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A continuous analogue of the invariance principle
and its almost sure version

By ELENA PERMIAKOVA (Kazan)

Abstract. We deal with random processes obtained from a homogeneous random

process with independent increments by replacement of the time scale and by multi-

plication by a norming constant. We prove the convergence in distribution of these

processes to Wiener process in the Skorohod space endowed by the topology of uniform

convergence. An integral type almost sure version of this limit theorem is obtained.

1. Introduction

The usual invariance principle asserts the convergence of a sequence of the
random processes Zn(x) = 1√

n

∑[nx]
i=1 ξi, x ∈ [0, 1], as n → ∞, to the Wiener

process W , where ξi are independent identically distributed centered random
variables with variance 1. In this paper we study approximations of the Wiener
process W by the random processes

Xt(x) =
1√
t
V (tx), x ∈ [0, 1], (1)

where t > 0 is a parameter and V is a centered homogeneous random process with
independent increments such that V (0) = 0 and E(V (1))2 = σ2. Then almost
all sample paths of Xt belong to the Skorohod space D[0, 1] and in Section 2 we
prove that Xt converges to σW , as t →∞, in distribution in D[0, 1].

Section 3 deals with almost sure versions of limit theorems from Section 2.
Recall the notion of an almost sure limit theorem. Let ζn, n ∈ N be a sequence
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of random variables defined on the probability space (Ω,A,P). We will denote
by w→ the weak convergence of measures, by µζ the distribution of the random
element ζ and by B(B) the σ-algebra of the Borel subsets of the metric space B.

Usual limit theorem deals with the convergence of ζn. Consider the sequence
of measures

Q∗n[ζn](ω) = Q∗n(ω) =
1

Dn

n∑

k=1

dkδζk(ω), ω ∈ Ω, n ∈ N,

where dk, Dn ∈ R. Here and in the following δx denotes the measure of unit
mass, concentrated at the point x. In several cases, under the conditions of a
usual limit theorem, we have

Q∗n[ζn](ω) w→ µζ , as n →∞,

for almost all ω ∈ Ω. Such limit theorem is called almost sure version of the limit
theorem.

Almost sure versions of functional limit theorems were studied in several
papers. Here we mention only Lacey and Philipp [1], Chuprunov and Fazekas

[2], Chuprunov and Fazekas [3].
We describe sequences (sn), such that

Qn(ω) = Qn[Xsn(t)](ω) =
1

Dn

n∑

k=1

dkδXsk
(t,ω) (2)

converges weakly to the distribution of σW in D[0, 1] for almost all ω ∈ Ω.
In Chuprunov and Fazekas [4] it described the function f such that the

measures

QT,ω(A) =
1

ln(T )

∫ T

1

δXf(t)(1)(ω)
1
t
dt, A ∈ B(R)

converges weakly for almost all ω ∈ Ω, as T → ∞, to centered Gaussian distrib-
ution with the variance σ2.

We prove a functional version of this assertion (Theorem 1). We show that
under Chuprunov and Fazekas assumption the measures

QI
T,ω =

1
D(T )

T∫

1

δXf(t)(ω)d(t)dt

converges weakly, as T → ∞, to the distribution of σW in D[0, 1] for almost
all ω ∈ Ω. The proof of this result is based on the criterion for integral type
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almost sure version of a limit theorem which was obtained in Chuprunov and
Fazekas [4].

In Major [5] it proved that if X(t) is a generated Ornstain–Uhlenbeck
process then the measures

QT,ω(A) =
1

ln(T )

∫ T

1

δXt(ω)
1
t
dt, A ∈ B(D[0, 1])

converges weakly, as T → ∞, to the distribution of X in D[0, 1] for almost all
ω ∈ Ω. So Theorem 1 is a some analogue of Major Theorem. Observe, that the
proves of aur almost sure versions of limit theorems are based on Chuprunov and
Fazekas Lemma [3]. The proof of Major Theorem is based on ergogic theorem.

2. Functional limit theorems

We will denote by d→ the convergence in distribution. In the paper we will
denote by the same symbol the random process and the random element corre-
sponding to this random process.

Using the Kolmogorov representation (see [6], Sect. 18) we can assume that
the characteristic function of the centered homogeneous random process V (t) with
independent increments and with finite variance is

φV (t)(x)=E
(
eixV (t)

)
= exp


t





+∞∫

−∞
(eixy − 1− ixy)

1
y2

dK(y)






, x ∈ R. (3)

Here K(y) is a bounded increasing function such that K(−∞) = 0.
We will consider the sequence of the random processes

Yn(t) = Xsn(t) =
1√
sn

V (snt), (4)

where
sn →∞, as n →∞. (5)

We will use the following preliminary result.

Proposition 1. Let Yn be defined by (4) and assume that (sn) satisfies (5).
Let σ2 = K(+∞). Then we have

Yn
d→ σW, as n →∞,

in D[0, 1] endowed by the topology of uniform convergence.
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Proof. Let 0 ≤ t1 < t2 < ∞. By the convergence criterion in [6], Sect. 19,
we have

Yn(t2)− Yn(t1)
d→ σ(W (t2)−W (t1)), as n →∞. (6)

Let 0 ≤ t0 < t1 < · · · < tk < ∞. Introduce the notation ∆Yni = Yn(ti)−Yn(ti−1)
and ∆Wi = W (ti) −W (ti−1). Since ∆Yni, 1 ≤ i ≤ k, are independent random
variables, from (6) we obtain

(∆Yn1, . . . , ∆Ynk) d→ (σ∆W1, . . . , σ∆Wk).

Consequently, the finite dimensional distributions of Yn converge to the finite
dimensional distributions of σW . Also we have

lim sup
n→∞

E|Yn(t2)− Yn(t1)|2 = σ2|t2 − t1|. (7)

But (7) together with the convergence of the finite dimensional distributions
gives the weak convergence of Yn to σW (see Billingsley [7], Theorem 15.6)
in D[0, 1] with Skorohod’s J1-topology. However, in our case the limit process
is a continuous one. Hence, (see Pollard [8], p. 137, and the discussion in
Billingsley [7], Sect. 18), the weak convergence in Skorohod’s J1-topology ac-
tually implies the weak convergence in the uniform topology of D[0, 1]. The proof
is complete. ¤

Using Proposition 1, we can prove the following proposition.

Proposition 2. Let Xt be defined by (1). Then it holds that

Xt
d→ σW, as t →∞,

in D[0, 1] endowed by the topology of uniform convergence.

Proof. Consider D[0, 1] in the topology of uniform convergence and the
space M of distributions on D[0, 1] with the topology of convergence in distri-
bution. Then M is a metric space and denote by ρM a metric which defines
this topology on M . Then, by Proposition 1, ρM (µXsn

, µσW ) → 0, as sn → ∞.
Therefore ρM (µXt , µσW ) → 0, as t →∞. The proof is complete. ¤

Let ξi, i ∈ N, be independent identically distributed random variables with
the expectation a and the variance b2 and let π(t), t ∈ R+, be a Poisson process
with the intensity 1, such that the families ξi, i ∈ N and π(t), t ∈ R+ are
independent. Then

V ′(x) =
π(x)∑

i=1

ξi − ax, x ∈ [0, 1],
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is a centered homogeneous random process with independent increments such
that V ′(0) = 0 and E(V ′(1))2 = a2 + b2

So from Proposition 2 we obtain the following corollary.

Corollary 1. Let ξi, i ∈ N, be independent identically distributed random

variables with the expectation a and the variance b2. Let

X ′
t(x) =

π(tx)∑
i=1

ξi − atx

√
t

, x ∈ [0, 1]. (8)

Then one has

X ′
t

d→
√

a2 + b2 W, as t →∞,

in D[0, 1] with the topology of uniform convergence.

For ξi = 1 from Corollary 1 we obtain the following.

Corollary 2. Let

X∗
t (x) =

π(tx)− tx√
t

, x ∈ [0, 1]. (9)

Then one has

X∗
t

d→ W, as t →∞,

in D[0, 1] with the topology of uniform convergence.

3. Almost sure versions of functional limit theorems

We will consider the sequence of measures defined by (2) and connected with
the random processes Xt(x).

For the sequence sn we will assume the following property:

(A) for some β > 0,
sn

nβ
is an increasing sequence.

We will consider dk ∈ R with the properties:

(B) 0 ≤ dk ≤ ln
(

k + 1
k

)
,

∞∑

k=1

dk = ∞.

Denote Dn =
∑n

k=1 dk.
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Proposition 3. Let (A) and (B) be valid. Then it holds that

Qn(ω) w→ µσW if n →∞ (10)

for almost all ω ∈ Ω.

Proof. By (A) (sn) is an increasing sequence.
Let l < k. Let

Ykl(x) =





0, 0 ≤ x <
sl

sk
,

Yk(x)− V (sl)√
sk

,
sl

sk
≤ x ≤ 1.

Then Ykl(x), 0 ≤ x ≤ 1, and Yl(x), 0 ≤ x ≤ 1, are independent random
processes. Let ρ be the metric of D[0, 1]. Using the moment inequality from [8],
Sect. 5, p. 231 we obtain

Eρ(Yk, Ykl) ≤ E sup
0≤x≤1

|Yk(x)− Ykl(x)| ≤ E sup
0≤x≤ sl

sk

|Yk(x)|

≤ 4E
∣∣∣∣Yk

(
sl

sk

)∣∣∣∣ ≤ 4

√
E(V (sl))2√

sk
≤ 4σ

√
sl

sk
≤ 4σ

(
l

k

)β/2

. (11)

Lemma 1 in [3], Proposition 1 and (11) imply (10). The proof is complete. ¤

For the function f we will consider the following property

(C) for some β > 0,
f(x)
xβ

is an increasing function.

Now we will prove the integral type almost sure version of Proposition 2. We
will consider the random processes

Yt(x) =
V (f(t)x)√

f(t)
, x ∈ [0, 1].

Let the function d(s) is a decreasing such that the condition

(D)
∫ k+1

k

d(s)ds ≤ ln

(√
k + 1

k

)
for all k ∈ N and

∫ ∞

1

d(s)ds = +∞

are valid.
We will consider the measures

QI
S,ω(ω) =

1
D(S)

∫ S

1

δYs(ω)d(s)ds,

where D(S) =
∫ S

1
d(s)ds.
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Theorem 1. Let (C) and (D) be valid. Then we have

QI
S(ω) w→ µσW , as S →∞, (12)

for almost all ω ∈ Ω.

Proof. Let 0 < l < k, l, k ∈ N, k ≤ t ≤ k + 1. Introduce the notation

Ylkt(s) =





0, 0 ≤ s ≤ f(l)
f(t)

,

Yt(s)− V (f(l))√
f(t)

,
f(l)
f(t)

≤ s ≤ 1.

Then {Ylkt(s) : k ≤ t < k+1} and {Yt(s) : l ≤ t < l+1} are independent families.
Repeating the proof of (11), we obtain

Eρ(Yt, Ylkt) ≤ E sup
0≤s≤1

|Yt(s)− Ylkt(s)| ≤ 4 · 2β/2σ

(
l

k

)β/2

.

By Corollary 2.1, from Chuprunov and Fazekas [4] this and Proposition 2
implies (12). The proof is complete. ¤

Theorem 1 and Corollary 1 (resp. Corollary 2) of Proposition 2 imply the
following corollaries.

Corollary 1. Let X ′ be defined by (8) and let f be a function with the

property (C). Suppose (D) is valid. Then one has

1
ln(S)

∫ S

1

δX′
f(s)(ω)d(s)ds

w→ µbW , as S →∞,

for almost all ω ∈ Ω.

Corollary 2. Let X∗ be defined by (9) and let f be a function with the

property (C). Suppose (D) is valid. Then it holds

1
ln(S)

∫ S

1

δX∗
f(s)(ω)d(s)ds

w→ µW , as S →∞,

for almost all ω ∈ Ω.

Remark 1. Corollary 1 of Proposition 2 is a functional limit theorem for
random sums. So Corollary 1 of Theorem 1 is an integral type almost sure version
of a functional limit theorem for random sums. (For limit theorems for random
sums see Korolev and Kruglov [9].)
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