
Publ. Math. Debrecen

70/1-2 (2007), 221–231

Finsler conformal transformations and the curvature invariances

By SÁNDOR BÁCSÓ (Debrecen) and XINYUE CHENG (Chongqing)

Abstract. This article studies the global conformal transformations f on a Finsler

space (M, F ), which satisfy f∗F = ec(x)F , where F := F (x, y) is a Finsler metric on

M and x ∈ M , y ∈ TxM \ {0}. We obtain the relations between some important

geometric quantities of F and their correspondences respectively, including Riemann

curvatures, Ricci curvatures, Landsberg curvatures, mean Landsberg curvatures and

S-curvatures. Then, we discuss the properties of those conformal transformations on

(M, F ) which preserve Ricci curvature, Landsberg curvature, mean Landsberg curvature

and S-curvature respectively.

1. Introduction

Let F be a Finsler metric on an n-dimensional manifold M . For a non-zero
vector y ∈ TxM , F induces an inner product gy on TxM by

gy(u, v) := gij(x, y)uivj =
1
2
[F 2]yiyj uivj .

For two arbitrary non-zero vectors v, y ∈ TxM , the angle θ(y, v) between y and v

is defined by

cos θ(y, v) := yiv
i/F (x, y)

√
gij(x, y)vivj , (1)

where yi := gij(x, y)yj . It should be remarked that this notion of angle is not
symmetric, that is, the angle θ(y, v) between y and v is different from the angle
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θ(v, y) between v and y generally. According to the above notion of angle, we
have the following

Definition 1.1. Let F and F̄ be two Finsler metrics on an n-dimensional
manifold M . If the angle θ(y, v) with respect to F is equal to the angle θ̄(y, v)
with respect to F̄ for any vectors y, v ∈ TxM \ {0} and any x ∈ M , then F is
called conformal to F̄ and the transformation F → F̄ of the metric is called a
conformal transformation.

From the definition above, we can prove the following fundamental theorem.

Theorem 1.1 ([AIM]). Let F and F̄ be two Finsler metrics on an n-

dimensional manifold M . Then F is conformal to F̄ if and only if there exists a

scalar function c(x) such that

F̄ (x, y) = ec(x)F (x, y). (2)

The scalar function c(x) is called the conformal factor.

From (2), we can easily obtain the following

Lemma 1.1 ([Ma]). Let F and F̄ be two Finsler metrics on an n-dimensional

manifold M . If F̄ (x, y) = ec(x)F (x, y), then

(a) ḡij(x, y) = e2c(x)gij(x, y), ḡij(x, y) = e−2c(x)gij(x, y), where (gij) = (gij)−1.

(b) h̄ij(x, y) = e2c(x)hij(x, y), where hij := gij − FyiFyj is called the angular
metric tensor of F .

(c) ȳk = e2c(x)yk.

(d) C̄ijk = e2c(x)Cijk(x, y), where Cijk is the Cartan torsion of F .

(e) C̄j
ik(x, y) = Cj

ik(x, y), Īk(x, y) = Ik(x, y), where Cj
ik := gjlClik and Ik :=

gijCijk is the mean Cartan torsion of F .

From (e) in Lemma 1.1, we know that Cj
ik and the mean Cartan torsion Ik

are invariant under conformal transformation. Further, write ‖I‖2 := gijIiIj and
T(x, y) := F 2‖I‖2, then by Lemma 1.1 we have the following

Lemma 1.2 ([Ma]). T(x, y) is conformally invariant.

The conformal properties of a Finsler metric deserve extra attention. The
Weyl theorem states that the projective and conformal properties of a Finsler
metric determine the metric properties uniquely [SV]. In conformal geometry, we
naturally want to know the relations between some important geometric quanti-
ties and their correspondences. At the same time, we also want to know that, if a
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conformal transformation preserves some geometric quantities, then what prop-
erties does it have? For example, in Riemann conformal geometry, an interesting
problem is to study the so-called Liouville transformation, that is a conformal
transformation satisfying Ric = Ric [KR]. In this article, we will discuss the
problem above in Finsler conformal geometry for Riemann curvature, Ricci cur-
vature, Landsberg curvature, mean Landsberg curvature and S-curvature.

2. Curvatures

Let F be a Finsler metric on an n-dimensional manifold M . The geodesics
of F are characterized by

d2ci

dt2
+ 2Gi(c(t), ċ(t)) = 0,

where Gi := 1
2gil{[F 2]xkylyk − [F 2]xl} are called the geodesic coefficients of F .

The Riemann curvature Ry = Ri
kdxk ⊗ ∂

∂xi |p : TpM → TpM is a family of linear
transformations on tangent spaces, which is defined by

Ri
k = 2

∂Gi

∂xk
− yj ∂2Gi

∂xj∂yk
+ 2Gj ∂2Gi

∂yj∂yk
− ∂Gi

∂yj

∂Gj

∂yk
. (3)

For a two-dimensional plane P ⊂ TpM and y ∈ TpM \ {0} such that P =
span{y, u}, the pair {P, y} is called a flag in TpM . The flag curvature K(P, y) is
defined by

K(P, y) :=
gy(u,Ry(u))

gy(y, y)gy(u, u)− gy(y, u)2
. (4)

We say that F is of scalar curvature if for any y ∈ TpM \ {0} the flag curvature
K(P, y) = λ(y) is independent of P containing y. This is equivalent to the
following system in a local coordinate system (xi, yi) in TM :

Ri
k = λF 2{δi

k − F−1Fykyi}.

If λ is a constant, then F is said to be of constant curvature.
The trace of the Riemann curvature

Ric(y) := (n− 1)R(y) = Rm
m(y)

is called the Ricci curvature and R(y) := [1/(n − 1)]Ric(y) is called the Ricci-
scalar.
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There are many interesting non-Riemannian quantities in Finsler geometry.
For a non-zero vector y ∈ TpM , the mean Berwald curvature Ey = Eijdxi⊗ dxj :
TpM ⊗ TpM → R is defined by

Eij :=
1
2

∂3Gm

∂yi∂yj∂ym
(x, y). (5)

The mean Berwald curvature E = {Ey} is a symmetric bilinear form on TpM .
We say that F has isotropic mean Berwald curvature if

Ey(u, v) = (n + 1)cF−1(x, y)hy(u, v), (6)

or equivalently,
Eij = (n + 1)cFyiyj ,

where c = c(x) is a scalar function on M .
For a non-zero vector y ∈ TpM , the Landsberg curvature Ly = Lijk(x, y)dxi⊗

dxj ⊗ dxk is defined by

Lijk(x, y) := −1
2
ymgml

∂3Gl

∂yi∂yj∂yk
(x, y). (7)

The following lemma is useful.

Lemma 2.1 ([AIM], [Sh]). The Landsberg curvature coefficients Lijk are

given by the expressions

Lijk = −1
2
gij;k = Cijk;mym, (8)

where “; ” denotes the Berwald covariant derivative determined by F .

Further, the mean Landsberg curvature Jy = Ji(x, y)dxi : TpM → R is
defined by

Ji(x, y) := gjkLijk.

It is easy to show that([Sh])

Ji = Ii;kyk, Eij =
1
2
{Ij;i + Ji·j}. (9)

Express the volume form of F by

dVF = σ(x)dx1 · · · dxn.
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For a non-zero vector y ∈ TpM , the S-curvature S(y) is defined by

S(y) :=
∂Gi

∂yi
(x, y)− yi

σ(x)
∂σ

∂xi
(x). (10)

From the definition, we have

Eij =
1
2
Syiyj . (11)

We say that F is of isotropic S-curvature if

S = (n + 1)cF, (12)

where c = c(x) is a scalar function on M .

3. Ric = Ric

Let F̄ and F be two Finsler metrics on an n-dimensional manifold M . We
have a relation between the geodesic coefficients Ḡi and Gi as follows:

Ḡi = Gi +
F̄;kyk

2F̄
yi +

F̄

2
ḡil

{
F̄;k·lyk − F̄;l

}
. (13)

If F̄ = ec(x)F , then F̄;k = ec(x)ckF , where ck := ∂c/∂xk. From Lemma 1.1 we
have

Ḡi = Gi +
1
2
(ckyk)yi +

F

2
gil{(ckyk)Fyl − clF}

= Gi + (ckyk)yi − F 2

2
ci,

where ci = gilcl. Write
Ḡi = Gi + Pyi −Qi, (14)

where

P := ckyk, Qi :=
F 2

2
ci.

From (14) we have

Ḡi
j = Gi

j + Pjy
i + Pδi

j −Qi
j , (15)

Ḡi
jk = Gi

jk + Pjδ
i
k + Pkδi

j −Qi
jk, (16)
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where Gi
j := ∂Gi/∂yj , Gi

jk := ∂Gi
j/∂yk and Pj := ∂P/∂yj , Qi

j := ∂Qi/∂yj ,
Qi

jk := ∂Qi
j/∂yk, etc. Substituting (14), (15), (16) into (3) and using the homo-

geneities of P and Qi, we have

R̄i
k = Ri

k + Ξδi
k + τkyi − 2Qi

;k + yjQi
k;j − 2PjQ

jδi
k + 2QjQi

jk −Qi
jQ

j
k, (17)

where
Ξ := P 2 − P;ry

r, τk := 3(P;k − PPk) + Ξ·k + PjQ
j
k.

It is easy to see that

∂gij

∂yk
= −2girgjsCkrs,

∂ci

∂yj
= −2crCi

jr. (18)

From (18) we get
PjQ

j
k = yk‖∇c‖2F − F 2cicjCijk,

where ‖∇c‖2F := cjc
j = gijcicj . Similarly, PjQ

j = F 2

2 ‖∇c‖2F . Hence we have

R̄i
k = Ri

k + Ξδi
k + τkyi − 2Qi

;k + yjQi
k;j + 2QjQi

jk −Qi
jQ

j
k − F 2‖∇c‖2F δi

k (19)

and

Ξ = P 2 − Φ, τk = 3(P;k − PPk) + Ξ·k + yk‖∇c‖2F − F 2cicjCijk, (20)

where Φ := ci;jy
iyj . Further, it is easy to see that

gij
;k = 2girLj

rk

and

ci
;k = 2crLi

rk + gircr;k,

Qi
;k =

F 2

2
ci
;k,

Qi
j = yjc

i − F 2crCi
jr,

Qi
j;k = yjc

i
;k − F 2cr

;kCi
jr − F 2crCi

jr;k,

Qi
jk = gjkci − 2yjc

rCi
rk − 2ykcrCi

rj + 2F 2crCs
krC

i
js − F 2crCi

jr·k. (21)

Now

yjQi
k;j = ykci

;0 − F 2cr
;0C

i
kr − F 2crCi

kr;0,

2QjQi
jk = F 2(ckci − 2c0c

rCi
kr − 2ykcjcrCi

jr

+ 2F 2cjcrCs
krC

i
js − F 2cjcrCi

jr·k),

Qi
jQ

j
k = c0c

iyk − F 2ykcjcrCi
jr + F 4crcsCj

krC
i
js. (22)
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From (19) and (20) we get

Ric(y) = Ric(y) + (n− 1)
(
Ξ− F 2‖∇c‖2F

)

− 2Qk
;k + yjQk

k;j + 2QjQk
jk −Qk

j Qj
k. (23)

From (21) and (22) we have

Ric(y) = Ric(y) + (n− 2)
(
Ξ− F 2‖∇c‖2F

)

− 2F 2(crJr)− F 2gijci;j − F 2(crIr);0 − 2F 2c0(crIr)

+ 2F 4Irc
jckCr

jk − F 4cjckIj·k − F 4cjckCs
jrC

r
ks. (24)

By (19) we have the following

Theorem 3.1. Let F and F̄ be two Finsler metrics on an n-dimensional

manifold M . If F̄ (x, y) = ec(x)F (x, y), then R̄i
k = Ri

k if and only if the following

equation holds:

Ξδi
k + τkyi − 2Qi

;k + yjQi
k;j + 2QjQi

jk −Qi
jQ

j
k − F 2‖∇c‖2F δi

k = 0. (25)

Further, when (25) holds, then F is of scalar curvature λ(y) if and only if F̄ is of

scalar curvature λ̄(y) and

λ̄ = λ/e2c(x).

Proof. We only need to prove the second conclusion. From R̄i
k = Ri

k and
Lemma 1.1(c), we can see that, if F is of scalar curvature λ(y), then

R̄i
k = λF 2{δi

k − F−1Fykyi}
= λe−2c(x)F̄ 2{δi

k − F̄−1F̄ykyi}.

Clearly, F̄ is of scalar curvature λ̄(y) = λ(y)e−2c(x). The converse holds obviously.
¤

From Theorem 3.1, we have the following

Corollary 3.1. Let F and F̄ be two Finsler metrics on an n-dimensional

manifold M . If F̄ = ecF (x, y) where c = constant(6= 0) (that is, the conformal

transformation is a homothety), then F is of scalar curvature λ(y) if and only if

F̄ is of scalar curvature λ̄(y) and λ̄ = λ/e2c.

Proof. As c = constant, (25) becomes trivial. So, the Corollary follows
from Theorem 3.1. ¤
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By (23) we have the following

Theorem 3.2. Let F and F̄ be two Finsler metrics on an n-dimensional

manifold M . If F̄ (x, y) = ec(x)F (x, y), then Ric(y) = Ric(y) if and only if the

following equation holds:

Ξ = F 2‖∇c‖2F + (2Qk
;k − yjQk

k;j − 2QjQk
jk + Qk

j Qj
k)/(n− 1). (26)

In particular, if c(x) = constant, then Ric = Ric.

Remark 3.1. In Riemann conformal geometry, a conformal transformation
satisfying Ric(y) = Ric(y) is called a Liouville transformation. A globally defined
Liouville transformation is a homothety [KR]. A natural problem arises: in Finsler
conformal geometry, is this statement still true? This problem is still open.

If c(x) = constant then, by (14), the conformal transformation F̄ = ecF

preserves the geodesics. Inversely, is a conformal transformation a homothety if
it preserves the geodesics? We have the following

Theorem 3.3. Let F and F̄ be two Finsler metrics on an n-dimensional

manifold M . If a conformal transformation F̄ = ec(x)F preserves the geodesics,

then it must be a homothety, that is c = constant.

Proof. Since the conformal transformation F̄ = ec(x)F preserves the geod-
esics, we have

Ḡi = Gi + p(x, y)yi, p(x, λy) = λp(x, y) ∀λ > 0. (27)

From (14) and (27) we get
pyi = c0y

i −Qi, (28)

where c0 = ciy
i. Contracting (28) with yi yields

pF 2 = c0F
2 − F 2

2
c0 =

F 2

2
c0.

Hence, p = 1
2c0, and then Qi = 1

2c0y
i. Further, we have

1
2
c0y

i =
F 2

2
ci. (29)

Contracting (29) with ci yields c2
0 = F 2‖∇c‖2. From this, we have ‖∇c‖2 = 0. Or

else, we know that Rank(gij) ≤ 1, which is a contradiction. Furthermore, cr = 0
because (gij) is positive definite, which implies that c = constant. ¤
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4. The Landsberg curvatures

By Lemma 2.1, the Landsberg curvature coefficients L̄ijk of F̄ are given by

L̄ijk = −1
2
ḡij|k,

where “|” denotes the Berwald covariant derivative determined by F̄ . If F̄ =
ec(x)F , ḡij = e2c(x)gij , we have

L̄ijk = −1
2
(e2c(x)gij)|k

= −e2c(x)ckgij − 1
2
e2c(x)gij|k. (30)

From (14), (15) and (16) we have

gij|k =
∂gij

∂xk
− 2Ḡr

kCijr − girḠ
r
jk − grjḠ

r
ik

=
∂gij

∂xk
− 2(Gr

kCijr + PCijk −Qr
kCijr)− (girG

r
jk + Pjgik

+ Pkgij − girQ
r
jk)− (grjG

r
ik + Pigjk + Pkgij − grjQ

r
ik)

= gij;k − 2(PCijk −Qr
kCijr + Pkgij)− (Pjgik + Pigjk)

+ (girQ
r
jk + grjQ

r
ik).

Substituting these into (30), we get

L̄ijk = e2c(x)Lijk + e2c(x)(PCijk −Qr
kCijr)

+
1
2
e2c(x)

{
(Pjgik + Pigjk)− (girQ

r
jk + grjQ

r
ik)

}
. (31)

Further, the mean Landsberg curvature J̄ is determined by

J̄i = ḡjkL̄ijk = Ji + (PIi −Qr
kCk

ir) +
n + 1

2
Pi −

girg
jkQr

jk + Qk
ik

2
. (32)

By (21), we have

L̄ijk = e2c(x)Lijk + e2c(x){PCijk + cr(yiCrjk + yjCirk + ykCijr)

− F 2cr(Cs
irCsjk + Cs

jrCisk + Cs
krCijs) + F 2csCijk·s}, (33)

J̄i = Ji + PIi + F 2crIi·r + yi(crIr)− F 2csIrC
r
is. (34)

From (34) we obtain the following
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Theorem 4.1. Let F and F̄ be two Finsler metrics on an n-dimensional

manifold M . If F̄ (x, y) = ec(x)F (x, y), then the conformal transformation pre-

serves the mean Landsberg curvature if and only if the conformal factor c(x)
satisfies the following equations:

PIi + F 2crIi·r + yi(crIr)− F 2csIrC
r
is = 0. (35)

In particular, if c(x) = constant, then J̄ = J.

5. S-curvature

Let F̄ (x, y) = ec(x)F (x, y). The Busemann–Hausdorff volume forms dµF and
dµF̄ are defined by

dµF := σF (x)ω1 ∧ · · · ∧ ωn,

dµF̄ := σF̄ (x)ω1 ∧ · · · ∧ ωn,

where
σF (x) :=

ωn

EuclideanVol(Bn
x )

, σF̄ (x) :=
ωn

EuclideanVol(B̄n
x )

and

Bn
x :=

{
(yi) ∈ Rn, F (yiei) < 1

}
,

B̄n
x :=

{
(yi) ∈ Rn, F̄ (yiei) < 1

}
.

We have
EuclideanVol(B̄n

x ) =
∫

B̄n
x

dy1 · · · dyn. (36)

Pay attention to B̄n
x = {(yi) ∈ Rn, F (ec(x)yiei) < 1}. Let zi = ec(x)yi in the

integral (36), we get

EuclideanVol(B̄n
x ) =

∫

Bn
x

e−nc(x)dz1 · · · dzn = e−nc(x)EuclideanVol(Bn
x ).

Hence, we have
σF̄ (x) = enc(x)σF (x). (37)

By (15) and Qi
j = yjc

i − F 2crCi
jr, we obtain

Ḡm
m = Gm

m + (n + 1)P −Qm
m

= Gm
m + (n + 1)P − (ymcm − F 2crIr)

= Gm
m + nP + F 2crIr.
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On the other hand, we have

ym

σF̄ (x)
∂σF̄

∂xm
= ncmym +

ym

σF (x)
∂σF

∂xm
= nP +

ym

σF (x)
∂σF

∂xm
.

Therefore

S̄(y) =
∂Ḡm

∂ym
− ym

σF̄ (x)
∂σF̄

∂xm
= S(y) + F 2crIr. (38)

Theorem 5.1. Let F and F̄ be two Finsler metrics on an n-dimensional

manifold M . If F̄ (x, y) = ec(x)F (x, y), then S̄ = S if and only if crIr = 0,

that is, the gradient vector ∇c of the conformal factor c(x) is orthogonal to the

covariant vector field Ii with respect to the dual metric F ∗ of F . In particular, if

c = constant, then S̄ = S.
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