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Finsler conformal transformations and the curvature invariances

By SANDOR BACSO (Debrecen) and XINYUE CHENG (Chongging)

Abstract. This article studies the global conformal transformations f on a Finsler
space (M, F), which satisfy f*F = e“®F, where F := F(z,y) is a Finsler metric on
M and 2 € M, y € T, M \ {0}. We obtain the relations between some important
geometric quantities of F' and their correspondences respectively, including Riemann
curvatures, Ricci curvatures, Landsberg curvatures, mean Landsberg curvatures and
S-curvatures. Then, we discuss the properties of those conformal transformations on
(M, F) which preserve Ricci curvature, Landsberg curvature, mean Landsberg curvature
and S-curvature respectively.

1. Introduction

Let F' be a Finsler metric on an n-dimensional manifold M. For a non-zero
vector y € T, M, F' induces an inner product g, on T, M by
1 o
9y(1,0) = g e, y)u'e? = S[F?] s uvd,
For two arbitrary non-zero vectors v,y € T, M, the angle 6(y, v) between y and v
is defined by
cos 0(y, v) == y;v' [F(2,y)\/ gi (2, y)vivd, (1)

where y; = gij(x,y)yj. It should be remarked that this notion of angle is not
symmetric, that is, the angle 6(y,v) between y and v is different from the angle
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6(v,y) between v and y generally. According to the above notion of angle, we
have the following

Definition 1.1. Let F and F be two Finsler metrics on an n-dimensional
manifold M. If the angle 6(y,v) with respect to F' is equal to the angle 6(y,v)
with respect to F for any vectors y,v € T, M \ {0} and any x € M, then F is
called conformal to F' and the transformation F' — F of the metric is called a
conformal transformation.

From the definition above, we can prove the following fundamental theorem.

Theorem 1.1 ([AIM]). Let F and F be two Finsler metrics on an n-
dimensional manifold M. Then F is conformal to F if and only if there exists a
scalar function ¢(z) such that

F(‘T7y) = €C(x)F(xay>' (2)

The scalar function c¢(x) is called the conformal factor.
From (2), we can easily obtain the following

Lemma 1.1 ([Ma]). Let F and F be two Finsler metrics on an n-dimensional

manifold M. If F(z,y) = e“® F(x,vy), then

(a) Gij(x,y) = 2 Wgii(2,y), 39 (x,y) = e 2 g (z,y), where (g77) = (gi;) "

(b) hij(z,y) = €@ h(x,y), where hy; := g;j — FiF,, is called the angular
metric tensor of F'.

(c) gk = e*@y,.

(d) Cijr = 626(‘”)C’ijk(x,y), where C;jy, is the Cartan torsion of F.

(e) C'ijk(x,y) = Cgk(amy), Ix(z,y) = I(z,y), where ka = ¢'Cyp and I, =
g% Cij;i is the mean Cartan torsion of F'.

From (e) in Lemma 1.1, we know that C’fk and the mean Cartan torsion I
are invariant under conformal transformation. Further, write ||I||? := ¢“/I;I; and
T(x,y) := F?||1||?, then by Lemma 1.1 we have the following

Lemma 1.2 ([Ma]). T(x,y) is conformally invariant.

The conformal properties of a Finsler metric deserve extra attention. The
Weyl theorem states that the projective and conformal properties of a Finsler
metric determine the metric properties uniquely [SV]. In conformal geometry, we
naturally want to know the relations between some important geometric quanti-
ties and their correspondences. At the same time, we also want to know that, if a
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conformal transformation preserves some geometric quantities, then what prop-
erties does it have? For example, in Riemann conformal geometry, an interesting
problem is to study the so-called Liouville transformation, that is a conformal
transformation satisfying Ric = Ric [KR]. In this article, we will discuss the
problem above in Finsler conformal geometry for Riemann curvature, Ricci cur-
vature, Landsberg curvature, mean Landsberg curvature and S-curvature.

2. Curvatures

Let F be a Finsler metric on an n-dimensional manifold M. The geodesics
of F are characterized by
d*ct ; .
a2 T 2G"(c(),¢(t)) =0,
where G := T {[F?],x,1y" — [F?],.} are called the geodesic coefficients of F.
p TpyM — T, M is a family of linear

The Riemann curvature R, = Rida* ® %
transformations on tangent spaces, which is defined by

oGt PG e 0G 9G7

j j _ g
Oyioyk  Oyi oyt

=2 .
By ok Y OxI Oyk

3)

For a two-dimensional plane P C T,M and y € T,M \ {0} such that P =
span{y, u}, the pair {P, y} is called a flag in T, M. The flag curvature K(P,y) is
defined by

gy (u, Ry (u))
9y(Y, y) gy (u,u) — gy (y, u)?’

We say that F is of scalar curvature if for any y € T,M \ {0} the flag curvature
K(P,y) = A(y) is independent of P containing y. This is equivalent to the

K(P,y) :=

(4)

following system in a local coordinate system (z%,y%) in TM:
L= AF?{6;, — F7'Fuy'}.

If A\ is a constant, then F' is said to be of constant curvature.
The trace of the Riemann curvature

Ric(y) == (n — 1)R(y) = R (y)

is called the Ricci curvature and R(y) := [1/(n — 1)]Ric(y) is called the Ricci-
scalar.
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There are many interesting non-Riemannian quantities in Finsler geometry.
For a non-zero vector y € T, M, the mean Berwald curvature E, = E;;jdz" ® da? :
T,M ® T,M — R is defined by

1 o3Gm
ij = §W<xay)' (5)

The mean Berwald curvature E = {E,} is a symmetric bilinear form on T, M.
We say that F' has isotropic mean Berwald curvature if

Ey(u,v) = (n+ 1)eF ™" (2,y)hy (u, v), (6)

or equivalently,
Eij = (’Il + 1)CFyiyj,
where ¢ = ¢(z) is a scalar function on M.
For a non-zero vector y € T, M, the Landsberg curvature Ly, = L;;(x, y)dr'®
dr? @ dz* is defined by

1. 3Gt
Liji(z,y) := —3Y gsz(%y) (7)

The following lemma is useful.

Lemma 2.1 ([AIM], [Sh]). The Landsberg curvature coefficients L;ji are
given by the expressions

1
Liji = —5Yijsk = Cijle:my™, (8)

where “;” denotes the Berwald covariant derivative determined by F.

Further, the mean Landsberg curvature J, = Ji(x,y)dz* : T,M — R is
defined by
Ji(a,y) = ¢'" Liji-

It is easy to show that([Sh])
& 1
Ji = Ii;ky 5 Ei‘ = i{jjﬂ + JZ]} (9)
Express the volume form of F' by

dVp = o(z)da - - - da".
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For a non-zero vector y € T,M, the S-curvature S(y) is defined by

oG* y' 0o
= — — - . 1
(1) = o (o) — 50 @) (10)
From the definition, we have
1

We say that F is of isotropic S-curvature if
S = (n+1)cF, (12)

where ¢ = ¢(x) is a scalar function on M.

3. Ric = Ric

Let F and F be two Finsler metrics on an n-dimensional manifold M. We
have a relation between the geodesic coefficients G* and G* as follows:

_  Fak o F
G' =G+ %yz + 5@” {Fray® — Fu}. (13)

If F = e“®F, then F;k = @, F, where ¢ 1= 80/61}"'. From Lemma 1.1 we
have

_ 1 . F .
G'=G'+ i(ckyk)yZ + 59”{(ckyk)Fyz —qF}

) R
=G+ (ck;yk)yz - 70’,
where ¢! = g'c;. Write
G'=G'+ Py’ - Q', (14)

where )
2
P =k, Q= 701.

From (14) we have
G =G+ Py’ + P& — Q}, (15)
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where G’ := 9G"/dy’, G;k = 8G§/8yk and P; := OP/dy’, Q% = 9Q" /0y,
' o= 0Q5 /0y, etc. Substituting (14), (15), (16) into (3) and using the homo-
geneities of P and Q*, we have
R, = Ry + 204 + iy’ — 2Q4 + ' Qhyy — 2P,Q70, +207Q5, — Q@1 (17)
where
E:=P? - Py, 7, :=3(Pr—PP,)+Z+ PQi.
It is easy to see that
dg¥
oy

oct

= 729irgjsckrs7 (‘Tyﬁ

=—2c"C},. (18)
From (18) we get
PiQp =yl Vel F — F2c'd Oy,

where || Ve||% := ¢jc? = g¥c;c;. Similarly, PjQ7 = %ZHVCHQF Hence we have

Ry, = R, +E6], + my’ — 2Q% + v/ Qi +2Q° Q5 — QQ) — F?|| Vel 3o, (19)
and

E=P’—®, 7, =3(Py—PP)+Zx+ulVelF — F2c'd Cijy, (20)

where ¢ := ci;jyiyj. Further, it is easy to see that

g =2¢g" LI,

and
Clk =2¢"Lyy, + 9" e,
) F?2 .
ka = 70?1@7
Q;- =y;c' — F2CTC;T,
Qjux =yl — F2elCj, — F¢Cl
Q;k = gjkci — 2y,c” fnk — kacTCf;j + 2F20TC’£TC;S — FQCTC;T_k. (21)
Now

ij;c;j = ykc?O - F2CZAOCIZ‘W - cmrcl’ir;m
2QjQ§'k = FQ(CkCi — 2CoCTC',ir — kacchC;r
+2F% " C}L Ol — F2I T CY, ),

Q;Qi = coclyp, — Fzykcjch;T + F4CTCSC£T,C;S. (22)
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From (19) and (20) we get
Ric(y) = Ric(y) + (n — 1) (2 - F?||Ve[l)
—2Q%, + v’ Qb + 207 Q% — Q5 Q;. (23)
From (21) and (22) we have

Ric(y) = Ric(y) + (n —2) (E - F?||Ve|7)
—2F2(c"J,) — F?gc; ; — F*(c"I,.).0 — 2F?%co(c"1,.)
+ 2P, F O — FA I My — FYA RO O, (24)

By (19) we have the following

Theorem 3.1. Let F and F be two Finsler metrics on an n-dimensional
manifold M. If F(x,y) = e¢® F(x,y), then R, = R} if and only if the following
equation holds:

E0; + Ty’ — 2Q% + ¥ Qh; +2Q7Q% — Qi@ — F?||Ve||3dp =0.  (25)

Further, when (25) holds, then F is of scalar curvature \(y) if and only if F is of

scalar curvature \(y) and
A=\ e,

PROOF. We only need to prove the second conclusion. From Ri = R}‘C and
Lemma 1.1(c), we can see that, if F is of scalar curvature A(y), then
Ry, = \F?{6], — F'Fy'}
=N @25 — FE ')

Clearly, F is of scalar curvature A(y) = A(y)e2¢(®). The converse holds obviously.
(]

From Theorem 3.1, we have the following

Corollary 3.1. Let F and F be two Finsler metrics on an n-dimensional
manifold M. If F = e°F(x,y) where ¢ = constant(# 0) (that is, the conformal
transformation is a homothety), then F is of scalar curvature A(y) if and only if
F is of scalar curvature \(y) and A = \/e?°.

PROOF. As ¢ = constant, (25) becomes trivial. So, the Corollary follows
from Theorem 3.1. O
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By (23) we have the following

Theorem 3.2. Let F and F be two Finsler metrics on an n-dimensional
manifold M. If F(z,y) = e‘® F(z,y), then Ric(y) = Ric(y) if and only if the
following equation holds:

2 = F?||Vell3 + Q% — v/ QF; — 2Q7Q%, + Q5 Q1) /(n— 1). (26)

In particular, if ¢(x) = constant, then Ric = Ric.

Remark 3.1. In Riemann conformal geometry, a conformal transformation
satisfying Ric(y) = Ric(y) is called a Liouville transformation. A globally defined
Liouville transformation is a homothety [KR]. A natural problem arises: in Finsler
conformal geometry, is this statement still true? This problem is still open.

If ¢(z) = constant then, by (14), the conformal transformation F = e°F
preserves the geodesics. Inversely, is a conformal transformation a homothety if
it preserves the geodesics? We have the following

Theorem 3.3. Let F and F be two Finsler metrics on an n-dimensional
manifold M. If a conformal transformation F = e“*) F' preserves the geodesics,
then it must be a homothety, that is ¢ = constant.

PROOF. Since the conformal transformation F = e“(*) F preserves the geod-
esics, we have

G'=G"+p(z.y)y', ple,Ay) =Ap(z,y) YA>0. (27)

From (14) and (27) we get
Py’ =coy' — Q" (28)

where ¢y = ¢;y*. Contracting (28) with y; yields

F? F?
pF? = coF? — —co =

9 ?CQ.

Hence, p = 1co, and then Q' = c¢oy’. Further, we have

1, F?,

z = ¢ 29

200?/ B) c (29)
Contracting (29) with ¢; yields ¢3 = F?||V¢||?. From this, we have ||Ve¢[? = 0. Or
else, we know that Rank(g;;) <1, which is a contradiction. Furthermore, ¢, =0
because (g%/) is positive definite, which implies that ¢ = constant. O
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4. The Landsberg curvatures

By Lemma 2.1, the Landsberg curvature coeflicients l_/ijk of F are given by

_ 1_
Lij, = ~59iilk:
where “|” denotes the Berwald covariant derivative determined by F. If F =

e?@F, gy = e*®) g, we have

1
Lij = *5(620(@9@)%

clx 1 c\x
= —e*"eyg;; — 562 ) g3 (30)
From (14), (15) and (16) we have
0gi; = = =
Gijlk = 67’1 —2G.Cijr — 9ir G — 97 Gy,
T
89 T T T
= 8;; —2(GCijr + PCiji, — Q1.Cujr) — (9irGT1, + Pigik
+ Pugij — 9irQj) — (9riGix + Pigjn + Prgi; — 9ri Qi)
= gijik — 2(PCijr. — QiCijr + Prgij) — (Pigir + Pigjk)
+ (gingk + ger;k)'
Substituting these into (30), we get
Lijk = 626(I)Lijk + 626(96)(1301]’1« - Q1.Cijr)
1
+ 5 (Pigin + Pigin) = (9ir Qs + 905 Qi) - (31)
Further, the mean Landsberg curvature J is determined by
- _ 1 g R QT+ QF
Ji = §"Ligp = Ji + (PL - QiCl) + =P, = 2 Q;’“ )
By (21), we have
Liji = *@ Ly, + 2 @D{PCk + " (iCrjk + y;Cirk + yrCijr)
— F2(C5.Cuji + C5.Cisii + C;,.Cijs) + F?¢Cijps }, (33)
Ji = Ji+ PL + F*c" I, +yi(c"I,) — F2c*I,CY,. (34)

From (34) we obtain the following
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Theorem 4.1. Let F and F be two Finsler metrics on an n-dimensional
manifold M. If F(z,y) = e“® F(z,y), then the conformal transformation pre-
serves the mean Landsberg curvature if and only if the conformal factor c(x)
satisfies the following equations:

PI 4+ F?c" I 4 yi(c"I,) — F2c°I.CL, = 0. (35)

In particular, if ¢(x) = constant, then J = J.

5. S-curvature

Let F(z,y) = e“® F(z,7). The Busemann-Hausdorff volume forms djuy and
du g are defined by

n

dpp = op(@)wt A--- Aw",

dpp = op(@)wt A--- AwW",

where
op(x) = “n op(x) = n =
YT EuclideanVol(B?)” " "7 EuclideanVol(B1)
and
By = {(y') € R", Fly'e;) <1},
B = {(yl) S R”,F(yiei) < 1}.
We have
EuclideanVol(BY) = / dyt - - dy™. (36)
By

Pay attention to B? = {(y*) € R", F(e“®y'e;) < 1}. Let 2 = @)y’ in the
integral (36), we get

EuclideanVol(BY) = / e @ dzt . dz" = e @ EuclideanVol(BT).
Bz

Hence, we have
ne(x)

op(x). (37)

we obtain

op(z)=ce

By (15) and Q; = y;ct — F‘%TC’;T.7
Gm=Gr+(n+1)P-Qn
= Gz + (n + 1)P - (ymcm - FQCTIT)

=G" +nP+ F%"1I,.
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On the other hand, we have

y™ Oop m y™ Odop y™ Oop
op(x) Ox™ nemy” + op(x) 0x™ ne op(x) 0x™
Therefore 95 5
Q " ym 3 2. r
- — - F2T,.
S(y) aym  op(z) 02 S(y) + F<c

231

(38)

Theorem 5.1. Let F and F be two Finsler metrics on an n-dimensional
manifold M. If F(z,y) = e‘®F(z,y), then S = S if and only if ¢"I, = 0,
that is, the gradient vector Ve of the conformal factor c(x) is orthogonal to the

covariant vector field I; with respect to the dual metric F* of F. In particular, if

¢ = constant, then S = S.
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