
Publ. Math. Debrecen

70/1-2 (2007), 167–178

Flow-invariant structures on unit tangent bundles

By ERIC BOECKX (Leuven), JONG TAEK CHO (Kwangju)
and SUN HYANG CHUN (Kwangju)

Abstract. We study unit tangent bundles T1M for which the structural operator

h = 1
2

Lξφ, its characteristic derivative h′ = ∇ξh or the characteristic Jacobi operator

` = R(·, ξ)ξ is invariant under the geodesic flow generated by the characteristic vector

field ξ. Also, we prove that the operator ` on T1M is η-parallel if and only if the base

manifold is of constant curvature.

1. Introduction

One way to study the geometry of a Riemannian manifold (M, G) is to in-
vestigate the interaction of the manifold with its unit tangent sphere bundle
T1M endowed with its standard contact Riemannian structure (η, g, φ, ξ). Spe-
cial properties for the geometry of (M, G) will be reflected in special properties
for the contact structure on T1M and vice versa. In particular, the characteristic
vector field ξ on T1M contains crucial information about M . In fact, all the geo-
desics in M are controlled by the geodesic flow on T1M which is precisely given
by ξ.

Apart from the defining structure tensors η, g, φ and ξ, two other operators
play a fundamental role in contact Riemannian geometry, namely the structural
operator h = 1

2 Lξφ and the characteristic Jacobi operator ` = R(·, ξ)ξ, where Lξ

denotes Lie differentiation in the characteristic direction ξ. An important topic
in the study of the contact metric structure on unit tangent bundles has been
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to determine those Riemannian manifolds (M,G) for which the corresponding
contact structure on T1M enjoys symmetry properties related to the geodesic
flow.

A first symmetry type for the contact metric structure occurs when the geo-
desic flow, generated by ξ, leaves some structure tensors invariant. This is always
the case for ξ and η since Lξξ = 0 and Lξη = 0. The metric g is left invariant by
the flow of ξ (or equivalently, the flow consists of local isometries or ξ is a Killing
vector field) if and only if the structural operator h vanishes. By definition, this
corresponds precisely to Lξφ = 0, i.e., also φ is preserved under the geodesic
flow. Y. Tashiro proved in [14] that this happens for a unit tangent bundle
(T1M ; η, g, φ, ξ) if and only if (M, G) has constant curvature c = 1. In this paper,
we investigate when the operators h, ` and h′ = ∇ξh on T1M are preserved by
the geodesic flow. Namely, we prove in Section 4:

Theorem 1. Let T1M be the unit tangent sphere bundle with the standard

contact Riemannian structure (η, g, φ, ξ). Then T1M satisfies Lξh = 0 if and only

if (M, G) is of constant curvature c = 1.

Theorem 2. Let T1M be the unit tangent sphere bundle with the standard

contact Riemannian structure (η, g, φ, ξ). Then T1M satisfies Lξ` = 0 if and only

if (M, G) is of constant curvature c = 0 or c = 1.

Theorem 3. Let T1M be the unit tangent sphere bundle with the standard

contact Riemannian structure (η, g, φ, ξ). Then T1M satisfies Lξh
′ = 0 if and

only if (M, G) is of constant curvature c = −1, c = 0 or c = 1.

A second type of symmetry occurs when some structure tensors are covari-
antly parallel along the integral curves of ξ. On a contact metric space, it always
holds ∇ξξ = ∇ξη = ∇ξg = ∇ξφ = 0, but the other structure tensors need not
be parallel in the ξ-direction. Recently, it was proved that T1M satisfies the con-
dition ∇ξh = 0 or, equivalently, ∇ξ` = 0, if and only if (M, G) is of constant
curvature c = 0 or c = 1 ([12], [13]). This result can easily be verified from the
formulas in this paper.

A final symmetry notion on contact Riemannian manifolds is the notion of
η-parallelity. We call a (1, 1)-tensor T η-parallel if g((∇XT )Y,Z)=0 for all vector
fields X, Y, Z orthogonal to ξ. In particular, the tensor φ is η-parallel if and only if
the contact structure is CR-integrable, (∇Xφ)Y = g(X+hX, Y )ξ−η(Y )(X+hX).
On a unit tangent bundle T1M , this occurs if and only if (M, G) is of constant
curvature, as can easily be verified from the formulas further on. Contact metric
spaces with η-parallel structural operator h were completely classified by the first
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two authors in [6]. As a corollary of that result, we obtain also that the standard
contact Riemannian structure (η, g, φ, ξ) of a unit tangent sphere bundle T1M has
η-parallel h if and only if (M, G) is of constant curvature. Now, we consider the
case when the characteristic Jacobi operator ` on T1M is η-parallel. We show in
Section 5:

Theorem 4. Let T1M be the unit tangent sphere bundle with the stan-

dard contact Riemannian structure (η, g, φ, ξ). Then the characteristic Jacobi

operator ` of T1M is η-parallel if and only if (M,G) is of constant curvature.

2. Preliminaries

All manifolds in the present paper are assumed to be connected and of class
C∞. We start by collecting some fundamental material about contact metric
geometry. We refer to [2] for further details. A (2n + 1)-dimensional manifold
M2n+1 is said to be a contact manifold if it admits a global 1-form η such that
η ∧ (dη)n 6= 0 everywhere. Given a contact form η, we have a unique vector field
ξ, the characteristic vector field, satisfying η(ξ) = 1 and dη(ξ,X) = 0 for any
vector field X. It is well-known that there exists a Riemannian metric g and a
(1, 1)-tensor field φ such that

η(X) = g(X, ξ), dη(X, Y ) = g(X, φY ), φ2X = −X + η(X)ξ (1)

where X and Y are vector fields on M . From (1) it follows that

φξ = 0, η ◦ φ = 0, g(φX, φY ) = g(X, Y )− η(X)η(Y ). (2)

A Riemannian manifold M equipped with structure tensors (η, g, φ, ξ) satisfy-
ing (1) is said to be a contact Riemannian manifold and is denoted by M =
(M ; η, g, φ, ξ). Given a contact Riemannian manifold M , we define the structural
operator h by h = 1

2Lξφ, where L denotes Lie differentiation. Then we may
observe that h is symmetric and satisfies

hξ = 0 and hφ = −φh, (3)

∇Xξ = −φX − φhX (4)

where ∇ is the Levi–Civita connection. From (3) and (4) we see that each trajec-
tory of ξ is a geodesic. We denote by R the Riemannian curvature tensor defined
by

R(X, Y )Z = ∇X(∇Y Z)−∇Y (∇XZ)−∇[X,Y ]Z
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for all vector fields X, Y , Z. Along a trajectory of ξ, the Jacobi operator ` =
R(·, ξ)ξ is a symmetric (1, 1)-tensor field. We call it the characteristic Jacobi
operator. We have

` = φ`φ− 2(h2 + φ2), (5)

∇ξh = φ− φ`− φh2. (6)

A contact Riemannian manifold for which ξ is Killing is called a K-contact man-
ifold. It is easy to see that a contact Riemannian manifold is K-contact if and
only if h = 0 or, equivalently, ` = I − η ⊗ ξ.

3. The contact metric structure of the unit tangent bundle

The basic facts and fundamental formulae about tangent bundles are well-
known (cf. [9], [11], [16]). We only briefly review some notations and definitions.
Let M = (M,G) be an n-dimensional Riemannian manifold and let TM denote
its tangent bundle with the projection π : TM → M , π(x, u) = x. For a vector
X ∈ TxM , we denote by XH and XV , the horizontal lift and the vertical lift,
respectively. Then we can define a Riemannian metric g̃, the Sasaki metric on
TM , in a natural way by

g̃(XH , Y H) = g̃(XV , Y V ) = G(X, Y ) ◦ π, g̃(XH , Y V ) = 0

for all vector fields X and Y on M . Also, a natural almost complex structure
tensor J of TM is defined by JXH = XV and JXV = −XH . Then we easily see
that (TM ; g̃, J) is an almost Hermitian manifold. We note that J is integrable if
and only if (M, G) is locally flat ([9]). Now we consider the unit tangent sphere
bundle (T1M, ḡ), which is an isometrically embedded hypersurface in (TM, g̃)
with unit normal vector field N = uV . For X ∈ TxM , we define the tangential
lift of X to (x, u) ∈ T1M by

XT
(x,u) = XV

(x,u) −G(X, u)N(x,u).

Clearly, the tangent space T(x,u)T1M is spanned by vectors of the form XH and
XT where X ∈ TxM . We put

ξ̄ = −JN, φ̄ = J − η̄ ⊗N.

Then we find ḡ(X, φ̄Y ) = 2dη̄(X,Y ). By taking ξ = 2ξ̄, η = 1
2 η̄, φ = φ̄, and

g = 1
4 ḡ, we get the standard contact Riemannian structure (φ, ξ, η, g). Indeed,

we easily check that these tensors satisfy (1). Here we notice that ξ determines
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the geodesic flow. The tensors ξ and φ are explicitly given by

ξ = 2uH , φXT = −XH +
1
2

G(X, u)ξ, φXH = XT (7)

where X and Y are vector fields on M . From now on, we consider T1M =
(T1M ; η, g) with the standard contact Riemannian structure. We list the funda-
mental formulae which we need for the proof of our theorems. They are derived
in, e.g., [3], [4], [5], [8], [12], [14]. The Levi–Civita connection ∇ of (T1M, g) is
given by

∇XT Y T = −G(Y, u)XT , ∇XT Y H =
1
2

(K(u,X)Y )H ,

∇XH Y T = (DXY )T +
1
2

(K(u, Y )X)H ,

∇XH Y H = (DXY )H − 1
2

(K(X, Y )u)T .

(8)

For the Riemann curvature tensor R, we give only the two expressions we need
for the characteristic Jacobi operator `:

R(XT , Y H)ZH = −1
2
{K(Y,Z)(X −G(X, u)u)}T

+
1
4
{K(Y, K(u,X)Z)u}T − 1

2
{(DY K)(u,X)Z}H ,

R(XH , Y H)ZH = (K(X,Y )Z)H +
1
2
{K(u, K(X, Y )u)Z}H

− 1
4
{K(u,K(Y, Z)u)X −K(u,K(X, Z)u)Y }H

+
1
2
{(DZK)(X, Y )u}T

(9)

for all vector fields X, Y and Z on M . In the above, we denote by D the Levi–
Civita connection and by K the Riemannian curvature tensor associated with G.
From (7) and (8), it follows

∇XT ξ = −2φXT − (KuX)H , ∇XH ξ = −(KuX)T (10)

where Ku = K(·, u)u is the Jacobi operator associated with the unit vector u.
From (4) and (10), it follows that

hXT = XT − (KuX)T , hXH = −XH +
1
2

G(X,u)ξ + (KuX)H . (11)
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Using the formulae (9), we get

`XT =(K2
uX)T +2(K ′

uX)H , `XH=4(KuX)H− 3(K2
uX)H+2(K ′

uX)T (12)

where K ′
u = (DuK)(·, u)u and K2

u = K(K(·, u)u, u)u. By using (6), (7) and (9)
we obtain

h′XT = −2(KuX)H + 2(K2
uX)H − 2(K ′

uX)T ,

h′XH = −2(KuX)T + 2(K2
uX)T + 2(K ′

uX)H
(13)

where we put h′ = ∇ξh.
The above formulae (10)–(13) are also found in [5]. Finally, from (8) and

(12) we compute

`′XT = 4(K ′
uKuX + KuK ′

uX)T + 4(K ′′
uX + K2

uX −K3
uX)H ,

`′XH=8(K ′
uX −K ′

uKuX −KuK ′
uX)H+4(K ′′

uX + K2
uX −K3

uX)T
(14)

where `′ = (∇ξR)(·, ξ)ξ.

4. Invariance under the geodesic flow

In this section, we prove Theorems 1, 2 and 3. We start with Theorem 1.
Suppose that T1M = (T1M ; η, g) satisfies

Lξh = 0. (15)

The definition of the Lie differential yields

(Lξh)X = Lξ(hX)− h(LξX)

= [ξ, hX]− h[ξ, X] = (∇ξh)X −∇hXξ + h∇Xξ.
(16)

Together with (4), we see that the condition (15) is equivalent to

h′ = 2(hφ− h2φ). (17)

Since h′ = ∇ξh is a self-adjoint operator, from (17) we see that h2 = 0, which
implies that T1M is Sasakian and c = 1 (cf. [14]).

Next, we prove Theorem 2. From the definition of Lie differentiation, we see
that the condition Lξ` = 0 is equivalent to

`′ = `φ− φ` + `φh− φh`. (18)



Flow-invariant structures on unit tangent bundles 173

From (18), by using (7), (11), (12) and (14) a straightforward computation yields

0 = (2K ′
uX − 5K ′

uKuX − 3KuK ′
uX)H + (2K ′′

uX + 4K2
uX − 4K3

uX)T ,

0 = (2K ′
uX + K ′

uKuX + 3KuK ′
uX)T + (2K ′′

uX + 4KuX − 4K2
uX)H

for all vector fields X on M .
These equations are equivalent to the conditions

0 = 2K ′
uX − 5K ′

uKuX − 3KuK ′
uX, 0 = 2K ′

uX + K ′
uKuX + 3KuK ′

uX,

0 = 2K ′′
uX + 4K2

uX − 4K3
uX, 0 = 2K ′′

uX + 4KuX − 4K2
uX

for all tangent vectors X to M . The first two of these are equivalent to

0 = K ′
uKuX + KuK ′

uX, (19)

0 = K ′
uKuX −K ′

uX (20)

and the last two imply
0 = K3

uX − 2K2
uX + KuX. (21)

Now we replace X by K ′
uX in (21) and use first (19) and then (20) to compute

0 = K3
uK ′

uX − 2K2
uK ′

uX + KuK ′
uX

= −K ′
uK3

uX − 2K ′
uK2

uX −K ′
uKuX = −6K ′

uX.

This implies that (M, G) is a locally symmetric space ([10], [15]). Further, we
see from (21) that the eigenvalues of Ku are constant and equal to 0 or 1, i.e.,
(M, G) is a globally Osserman space (i.e., the eigenvalues of Ku do not depend
on the point p and not on the choice of unit vector u at p). However, a locally
symmetric globally Osserman space is locally flat or locally isometric to a rank one
symmetric space ([1], [8]). Therefore, we conclude that M is a space of constant
curvature c = 0 or c = 1.

Conversely, when (M,G) is of constant curvature c, we find the following
explicit expressions for h, `, h′ and `′ from (11)–(14):

hXT = (1− c)XT , hXH = (c− 1)
(
XH − 1

2
G(X, u)ξ

)
,

`XT = c2XT , `XH = (4c− 3c2)
(
XH − 1

2
G(X,u)ξ

)
,

h′XT = 2(c2 − c)
(
XH − 1

2
G(X, u)ξ

)
, h′XH = 2(c2 − c)XT ,
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`′XT = 4(c2 − c3)
(
XH − 1

2
G(X, u)ξ

)
, `′XH = 4(c2 − c3)XT (22)

for vector fields X on M . From these, we easily check that T1M satisfies (18)
when c = 0 or c = 1.

Finally, we prove Theorem 3. Suppose that T1M satisfies Lξh
′ = 0. Then

we see that the condition is equivalent to

∇ξh
′ = 2h′φ− φ(hh′ + h′h). (23)

(We use the commutation relation φh′ + h′φ = 0 here. It follows from the second
equation of (3) and by using ∇ξφ = 0.) If we take the skew-symmetric part of
(23), we obtain φ(hh′ + h′h) = 0, which implies

hh′ + h′h = 0. (24)

So, (23) reduces to
∇ξh

′ = 2h′φ.

Next, we start from (6), written in the equivalent form ` = φh′ − φ2 − h2 to
compute

`′ = φ∇ξh
′ − (hh′ + h′h) = 2φh′φ = 2h′. (25)

Using the expressions (13) and (14) for h′ and `′, this condition is equivalent to
the system

0 = K ′
uX + K ′

uKuX + KuK ′
uX, 0 = K ′

uX − 2K ′
uKuX − 2KuK ′

uX,

0 = K ′′
uX + KuX −K3

uX

for all tangent vectors X to M . In a similar way as before, we can conclude
that the manifold (M,G) must be locally symmetric (K ′

u = 0) and of constant
curvature c equal to −1, 0 or 1 (K3

u −KuX = 0).
Conversely, when (M,G) has constant curvature c equal to −1, 0 or 1, we

use again the expressions (22) to show that (23) holds. This proves Theorem 3.

5. η-parallel characteristic Jacobi operator on T1M

If the characteristic Jacobi operator ` of a given contact Riemannian manifold
satisfies g((∇X̄`)Ȳ , Z̄) = 0 for all vector fields X̄, Ȳ and Z̄ orthogonal to ξ, then
we say that ` is η-parallel. In this section, we determine the unit tangent sphere
bundles with η-parallel characteristic Jacobi operator by proving Theorem 4.
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From (8) and (12), we compute the covariant derivatives of the characteristic
Jacobi operator `:

(∇XH `)Y H =
(
4(DXK)(Y, u)u− 3(DXK)(KuY, u)u

− 3Ku((DXK)(Y, u)u) + K(u,K ′
uY )X + K ′

u(K(X, Y )u)
)H

+
(
− 2K(X, KuY )u +

3
2
K(X, K2

uY )u

+ 2(D2
XuK)(Y, u)u +

1
2
K2

u(K(X, Y )u)
)T

, (26)

(∇XH `)Y T =
(1

2
K(u, K2

uY )X + 2(D2
XuK)(Y, u)u

− 2Ku(K(u, Y )X) +
3
2
K2

u(K(u, Y )X)
)H

+
(
(DXK)(KuY, u)u + Ku((DXK)(Y, u)u)

−K(X, K ′
uY )u−K ′

u(K(u, Y )X)
)T

, (27)

(∇XT `)Y H =
(
4K(Y, X)u + 4K(Y, u)X + 2K(u,X)KuY − 3Ku(K(Y, X)u)

− 3Ku(K(Y, u)X)− 3K(KuY,X)u

− 3K(KuY, u)X − 3
2
K(u,X)K2

uY

− 2Ku(K(u,X)Y ) +
3
2
K2

u(K(u,X)Y )
)H

+
(
2(DXK)(Y, u)u + 2(DuK)(Y,X)u

+ 2(DuK)(Y, u)X −K ′
u(K(u,X)Y )

)T

+ G(X, u)
(
12(K2

uY )H − 8(KuY )H − 6(K ′
uY )T

)
, (28)

(∇XT `)Y T =
(
2(DXK)(Y, u)u + 2(DuK)(Y, X)u

+ 2(DuK)(Y, u)X + K(u,X)K ′
uY

)H

+
(
Ku(K(Y,X)u) + Ku(K(Y, u)X)

+ K(KuY,X)u + K(KuY, u)X
)T

−G(X, u)
(
4(K2

uY )T + 6(K ′
uY )H

)

+ G(Y, u)
(
(K2

uX)T + 2(K ′
uX)H

)
. (29)
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Now, we suppose that the Jacobi operator ` of T1M is η-parallel. Then from
(26)–(29), we obtain for tangent vectors X, Y , Z orthogonal to u:

0 = 4G((DXK)(Y, u)u,Z)− 3G((DXK)(KuY, u)u,Z)

− 3G(Ku((DXK)(Y, u)u), Z) + G(K(u,K ′
uY )X, Z)

+ G(K ′
u(K(X, Y )u), Z), (30)

0 = −4G(K(X,KuY )u,Z) + 3G(K(X, K2
uY )u,Z)

+ 4G((D2
XuK)(Y, u)u,Z) + G(K2

u(K(X,Y )u), Z), (31)

0 = G(K(u,K2
uY )X, Z) + 4G((D2

XuK)(Y, u)u,Z)

− 4G(Ku(K(u, Y )X), Z) + 3G(K2
u(K(u, Y )X), Z), (32)

0 = G((DXK)(KuY, u)u,Z) + G(Ku((DXK)(Y, u)u), Z)

−G(K(X, K ′
uY )u,Z)−G(K ′

u(K(u, Y )X), Z), (33)

0 = 8G(K(Y,X)u, Z) + 8G(K(Y, u)X, Z)

+ 4G(K(u,X)KuY, Z)− 6G(Ku(K(Y,X)u), Z)

− 6G(Ku(K(Y, u)X), Z)− 6G(K(KuY, X)u,Z)

− 6G(K(KuY, u)X,Z)− 3G(K(u, X)K2
uY,Z)

− 4G(Ku(K(u,X)Y ), Z) + 3G(K2
u(K(u, X)Y ), Z), (34)

0 = 2G((DXK)(Y, u)u,Z) + 2G((DuK)(Y, X)u,Z)

+ 2G((DuK)(Y, u)X, Z)−G(K ′
u(K(u,X)Y ), Z), (35)

0 = 2G((DXK)(Y, u)u,Z) + 2G((DuK)(Y, X)u,Z)

+ 2G((DuK)(Y, u)X, Z) + G(K(u,X)K ′
uY, Z), (36)

0 = G(Ku(K(Y,X)u), Z) + G(Ku(K(Y, u)X), Z)

+ G(K(KuY, X)u,Z) + G(K(KuY, u)X,Z). (37)

If we multiply (33) by 3 and sum with (30), we get

0 = 4G((DXK)(Y, u)u,Z) + G(K(u,K ′
uY )X,Z)

+ G(K ′
u(K(X, Y )u), Z)− 3G(K(X, K ′

uY )u,Z)

− 3G(K ′
u(K(u, Y )X), Z). (38)

By using the first Bianchi indentity, (38) is rewritten as follows.

0 = 4G((DXK)(Y, u)u,Z) + 3G(K(u, X)K ′
uY,Z)
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−G(K ′
u(K(u,X)Y ), Z) + 2G(K(K ′

uY, u)X, Z)

− 2G(K ′
u(K(u, Y )X), Z). (39)

If we apply (35) and (36) in (39), we obtain

0 = 2G((DXK)(Y, u)u,Z) + 2G((DuK)(Y, X)u,Z)

+ 4G((DuK)(Y, u)X,Z)−G(K(K ′
uY, u)X, Z)

+ 2G((DY K)(X, u)u,Z) + 2G((DuK)(X, u)Y, Z). (40)

We suppose that X = Y = Z are orthogonal to u. Then from (40), we find
that (DXK)(·, X)X = 0 for all tangent vectors X. From this, we conclude that
the base manifold is locally symmetric. In the case when dim M = 2, we at once
see that M is of constant curvature.

Next, multiplying (37) by 6 and summing with (34), we get

0 = 8G(K(Y,X)u,Z) + 8G(K(Y, u)X, Z)

+ 4G(K(u,X)KuY, Z)− 3G(K(u,X)K2
uY, Z)

− 4G(Ku(K(u,X)Y ), Z) + 3G(K2
u(K(u,X)Y ), Z). (41)

From (31) and (32), and using the fact that the base manifold M is locally sym-
metric, we obtain

0 = 8G(K(Y,X)u,Z) + 8G(K(Y, u)X, Z)

−G(K2
u(K(Z, Y )u), X)−G(K(u,K2

uX)Y, Z). (42)

In (42), we put Y = Z. Then G(K(Y, X)Y, u) = 0 for any orthogonal triple u,
X, Y . By Cartan’s theorem ([7]), the base manifold (M,G) must have constant
curvature if dim M ≥ 3. We conclude that M is of constant curvature for all
dimensions.

Conversely, we can use the expressions (22) to show that T1M has η-parallel
characteristic Jacobi-operator ` when the manifold M is of constant curvature c.
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