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Which F loops are associative

By LEONG FOOK (Penang) and TEH PANG ENG (Penang)

1. Introduction

It is known that Moufang loops of order p, p?, pq, p* [3], p?>q (odd)
with p < g, pgr (odd), 2p* [12], p*(p = 5) [4] and 2pg (p < ¢, p, { ¢ — 1)
[6] are all groups. On the other hand, there exist nonassociative Moufang
loops of order 2% [3], 3 [2], p° (p > 5) [15], 22¢ and 2pq (p < q, p|q—1)
[13].

Now we shall confine our study in a similar direction to a special
class of Moufang loops called F' loops whose orders are 2%p;*! ... p& with
0 < a < 3; p; are distinct odd primes such that o; < 3if p;, =3 and «; < 4
if otherwise. We shall prove that these F' loops are groups if

(i) 0<a<2or
(ii)) r <2

2. Definition

1. Aloop (L,-) is a Moufang loop if zy - zx = (x-yz)z for all x,y, z € L.

2. L, the associator subloop of L, is the subloop generated by all the
associators (z,y, z) where zy - z = (z - yz)(z,y, 2).

3. N = N(L), nucleus of L, is the set of all n € L such that (n,z,y) =
(x,n,y) = (z,y,n) =1 for all x,y € L.

4. Z = Z(L), the centre of L, is the set of all z € N such that (z,2) =1
where zx = zz(z,z) for all x € L.

5. An F loop L is a Moufang loop such that if H is a subloop generated

by any three elements x,y, z of L, then ((x,y,2)) C Z(H), the centre
of H.

Remark. It can be shown easily that H, = {(x,y, z)) for any F' loop
H generated by x,y and z. [6, p. 80, Lemma)]
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3. Results

From now on, L is assumed to be a finite Moufang loop.

R, L is diassociative, i.e. (z,y) is associative for all z,y € L.
[1, p. 115, Lemma 3.1]

Ry If (z,y,2z) = 1, then (x,y, 2) is a group for any z,y, z € L.
[1, p. 117, Moufang’s Theorem|]

R3 N and Z are normal subloops of L. Clearly N and Z are associative.
[1, p. 114, Theorem 2.1]

R, There exist simple nonassociative Moufang loops M (p™) with
M (p™)| = p>*(p?™ — 1)/d(p) where d(2) = 1 and d(p) = 2 if p is
an odd prime.

[11, p. 475, Theorem 4.5]

R5 L is simple if and only if L is a simple group or L is isomorphic with
M (p™) for some prime p.

[10, p. 33, Theorem]

R 120 is a divisor of |[M(p™)|. [14]

R7 If H is a subloop of L, x € L, and d is the smallest positive integer
such that z¢ € H, then |(H,z)| > |H|d.

[3, p- 31, Lemma 1]
Rs Ly<Land L, CCp(N)={z |z € L, xn =nx for all n € N.}
[5, p. 34, Corollary]
Rg If L is an F loop, and z,y,z € L,
(a) (z,y,2) = (y,2,2) = (y, 2,27 ")
(b) (2", y,2) = (2,9, 2)"
[1, p. 125, Lemma 5.5]
Rip If L is an F loop of order 2“1?>a2p/f1 -oopBn where 0 < a; < 1,0 <
ag < 3,0 < 6; <4 and p; are distinct primes > 5, then L is a group
[6, p. 81, Corollaries 2 and 3].

4. F loops of order 2%p

ffl Ce pTO‘r

Lemma 1. Let L be an F loop of order 2p{* - - - p&; p; are distinct
odd primes; a; < 3 if p; = 3 and a; < 4 if p; > 5. Suppose 1 a maximal
normal subloop K of L (In symbol, K <- L; it being understood that K is
neither trivial nor the entire loop) such that K is associative. Then L is a
group.

PROOF. Since K is a maximal normal subloop of L, L/K is simple.
However, since 120 1 |L|, 120 1 |L/K| and so by Rs and Rg, L/K is a group
and L, C K.

Let |L/K| = 2Fm, (2,m) = 1.
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Case 1: k = 2.

Then |K| is odd. Let x be an element of L and |z| = 2%. By Ry,
(z,y,2)>" = (22" ,y,2) = 1 for all y, 2z € L. But the order of (z,y,2) is
odd also since (x,y,z) € L, C K. Thus (x,y,z) = 1 and so all 2-elements
liein N. Then K<KN<L. So L=KN.
L,=(KN,KN,KN)=(K,K,K)=1, as K is associative.

Case 2: k= 1.

Then L/K is a group of order 2m. But a group of order 2m has a
normal subgroup Lo/K of order m. Then K < Lg < L, a contradiction.
Hence L is a group.

Case 3: k = 0.

Then L/K is a simple group of odd order and hence isomorphic to C),
where p = p; for some j. Let x, y, 2 € L. Then 2P, yP, 2P € K. Using Ry
again, as K is a group,

(27, y,2) = (z,y,2)" = (2", 9", 2") = 1

Thus z°° € N and L/N is a p-loop. As |L/N| = p* | p;-xj, L/N is an
Abelian group because of the restriction on «;. So L, C N. By Rs,

as L, C CL(N), L, is an Abelian group. Also since (z,y,2)P° = 1 for
all z,y,z in L, L, is a p-group. Let P/L, be a Sylow p-subgroup of
L/L,. Then |P| = p?j. Since |L| = |[N|p® and N N P is a p-group in NV,
INNP|<p%~*. Now

_ PN
IN N P|

L]

PAPYI —

|PN]| > p?j

= |L].

So L, = (PN,PN,PN) = (P,P,P) = P, = 1 since a Moufang loop of
this restricted order is a group. Hence L is a group.

Theorem 1. Let L be an F loop of order 2?p{* ... p&r; p; are distinct
odd primes; a; < 3 if p; =3 and o; < 4 if p; > 5. Then L is a group.

PROOF. Suppose L is not associative. Since 120 is not a divisor of
|L|, L is not simple. Let Ly <-L. If Ly is a group, then L would be a group
by Lemma 1, a contradiction. If L; is not a group, since 120 1 |L1|, Ly
is not simple. Let Lo <-Ly. In this manner, we have a series of subloops
Ljt1<-Lj<-...Ly<-Ly<-L where L; is nonassociative for ¢ < j and L;41q
is associative. (Note that 4 is a divisor of |L;| for the nonassociative loop
L; by Ryp). This series terminates as |L| is finite. Now by Lemma 1, L;
would be a group, a contradiction. So L must be a group.
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5. F' loops of order 23p®¢”

Lemma 2. Let L be an F' loop, x a p-element and x € L — N. Then
3 a nonassociative subloop P of order p™ in L with m > 4 ifp=2 or 3
and m > 5 if p > 5.

PROOF. Since x ¢ N, Jy, z € L such that (z,y,z) # 1. Using Ry, we
can assume the order of (z,y, z) is p” for some r. Let H = (z,y, z). Then
H, = {(2,,2)) = Cpr C Z(H) C N(H) C H.

Let f,g,h € H.

Then (f,g,h) = (z,y, 2)’ for some j.

(f.g, )" = (z,y,2)"" =1.

So (fP",g,h) = 1 or f* € N(H) for all f € H. Therefore H/N(H)
is a group of exponent dividing p". Let |H/N(H)| = p’ and |[N(H)| =
mop”, (mo,p) = 1.

Let P/H, be a Sylow p-subgroup of H/H,. As |H/H,| = I‘fill = %:H =
mop? 0" |P/H,| = p?t9" or |P| = p’t?. Since PN N(H) is a p-
subgroup of N(H), |[P N N(H)| < p?. Then |PN(H)| = IPLINCH)

[PAN(H)| =
04~ Y
I)Z)# = p™mo = |H|. Thus PN(H) = H.

H, = (PN(H), PN(H), PN(H)) = (P,P,P) = P,.

As H, #1, P, # 1 and P is not associative.
As P is a nonassociative Moufang p-loop, |P| = p™ with m > 4 if p = 2
or 3 by [3] and with m > 5 if p > 5, by [4].

Lemma 3. If H and K are subloops of an F' loop L with order m and
n such that (m,n) =1, then |HK| = mn.

PROOF. Suppose x1y1 = zoyo with x; € H, y; € K. .. mfl(mlyl) =
27 (22y2).

y1 = (z7 ' w2 - y2) (27, 22, 2).
Let a = (:Bl_l,xg,yg). Then a™ = a™ = 1 using Ry. As
(my,n) =1, a=1.

So y1 = xflxg “Ya y1y51 = mflxg c HNK.
Since the order of an element divides the order of a diassociative loop [1,

p. 92, Theorem 1.2, H N K = {1}.
So y1 = Y2 and 1 = x5.
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Lemma 4. Let L be an F loop and p a prime, p{ |L,|. Then

(a) x is ap-element — x € N
(b) L/N is a group = pt|L/N|

PROOF. Let |z| = p® and 5,z € L. Then (z,y, 2)?" = (xpa,y,z) =
(1,y,2) = 1. But (z,y,2)!Lel = 1. Since (p,|L.|) = 1, (z,9,2) = 1 and
x € N. Suppose L/N is a group and p | |[L/N|. Let gN be an element of
order p in L/N. Then g? € N and g ¢ N. Let |g| = p®m with (p,m) = 1.
Then g™ is a p-element and hence ¢" € N. Since (p,m) =1, g € N. This
is a contradiction. Hence p 1 |L/N]|.

Lemma 5. Let L be an F loop of order 8p® with o« < 3 if p = 3 and
a <4 ifp>>5. Then L is a group.

ProOF. By [1, p. 92, Theorem 1.2], the order of each element of L
divides 8p®. If each of the elements of L has order a power of 2, then |H |
would be a power of 2 by [9, p. 415, Theorem]. On the other hand, if each
of the elements of L has order a power of p, then |H| would be a power of
p by [8, p. 395, Theorem 1]. So, there exists 2-elements as well p-elements
in L.

Case 1: Suppose 3 a p-element y such that y ¢ N. By Lemma 2, 3 a
nonassociative subloop P, of order p™ with m > o 4 1.

1.1: Suppose 3 2-element x such that x € N. By Lemma 2, 3 a
nonassociative subloop P» of order 2% with k > 4. By Lemma 3, | PPy =
2kpm > 24patl > 8p@ = ||, a contradiction.

1.2: Suppose all 2-elements lie in N. Suppose 2 | |L/N|. As L/N
is group by Theorem 1, there exists ¢ € L — N such that g> € N. Let
lg| = 29p. Then gpb is a 2-element. Thus gpb € N. Since also g? € N, we
have g € N, a contradiction. So 21 |L/N]|.

Then 23 | |N|. Let P, be a Sylow 2-subgroup of the group N. Then
|P2| = 8. By Lemma 3, |P2P,| > 8p**! > |L| a contradiction.

Case 2: Suppose all p-elements of L lie in N. We can similarly show
that pt|L/N|. Then p® | |N|. So, letting P, be a Sylow p-subgroup of N,
we have |P,| = p®.

2.1: Suppose 3 a 2-element x such that x ¢ N.

By Lemma 2, 3 a nonassociative subloop P, of order 2* with k > 4.
By Lemma 3, |P2P,| = 28p* > 16p® > 8p* = |L|, a contradiction.

2.2: Suppose all 2-elements of L lie in V.

Then clearly all elements of L lie in N. Hence L = N is a group.

Lemma 6. Let L be an F loop of order 23 -3 -5. Then L is a group.

PROOF. Case 1: Suppose L has an element w of order 5.
1.1: Suppose w ¢ N. By Lemma 2, 3 a subloop Ps with |Ps| = 5%,
a>5. So |Ps| >55>23.3.5=]L|, a contradiction.
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1.2: Suppose w € N. Then L/N is a group by Lemma 5 and Theo-
rem 1. So L, C N.

(a) If 2  |L,|, then by Lemma 4, |L/N| | 3. So L/N = (z) or
L = N{x) for some x € L. So L is a group by diassociativity.

(b) If 3 1 |L4|, then by Lemma 4, any 3-element, if such exists, lies
in N. Suppose 3 | |[L/N|. Let g be an element of order 3 in L/N. Then
g> € N but g € N. Let |g| = 3%*m, (3,m)=1. Then |[g™| | 3*. So g™ € N.
This implies ¢ € N, a contradiction. So 3 { |L/N| and |L/N| | 23. If
IL/N| =23, then 24 |N|. As Ly C N, 21 |Lo|. By Lemma 4, 2 { |L/N],
a contradiction. Hence |L/N| < 22. So L/N = (%,9) or L = N{z,y) for
some x,y € L. Thus L is a group by diassociativity.

(c) We can assume 6 | |Ly|. So 30 | [N|. |L/N| | 2%. Again L is a
group by diassociativity.

Case 2: Suppose L has no element of order 5. Clearly 51 |N|.

L must have an element u of order 3. Otherwise, L would be a 2-loop of
order a power of two.

2.1: Suppose u ¢ N. By Lemma 2, 3 a subloop Ps such that |Ps| =
3™ m >4. Let v € L — P3. Then by Ry, |(v, P3)| >2-3™ >2.3% > |L],
a contradiction.

2.2: Suppose u € N. So |L/N| = 2?5, a < 3. By Lemma 5, Theo-
rem 1 and Ryg, L/N is a group. Let Z be an element of order 5 in L/N,

ie. 7 € L — N and #° € N. Then 2°/Vl =1 or (m|N|)5 = 1. As L has no
element of order 5, 2!Vl = 1. As (5,|N|) = 1, 2 € N, a contradiction.

Lemma 7. Let L be an F loop of order 23 -33-5. Then L is a group.

PROOF. Case 1: Suppose L has an element x of order 5.

1.1: Suppose x ¢ N. By Lemma 2, 3 a subloop P5 with |P5| > 5° >
23 .33 .5 = |L|, a contradiction.

1.2: Suppose x € N. So |L/N||23-3%. By Lemma 5, L /N is a group.
Thus L, C N.

1.2(a) If there exist both 2-elements and 3-elements in L — N, then
by Lemma 2, 3 subloops P, and P3 with |P»| > 2% and |P3| > 3*. By
Lemma 3, | P, P3| > 24 - 3% > 23335 = |L|, a contradiction.

1.2(b) If all the 2-elements lie in N, then |L/N| | 33. If [L/N| | 32,
then L is a group by disassociativity. So we assume |L/N| = 33. Then
31 |N|. In other words, 3 1 |Ly|. Asin the case 1.2(b), we can use Lemma 4
to show that 31 |L/N|. This is a contradiction.

1.2(c) If all the 3-elements lie in N, we obtain a contradiction by a
similar argument.

Case 2: Suppose L has no element of order 5. Clearly L has p-
elements for p =2 and p = 3.
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2.1: Suppose it has a 2-element as well as a 3-element lying in L — N.
By Lemma 2, 3 subloops P, and P3 with orders 2¢ and 3° respectively, a,
3> 4. By Lemma 3, |P, P3| = 2937 > 243* > |L|, a contradiction.

2.2: Suppose all the 2-elements of L lie in N. It can be seen easily
that 21 |L/N|. Clearly 51 |N|. So |L/N| =375, v < 3.
Applying Ryg, L/N is a group. Let Z be an element of order 5. Then

x €L —Nand 2’ € N. So 25V =1 or (x|N|)5 = 1. Since L has no

element of order 5, IV = 1. But (5,|N|) = 1. So x € N, a contradiction.
2.3: If all the 3-elements of L lie in N, a contradiction arises in a
similar way by applying Lemma 5.

Lemma 8. Let L be a nonassociative F loop of order 23p“q®; p an
q distinct primes with p < q; a < 3 ifp=3 and a <4 ifp > 5; f < 4.
Then L is nonsimple.

PROOF. Suppose L is simple. By Ry, L is isomorphic to one of the
M(r™). But |[M(r")| = 23p~¢® with p, ¢, o, 8 as specified if and only if
n=11r=2or 3, but [M(2)] =2%-3-5and |[M(3)] = 2%-3%-5. By
Lemma 6 and Lemma 7, we have a contradiction.

Lemma 9. Let L be an F loop of order 2°p®q¢® defined as above.
Then L has p-elements (as well as g-elements).

Proor. If L is associative, then the result follows by Sylow theory.
Suppose L is not associative. By Lemma 8, L is not simple. Let Lq <-L.
Suppose 2 | |L1|. Then L/L; is a group by Theorem 1 and R;y. Suppose
2 1|Lq|. If L/L, is nonassociative, then L/L; is nonsimple by Lemma 8.
But this contradicts the maximality of L. In any case, L/L; is a group.
In fact, it is a simple group. Moreover if L; is nonassociative, then |L;| =
23p*1 4P by Theorem 1 and Ryg. So |L/Li| = p*¢®. But a simple group
of this odd order is isomorphic to C), or Cj.

Now suppose L is nonassociative. By a similar argument, we have
Ly <« -Ly with Ly/Ls a simple group. Continuing, we have a series of
subgroups

Ly41<-Lp,<----Lo<-Ly<-Lyg =L such that

(a) L;/L;+1 is a simple cyclic group for 0 <i <m

(b) L; is nonassociative for 0 < i < m

(¢) Ly41 is a group.
If p | |Lpy1l|, we are through by (c).
Otherwise, let j be the smallest integer such that p { |L;11] but p | |L;].
Then |L;/Lji1] = p by (a).

Let © € Lj — Lj+1. Then 2P € L;q. Write |Ljq1]| = £. (2P) =1
ie. (x%)? = 1. If 2* # 1, then we are through. If 2* = 1, as (p,{) = 1,
x € Lji1, a contradiction.
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Lemma 10. Let L be an F loop or order 23p®q” defined as above.
Suppose L, C N with |L,| = 2*m, k > 1 and m odd. Then L is a group.

Proor. Case 1: m =1

As pq { |La|, pg 1 |L/N| by Lemma 4. So |L/N| | 2%2. Thus L/N =
(Z,y) or L = N{x,y) for some z,y € N. So L is a group by diassociativity.

Case 2: m > 1

By Rs, L, C C(N). So L, C Z(N), the centre of N. Let K be a
subloop of order 2¥ in L,. As L, is an abelian group and L,<L, K<L. L/K
is a group by Theorem 1 and Rjo. Thus L, C K. Hence |L,| = | K| = 2*,
a contradiction.

Theorem 2. Let L be an F loop of order 2°p®¢® defined az above.
Then L is a group.

Proor. By Lemma 9, 4 both p-elements and g-elements in L.

Case 1: Suppose 3 both p-elements and g-elements in L — N.
By Lemma 2, 3 nonassociative subloops P and @ such that |P| > p**!
and |Q| > ¢°*1.
By Lemma 3, |PQ| > p*+1¢P*123p2¢® = |L|, a contradiction.

Case 2: Suppose all p-elements lie in N and some g-element lies in
L — N. Then p* | |N|. Also, by Lemma 2, 3 a g-subloop @ of L, such
that |Q| > ¢°*!. By Lemma 5 and Ry, L/N is a group and L, C N.
By Lemma 10, we may assume that |L,| is odd. As 21t |L,|, 23 | |N| by

Lemma 4. So |[N| = 23p®*. Then, since N NQ = {1}, INQ| = % >
23p*¢B+1 > |L|, a contradiction.

Case 3: Suppose all g-elements lie in N and some p-element lies in
L — N. A contradiction arises just as in case 2.

Case 4: Suppose all p-elements and ¢-elements lie in N.
Then |L/N]| | 23
If |L/N| < 22, then L/N = (z,y) or L = N(z,y) for some =,y € L and
L is a group by diassociativity. If |[L/N| = 23, then 2 { |N|. Therefore
2t |Ly| because L, C N and by Lemma 4, 21 |L/N|, a contradiction.
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