 and (6) we obtain a contradiction. Hence

(a2 + db2)5 ≡ (1 + d)5 (mod 3). (19)

Since for every d ∈ H with 3 - d we have 1 + d ≡ −1, 0 (mod 3) we see by (19)
that

(a2 + db2)5 ≡ −1, 0 (mod 3). (20)

Combining (17),(18) and (20) we get a contradiction.
If ord2

(
c
5b

)
= 0 and ord3

(
c
5b

)
= 0 then we have by (15) that

a4 − 2a2b2d +
b4d2

5
= ±7δ′ , (21)

for some non-negative integer δ′. If δ′ ≥ 1 and 7 | d then by (21) we infer that
7 | a4, whence by a | x we have 7 | x and 7 | y = a2 + db2. This cannot hold by
gcd(x, y) = 1.
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If δ′ ≥ 1 and 7 - d then (21) is impossible mod 7 for every d ∈ H.
If δ′ = 0 then (21) is a Thue equation. By solving (21) for every d ∈ H we obtain
the solution (∆, y, n) = (2 · 53, 11, 5). It remains the case when in (6) n = 5 and
γ ∈ {0, 1, 2, 3, 4, 5}. If γ ∈ {0, 3, 4, 5} then we may apply the argument used in
the Case 4 to the equation

5a4 − 10a2b2d + b4d2 =
c

b
and a4 − 2a2b2d +

b4d2

5
=

c

5b
,

respectively. Thus in this case there are no other solutions with n = 5.
If γ ∈ {1, 2} we see that ord5(c) = 0 and ord5(d) = 1, or ord5(c) = 1 and
ord5(d) = 0. This leads to a contradiction in view of (12).

In the case when in (6) n = 7 we can work as above and we conclude that
there are no solutions to (6) with n = 7.

The case n ∈ {3, 4}.
First consider equation (6) with n = 4. Then factorizing in (6) we get

(y2 + x)(y2 − x) = ∆. (22)

Hence y2 + x ∈ S and y2 − x ∈ S, where S = {2, 3, 5, 7}. Thus we have the
following equations





y2 + x

2
+ y2−x

2 = y2, if x ≡ y (mod 2),

2(y2 + x) + 2(y2 − x) = (2y)2, if x 6≡ y (mod 2).
(23)

Since x and y are relatively prime we have gcd
(

y2+x
2 , y2−x

2

)
= 1 and gcd(2(y2 +

x), 2(y2−x)) = 2. Further, since x > 0 we get that y2+x
2 ≥ y2−x

2 and 2(y2 +x) ≥
2(y2 − x) always holds. Thus we see that equations (23) satisfies the conditions
of Lemma 5 with

(U, V, W ) =
(

y2 + x

2
,
y2 − x

2
, y

)
and

(U, V, W ) = (2(y2 + x), 2(y2 − x), 2y).

By applying Lemma 5 to (23) we obtain all non-exceptional solutions of (6) with
n = 4 (see the table).

Next suppose that in (6) n = 3. By Lemma 2 we see that (6) can have a
solution with n = 3 only in the following cases:
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(I) 3a2
1b1 − b3

1d = c, where a1, b1 ∈ Z and b1 | c,
(II) 3A2

1B1 −B3
1d = 8c, where A1, B1 are odd integers and B1 | c,

(III) ∆ = 3u2 ± 8 and x = u3 ± 3u, where u ∈ Z,

(IV) ∆ = 3u2 ± 1 and x = 8u2 ± 3u, where u ∈ Z.

Each of the above cases leads to an equation of the form

U + V = W 2, U, V ∈ S

with the following choices of the triple (U, V, W ).

Case (I) In this case we have the equation

3a2
1b1 − b3

1d = c,

where a1, b1 ∈ Z and b1 | c. We distinguish three subcases according to 3 | d or
3 - db1 or 3 - d and 3 | b1.
If 3 | d then obviously 3 | c and hence we get from the above equation

a2
1 =

c

3b1
+

d

3
b2
1.

We see that gcd
(

c
3b1

, d
3 b2

1

)
is square-free since c

3b1
and b2

1 are relatively prime and d
3

is square-free. The last two subcases can be reduced in a

similar way. Thus we have to solve for every d ∈ H the following equations:

(U, V,W ) =





(
d
3 b2

1,
c

3b1
, a1

)
, if 3 | d and d

3b2
1 ≥ c

3b1
,

(
c

3b1
, d

3b2
1, a1

)
, if 3 | d and c

3b1
> d

3b2
1,

(
3db2

1,
3c
b1

, 3a1

)
, if 3 - d, 3 - b1 and 3db2

1 ≥ 3c
b1

,

(
3c
b1

, 3db2
1, 3a1

)
, if 3 - d, 3 - b1 and 3c

b1
> 3db2

1,

(
3db′21 , c

9b′1
, a1

)
,

b1 = 3b′1, if 3 - d, 3 | b1, and 3db′21 ≥ c
9b′1

,(
c

9b′1
, 3db′21 , a1

)
,

b1 = 3b′1, if 3 - d, 3 | b1, and c
9b′1

> 3db′21 .

(24)
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Case (II) In this case we deal only with those values of d ∈ H for which d ≡ 3
(mod 8). Thus d ∈ {3, 35} and we get the following equations:

(U, V, W ) =





(
B2

1 , 8c
3B1

, A1

)
, if d = 3 and B2

1 ≥ 8c
3B1

,

(
8c

3B1
, B2

1 , A1

)
, if d = 3 and 8c

3B1
> B2

1 ,

(
105B2

1 , 24c
B1

, 3A1

)
, if d = 35, 3 - B1 and 105B2

1 ≥ 24c
B1

,

(
24c
B1

, 105B2
1 , 3A1

)
, if d = 35, 3 - B1 and 3c

B1
> 105B2

1 ,

(
105B′2

1 , 8c
9B′1

, A1

)
,

B1 = 3B′
1, if d = 35, 3 | b1, and 105B′2

1 ≥ 8c
9B′1

,(
8c

9B′1
, 105B′2

1 , A1

)
,

B1 = 3B′
1, if d = 35, 3 | b1, and 8c

9B′1
> 105B′2

1 .

(25)

Case (III)

(U, V,W ) =





(3∆,±24, 3u) , if α ∈ {0, 1},
(

3∆
4 ,±6, 3u

2

)
, if α ≥ 2.

(26)

Case (IV)
(U, V, W ) = (3∆,±3, 3u) . (27)

One can easily see that each of the above equations satisfies the conditions of
Lemma 5. By applying Lemma 5 to equations (24)–(27) we get all non-exceptional
solutions to (6) with n = 3 (see the table). ¤

4. Non-exceptional solutions of equation (6)

The solutions of (6) with α = 0 are marked with an asterisk.

Table

∆ y n

22 5 3

34 ∗ 13 3

72 ∗ 65 3

2434 193 3

3672 ∗ 585 3

∆ y n

3772 ∗ 67 3

355272 ∗ 79 3

263772 193 3

2437 73 3

3752 ∗ 91 3

∆ y n

28375472 50401 3

3135274 ∗ 59539 3

3135672 ∗ 60799 3

223135476 93349 3

28355676 129649 3
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∆ y n

3652 ∗ 2701 3

263472 37633 3

2 3 3

2 · 54 11 3

2352 9 3

2 · 3452 19 3

2552 41 3

2756 129 3

2334 97 3

233454 121 3

2 · 3652 211 3

253454 409 3

2952 681 3

233658 1489 3

2 · 345672 1051 3

2 · 345272 1171 3

2 · 3856 1819 3

2934512 21769 3

293652 6129 3

253452 9601 3

273654 13849 3

25345872 19441 3

23365472 42361 3

2 · 3651474 440491 3

27345274 92198401 3

35 ∗ 7 3

3552 ∗ 19 3

2235 13 3

223572 37 3

223752 61 3

243552 49 3

3552 ∗ 31 3

24355272 169 3

3572 ∗ 43 3

22355272 109 3

22547 29 3

227 37 3

34527 ∗ 79 3

51073 ∗ 1499 3

36567 ∗ 631 3

2434547 1369 3

2434587 1969 3

∆ y n

375272 ∗ 151 3

24355474 1801 3

355272 ∗ 211 3

263552 241 3

263754 481 3

26355272 361 3

375472 ∗ 499 3

22355272 421 3

22395272 589 3

22355472 541 3

243554 601 3

3954 ∗ 679 3

22355472 709 3

28335472 849 3

223972 757 3

283952 889 3

24395272 1009 3

28355272 1129 3

22375272 1261 3

24375274 2041 3

22375274 2221 3

263574 2353 3

335474 ∗ 2451 3

2831174 4993 3

395274 ∗ 2671 3

210355274 3361 3

243115472 5161 3

2103772 4033 3

2631152 6481 3

395674 ∗ 12979 3

375672 ∗ 15751 3

2123556 16009 3

212395272 17329 3

210395672 27721 3

2143115472 51361 3

22395473 70189 3

243235273 607849 3

210319527 723361 3

331547 4800469 3

2 · 375 31 3

23375 169 3

233115 241 3

∆ y n

210375874 362401 3

218355276 1053721 3

28355478 5762401 3

3175872 ∗ 19136251 3

5 · 72 ∗ 9 3

225 · 72 29 3

34 · 5 ∗ 61 3

345 · 74 ∗ 109 3

225 · 76 141 3

225372 669 3

24345 · 74 1009 3

2634 · 5 3841 3

5576 ∗ 4281 3

24365 · 74 8689 3

365378 ∗ 15901 3

28345 · 78 17761 3

385 · 72 ∗ 238141 3

2 · 33 7 3

233372 25 3

2 · 335274 151 3

2 · 3572 79 3

253372 121 3

2 · 3352 199 3

2 · 3576 415 3

233574 337 3

273372 505 3

2 · 3772 655 3

2535 1153 3

293376 1705 3

23355274 7249 3

23335272 39201 3

273778 43873 3

2 · 311710 69295 3

2153372 131065 3

527 ∗ 11 3

2103472 65 4

210325272 113 4

212345472 337 4

210325474 1201 4

25 3 4

2772 9 4

253272 11 4
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∆ y n

345273 ∗ 4111 3

2634547 5401 3

2105273 9569 3

24367 12097 3

22385673 26341 3

225875 89429 3

2451473 182441 3

28365127 209161 3

212345473 16859161 3

2 · 5 · 72 11 3

2 · 5372 331 3

23345 481 3

23345 · 74 529 3

25345 · 74 1969 3

23365 · 78 6721 3

273453712 309649 3

29365 · 74 276529 3

23385374 972049 3

23347 673 3

2 · 31073 122479 3

23310547 306180001 3

335 ∗ 19 3

26375 103681 3

357 ∗ 25 3

377 ∗ 37 3

22397 85 3

22357 109 3

357 ∗ 253 3

243157 1177 3

243773 385 3

24377 457 3

355273 ∗ 721 3

311527 ∗ 781 3

263117 1873 3

223573 5485 3

2831173 6601 3

2437527 11209 3

28357 64513 3

25325 7 4

∆ y n

25375 649 3

2 · 31153 919 3

23355 1441 3

273155 3289 3

2 · 3755 24991 3

253115 · 72 31441 3

233235 · 72 66889 3

233155372 196729 3

293753 256009 3

24345 · 7 6721 3

2 · 35567 379 3

2 · 35527 499 3

25335473 721 3

2335547 2041 3

2733587 4209 3

23355127 17641 3

2 · 39527 40819 3

211335473 57169 3

2 · 335675 134331 3

2 · 3751073 219139 3

2735527 806401 3

23345 · 7 3361 3

24355 · 7 20161 3

23375 · 7 1129 3

233115 · 7 1201 3

253155 · 7 5209 3

23323537 87049 3

27375 · 7 17929 3

2335537 252001 3

2632 5 4

72 ∗ 5 4

26325272 29 4

263252 13 4

283252 17 4

283272 25 4

26325272 37 4

26345272 53 4

283452 41 4

335 ∗ 4 4

∆ y n

2732 17 4

25325272 43 4

255274 51 4

295272 57 4

293474 113 4

255272 99 4

253 5 4

263 7 4

24355272 49 4

28372 97 4

24335472 133 4

245 3 4

24325 7 4

265 9 4

5372 ∗ 21 4

24325 · 72 47 4

28345 161 4

253 · 52 7 4

273 · 52 11 4

253354 29 4

273 · 52 49 4

293352 59 4

273 · 5472 73 4

25335272 103 4

2113 · 56 131 4

233772 175 4

293 · 5274 4801 4

7 ∗ 2 4

237 3 4

527 ∗ 4 4

26327 11 4

5473 ∗ 22 4

28347 23 4

26367 29 4

2632527 53 4

210327 127 4

263105273 443 4

21238527 431 4

211335 · 72 263 4
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∆ y n

25345 11 4

29365 37 4

27325 13 4

25325 19 4

27345 · 72 89 4

25365372 223 4

253105 · 72 247 4

2113253 253 4

23327 5 4

25527 9 4

23347 13 4

277 15 4

29547 39 4

233273 19 4

2532527 23 4

233875 173 4

2532567 127 4

2734547 137 4

2932527 449 4

3 · 5 ∗ 2 4

∆ y n

3 · 53 ∗ 8 4

263 · 5 · 72 17 4

283 · 5 31 4

26335 · 72 47 4

3753 ∗ 34 4

243 · 7 5 4

243 · 527 11 4

2433527 17 4

263 · 547 31 4

263 · 527 19 4

243 · 527 23 4

283 · 527 37 4

26337 55 4

21033567 721 4

24355477 293 4

2143 · 5273 2053 4

253 · 572 13 4

253 · 5 11 4

273 · 5 · 72 23 4

25335 · 74 59 4

∆ y n

293 · 5376 407 4

25355372 493 4

26325 · 7 71 4

253 · 7 13 4

2537547 8749 4

25325 · 7 17 4

25345 · 7 19 4

27365 · 7 43 4

29325 · 7 67 4

25310537 257 4

2532537 251 4

263 · 5 · 7 11 4

283 · 5 · 7 13 4

2103 · 5 · 7 19 4

26335 · 7 31 4

263 · 5 · 7 41 4

214335 · 7 71 4

2123353 · 7 157 4

2103 · 5373 359 4

2203 · 5 · 73 517 4

253 · 5 · 7 29 4

2 · 53 11 5
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[13] K. Győry, I. Pink and Á. Pintér, Power values of polynomials and binomial Thue–Mahler
equations, Publ. Math. Debrecen 65 (2004), 341–362.

[14] Le Maohua, Some Exponential Diophantine Equations, I. The equation
D1x2 −D2y2 = λkz , J. Number Theory 55 (1995), 209–221.

[15] V. A. Lebesque, Sur l’impossibilité en nombres entierde l’equation xm = y2 + 1, Nouvelle
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