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A problem of Galambos on Oppenheim series expansions

By BAO-WEI WANG (Wuhan) and JUN WU (Wuhan)

Abstract. In this paper, we investigate the Hausdorff dimension of exceptional

sets in the metric properties of digits of Oppenheim series expansions and answer a

question posed by Galambos.

1. Introduction

For any x ∈ (0, 1], the algorithm

x = x1, dn = [1/xn] + 1, xn = 1/dn + an/bn · xn+1, (1)

where an = an(d1, . . . , dn) and bn = bn(d1, . . . , dn) are positive integer valued
functions and [y] denotes the integer part of y, leads to the Oppenheim expan-
sion [12]

x ∼ 1
d1

+
a1

b1

1
d2

+ · · ·+ a1a2 . . . an

b1b2 . . . bn

1
dn+1

+ . . . . (2)

By (1),
1
dn

< xn ≤ 1
dn − 1

, (3)

and hence by the last equality in (1),

dn+1 >
an

bn
dn(dn − 1). (4)
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The expansion defined by (1) and (2) is convergent and its sum is equal to x.
A sufficient condition for a series on the right hand side in (2) to be the expansion
of its sum by the algorithm (1) is (see [12])

dn+1 ≥ an

bn
dn(dn − 1) + 1 for all n ≥ 1. (5)

Definition 1.1. We call the expansion (2) (obtained by the algorithm (1))
restricted Oppenheim expansion of x if an and bn depend on the last denominator
dn only and if the function

hn(j) =
an(j)
bn(j)

j(j − 1) (6)

is integer-valued, for all n ≥ 1 and j ≥ 2.

In the present paper, we deal with restricted Oppenheim expansions only. In
this case, (4) and (5) are equivalent.

The representation (2) under (1) was first studied by Oppenheim [12], includ-
ing Lüroth ([11]), Engel, Sylvester expansions ([2]) and Cantor infinite product
([13]) as special cases. Oppenheim established the arithmetical properties, includ-
ing the question of rationality of the expansion. The foundations of the metric
theory of such expansions were laid down by Galambos [5], [6], [7], [9], see also
the monographs of Galambos [8], Schweiger [14], Vervaat [15], Dajani and
Kraaikamp [1]. From [8], Chapter 6, it can be seen that the integer approxima-
tions Tn(x) to the ratios dn(x)/hn−1(dn−1(x)) defined by

Tn(x) <
dn(x)

hn−1(dn−1(x))
≤ Tn(x) + 1, n ≥ 1, (7)

where h0(x) ≡ 1, plays an important role in the metric theory of Oppenheim
expansions, see Galambos [8] Chapter VI. Moreover, they are stochastically
independent and are distributed as the denominators in the Lüroth expansion.
Galambos, see [8] Page 132, posed the question to calculate the Hausdorff di-
mension of the set

Bm = {x ∈ (0, 1] : 1 ≤ Tn(x) ≤ m for all n ≥ 1}, m ≥ 2,

and compare this with the Lüroth case. In [16], the second author concerned
this problem under the condition hn(j) is of order t (t ≥ 1), see [16] for the
definition. In this paper, we continue to consider this problem. Under more
natural conditions, we obtain the Hausdorff dimension of Bm and thus answer
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the question of Galambos. To obtain the lower bound of the Huasdorff dimension
of a fractal set, a mass distribution is needed, which is a necessary (and sufficient)
tool for this. The mass distribution constructed here is quite technical and subtle.

We use | · | to denote the diameter of a subset of (0, 1], dimH to denote the
Hausdorff dimension and ‘cl’ the closure of a subset of (0, 1] respectively.

2. Hausdorff dimension of Bm

For any m ≥ 2, let

Bm = {x ∈ (0, 1] : 1 ≤ Tn(x) ≤ m for all n ≥ 1}.

By (7), it is easy to check that

Bm =
{

x ∈ (0, 1] : 1 <
dn(x)

hn−1(dn−1(x))
≤ m + 1 for all n ≥ 1

}
, (8)

where h0(n) ≡ 1. Thus in order to calculate the Hausdorff dimensions of Bm,
m ≥ 2, it is sufficient to consider the following sets

Cm =
{

x ∈ (0, 1] : 1 <
dn(x)

hn−1(dn−1(x))
≤ m for all n ≥ 1

}
, m ≥ 3.

From now on, we fix m ≥ 3 be a positive integer.

Lemma 2.1. For any integer a ≥ 1, let S(a) be determined by the following

equation
∑

a<b≤ma

(
a

b(b− 1)

)S(a)

= 1. (9)

Then

lim
a→+∞

S(a) = 1.

Proof. Since ∑

a<b≤ma

(
a

b(b− 1)

)
= 1− 1

m
< 1,

we have S(a) ≤ 1 for all a ≥ 1.
On the other hand, for any 1/2 < s < 1,

∑

a<b≤ma

(
a

b(b− 1)

)s

≥
∑

a≤b≤ma

(
a

b(b− 1)

)s

−
(

1
a− 1

)s
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≥
∫ ma

a

as

x2s
dx−

(
1

a− 1

)s

=
1

1− 2s
((ma)1−2s − a1−2s) · as −

(
1

a− 1

)s

=
(1−m1−2s) · a1−s

2s− 1
−

(
1

a− 1

)s

> 1, a is large enough.

Thus when a is large enough, S(a) > s. The proof of Lemma 2.1 is finished. ¤

We now state the mass distribution principle, see [4] Proposition 2.3, that
will be used later.

Lemma 2.2. Let E ⊂ (0, 1] be a Borel set and µ be a measure with µ(E) > 0.

If for any x ∈ E,

lim inf
r→0

log µ(B(x, r))
log r

≥ s,

where B(x, r) denotes the open ball with center at x and radius r, then dimH E≥s.

Now we are in the position to prove the main result of this paper.

Theorem 2.3. Suppose hj(d) ≥ d− 1 for all j ≥ 1 and d ≥ 2, then for each

m ≥ 3,

dimH Cm = 1.

Proof. For any j ≥ 1 and d ≥ 2, define

Gj(d) = m · hj(d);

Mj(m) = Gj−1 ◦Gj−2 ◦ · · · ◦G1(m), M1(m) := m.

From the assumption on hj(d), it is easy to check that

Mj(m) ≥ mj −mj−1 − · · · −m2 −m for each j ≥ 1,

thus
lim

j→∞
Mj(m) = +∞. (10)

For any 0 < s < 1, from Lemma 2.1, since lima→∞ S(a) = 1, there exists
a0 ∈ N such that for any a ≥ a0, S(a) > s. By (10), there exists k0 ≥ 1 such that
for any k ≥ k0,

Mk(m) ≥ a0 + 1. (11)
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Define

Em =
{

x ∈ (0, 1] : dj(x) = Mj(m) for all 1 ≤ j ≤ k0,

and 1 <
dj+1(x)

hj(dj(x))
≤ m for all j ≥ k0

}
.

It is clear that Em ⊂ Cm. Now we estimate the Hausdorff dimension of Em.
For any x ∈ Em, since hj(d) ≥ d− 1 for all j ≥ 1 and d ≥ 2, by (5), we have,

for any k ≥ k0,

dk(x) ≥ hk−1(dk−1(x)) + 1 ≥ dk−1(x) ≥ · · · ≥ dk0+1(x)

≥ hk0(dk0(x)) + 1 ≥ dk0(x) = Mk0(m) ≥ a0 + 1, (12)

and
hk(dk(x)) ≥ dk(x)− 1 ≥ a0. (13)

Now we introduce a symbolic space defined as follows:
For any k ≥ k0, let

Dk =
{

σ = (σ1, . . . , σk) ∈ Nk : σj = Mj(m) for all 1 ≤ j ≤ k0,

and 1 <
σj+1

hj(σj)
≤ m for all k0 ≤ j ≤ k − 1

}
,

and define

D =
∞⋃

k=k0

Dk.

For any k ≥ k0 and σ = (σ1, . . . , σk) ∈ Dk, let Jσ and Iσ denote the following
closed subintervals of (0, 1]:

Jσ=
⋃

hk(σk)<d≤mhk(σk)

cl{x∈ (0, 1] : d1(x) =σ1, d2(x)= σ2, . . . , dk(x)= σk, dk+1(x)= d},

Iσ = cl{x ∈ (0, 1] : d1(x) = σ1, d2(x) = σ2, . . . , dk(x) = σk},

and each Jσ is called an interval of kth-order. Finally, define

E =
∞⋂

k=k0

⋃

σ∈Dk

Jσ.
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It is obvious that
E = Em.

From the proof of Theorem 6.1 in [8], we have, for any k ≥ k0 and σ ∈ Dk,

|Iσ| = a1(σ1)
b1(σ1)

· a2(σ2)
b2(σ2)

. . .
ak−1(σk−1)
bk−1(σk−1)

· 1
(σk − 1)σk

, (14)

thus by (6), we have

|Jσ| =
∑

hk(σk)<d≤mhk(σk)

a1(σ1)
b1(σ1)

. . .
ak(σk)
bk(σk)

· 1
(d− 1)d

=
a1(σ1)
b1(σ1)

. . .
ak(σk)
bk(σk)

(
1

hk(σk)
− 1

mhk(σk)

)

=
(

1− 1
m

)
a1(σ1)
b1(σ1)

. . .
ak(σk)
bk(σk)

· 1
hk(σk)

=
(

1− 1
m

)
a1(σ1)
b1(σ1)

. . .
ak−1(σk−1)
bk−1(σk−1)

· 1
(σk − 1)σk

. (15)

For any k ≥ k0, σ ∈ Dk, define

µ(Jσ) =
k−1∏

i=k0

(
hi(σi)

σi+1(σi+1 − 1)

)S(hi(σi))

, if k ≥ k0 + 1, (16)

and
5µ(Jσ) = 1, if σ ∈ Dk0 .

µ is a probability mass distribution supported on Em, because

mhk(σk)∑

σk+1=hk(σk)+1

µ(Jσ1σ2...σk+1)

=
mhk(σk)∑

σk+1=hk(σk)+1

k∏

i=k0

(
hi(σi)

σi+1(σi+1 − 1)

)S(hi(σi))

= µ(Jσ1σ2...σk
),

and

mhk0 (σk0 )∑

σk0+1=hk0 (σk0 )+1

µ(Jσ1σ2...σk0+1)
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=
mhk0 (σk0 )∑

σk0+1=hk0 (σk0 )+1

(
hk0(σk0)

σk0+1(σk0+1 − 1)

)S(hk0 (σk0 ))

= 1 = µ(Jσ1σ2...σk0
).

For any x ∈ Em, we prove that

lim inf
r→0

log µ(B(x, r))
log r

≥ s. (17)

If (17) is proved, by Lemma 2.2, we have dimH Em ≥ s. Since 0 < s < 1 is
arbitrary, this implies dimH Cm = 1.

Now we prove (17).
For any x ∈ Em, there exists σ = (σ1, σ2, . . . , σn, . . . ) such that for any

k ≥ k0, (σ|k) := (σ1, σ2, . . . , σk) ∈ Dk and dj(x) = σj for each j ≥ 1. Thus

x ∈ Jσ1σ2...σk
for all k ≥ k0.

From the proof of Theorem 6.1 in [8], we have, for any k ≥ k0, the right
endpoint of the interval Jσ1σ2...σk

, i.e., max{y ∈ (0, 1] : y ∈ Jσ1σ2...σk
}, is

1
σ1

+
k∑

j=2

a1(σ1)
b1(σ1)

. . .
aj−1(σj−1)
bj−1(σj−1)

· 1
σj

+
a1(σ1)
b1(σ1)

. . .
ak(σk)
bk(σk)

· 1
hk(σk)

=
1
σ1

+
k∑

j=2

a1(σ1)
b1(σ1)

. . .
aj−1(σj−1)
bj−1(σj−1)

· 1
σj

+
a1(σ1)
b1(σ1)

. . .
ak−1(σk−1)
bk−1(σk−1)

· 1
σk(σk − 1)

=
1
σ1

+
a1(σ1)
b1(σ1)

· 1
σ2

+ · · ·+ a1(σ1)
b1(σ1)

. . .
ak−1(σk−1)
bk−1(σk−1)

· 1
σk − 1

. (18)

The left endpoint of the interval Jσ1σ2...σk
, i.e., min{y ∈ (0, 1] : y ∈ Jσ1σ2...σk

}, is

1
σ1

+
k∑

j=2

a1(σ1)
b1(σ1)

. . .
aj−1(σj−1)
bj−1(σj−1)

· 1
σj

+
a1(σ1)
b1(σ1)

. . .
ak(σk)
bk(σk)

· 1
mhk(σk)

=
1
σ1

+
k∑

j=2

a1(σ1)
b1(σ1)

. . .
aj−1(σj−1)
bj−1(σj−1)

· 1
σj

+
a1(σ1)
b1(σ1)

. . .
ak−1(σk−1)
bk−1(σk−1)

· 1
mσk(σk − 1)
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=
1
σ1

+
a1(σ1)
b1(σ1)

· 1
σ2

+ . . .

+
a1(σ1)
b1(σ1)

. . .
ak−1(σk−1)
bk−1(σk−1)

·
(

1
σk

+
1

mσk(σk − 1)

)
. (19)

If σk − 1 > hk−1(σk−1), from (18), (19), we know the gap between Jσ1σ2...σk
and

Jσ1...σk−1σk−1 is

a1(σ1)
b1(σ1)

. . .
ak−1(σk−1)
bk−1(σk−1)

· 1
m(σk − 1)(σk − 2)

. (20)

In the same way, if σk + 1 ≤ mhk−1(σk−1), from (18), (19), we know the gap
between Jσ1σ2...σk

and Jσ1...σk−1σk+1 is

a1(σ1)
b1(σ1)

. . .
ak−1(σk−1)
bk−1(σk−1)

· 1
mσk(σk − 1)

. (21)

For any 0 < r < 1
m |IM1(m)M2(m)...Mk0 (m)|, since

(σ|k0) = (M1(m),M2(m), . . . ,Mk0(m))

and |I(σ|k)| → 0 as k →∞, there exists k (depends on x) such that

1
m
|I(σ|k+1)| < r ≤ 1

m
|I(σ|k)|,

that is,

1
m

a1(σ1)
b1(σ1)

. . .
ak(σk)
bk(σk)

· 1
σk+1(σk+1 − 1)

< r ≤ 1
m

a1(σ1)
b1(σ1)

. . .
ak−1(σk−1)
bk−1(σk−1)

· 1
σk(σk − 1)

. (22)

By (14),(20) and (21), B(x, r) can intersect only one kth-order interval Jσ1σ2...σk
.

On the other hand, for every hk(σk) < j ≤ mhk(σk), from (14), we have

|Iσ1σ2...σkj | ≥ a1(σ1)
b1(σ1)

. . .
ak(σk)
bk(σk)

· 1
mhk(σk)(mhk(σk)− 1)

.

Thus B(x, r) can intersect at most

4r(mhk(σk))2
a1(σ1)
b1(σ1)

. . . ak(σk)
bk(σk)

:= l
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(k + 1)-th-order intervals. Therefore

µ(B(x, r)) ≤ min
{

µ(Jσ1σ2...σk
),

∑

i

µ(Jσ1σ2...σki)
}

,

where the sum is over all i such that max{σk+1 − l, hk(σk) + 1} ≤ i ≤ σk+1 + l.
By (16), we have

µ(B(x, r)) ≤ µ(Jσ1σ2...σk
)min

{
1,

∑

i

(
hk(σk)
i(i− 1)

)S(hk(σk))
}

≤ µ(Jσ1σ2...σk
)min

{
1, 2l

(
1

hk(σk)

)S(hk(σk))
}

= µ(Jσ1σ2...σk
)min



1,

8r(mhk(σk))2
a1(σ1)
b1(σ1)

. . . ak(σk)
bk(σk)

(
1

hk(σk)

)S(hk(σk))




≤ µ(Jσ1σ2...σk
) · 11−s ·


 8r(mhk(σk))2

a1(σ1)
b1(σ1)

. . . ak(σk)
bk(σk)

(
1

hk(σk)

)S(hk(σk))



s

.

From (13), we have, for any n ≥ k0,

hn(σn) ≥ a0,

thus
S(hn(σn)) ≥ s for all n ≥ k0. (23)

Combining (6), (16) and (23), we have

µ(B(x, r)) ≤



k−1∏

i=k0

hi(σi)
σi+1(σi+1 − 1)


 8r(mhk(σk))2

a1(σ1)
b1(σ1)

. . . ak(σk)
bk(σk)




(
1

hk(σk)

)S(hk(σk))



s

=
(

hk0(Mk0(m))
ak0+1(σk0+1)
bk0+1(σk0+1)

. . .
ak−1(σk−1)
bk−1(σk−1)

1
σk(σk − 1)

)s

·

 8r(mhk(σk))2

a1(σ1)
b1(σ1)

. . . ak(σk)
bk(σk)




s

·
(

1
hk(σk)

)sS(hk(σk))

=
(

hk0(Mk0(m)) · b1(M1(m))
a1(M1(m))

. . .
bk0(Mk0(m))
ak0(Mk0(m))

)s
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·

 8r(mhk(σk))2

σk(σk − 1)ak(σk)
bk(σk)

·
(

1
hk(σk)

)S(hk(σk))



s

≤ cs
1

(
r · hk(σk)

(
1

hk(σk)

)S(hk(σk))
)s

,

where c1 is a positive constant which does not depend on x and r.
From the definition of S(a), we have

1 =
∑

a<b≤ma

(
a

b(b− 1)

)S(a)

≥ (m− 1)a
(

a

ma(ma− 1)

)S(a)

≥ (m− 1)a
(

a

ma ·ma

)S(a)

= (m− 1)a
(

1
m2a

)S(a)

,

thus
a

aS(a)
≤ m2S(a)

m− 1
≤ m2

m− 1
,

and this implies

hk(σk)
(

1
hk(σk)

)S(hk(σk))

≤ m2

m− 1
.

Therefore
µ(B(x, r)) ≤ cs

2 · rs, (24)

where c2 is a positive constant which does not depend on x and r.
From (24), we know (17) holds. This completes the proof of Theorem 2.3. ¤

From (8) and Theorem 2.3, we have

Corollary 2.4. Suppose hj(d) ≥ d− 1 for all j ≥ 1 and d ≥ 2, then for each

m ≥ 2, we have dimH Bm = 1.

Remark 2.5. Let an(d1, . . . , dn) = 1, bn(d1, . . . , dn) = dn(dn − 1),
(n = 1, 2, . . . ). Then the algorithm (1) leads to the Lüroth expansion of x,

x =
1

d1(x)
+ . . . +

1
d1(x)(d1(x)− 1) . . . dn−1(x)(dn−1(x)− 1)dn(x)

+ . . . . (25)
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Here hn(j) = 1 and Tn(x) = dn(x) − 1. For the Lüroth series, with the help of
the theory of self similar set, see [3], Chapter 9, the Hausdorff dimension s of the
Bm is determined by the following equation

∑

2≤b≤m+1

(
1

b(b− 1)

)s

= 1.

To some extent, Lüroth series expansion stands as a special case to say that
the assumption on hj in the main theorem is not superfluous. Moreover, we can
obtain: if l ≤ hj(dj(x)) ≤ L, for all x ∈ Cm = Bm−1 and j larger than some fixed
integer k0, then one can has

0 < inf
l≤a≤L

S(a) ≤ dimH Cm ≤ sup
l≤a≤L

S(a) < 1.

We now list some special cases which satisfy the assumption in Theorem 2.3.

Example 1. Engel expansion. Let an(d1, . . . , dn) = 1, bn(d1, . . . , dn) = dn,
(n = 1, 2, . . . ). Then (2), together with the algorithm (1), become Engel expan-
sion of x,

x =
1

d1(x)
+

1
d1(x)d2(x)

+ · · ·+ 1
d1(x)d2(x) . . . dn(x)

+ . . . . (26)

In this case, hn(j) = j − 1 and Tn(x) = dn(x)
dn−1(x)−1 − 1 if dn(x)

dn−1(x)−1 is an integer

and
[ dn(x)

dn−1(x)−1

]
otherwise. By Corollary 2.4, we have for each m ≥ 2,

dimH{x ∈ (0, 1] : 1 ≤ Tn(x) ≤ m for all n ≥ 1} = 1.

Example 2. Sylvester expansion. Choose an(d1, . . . , dn)=1, bn(d1, . . . , dn)=1,
(n = 1, 2, . . . ). We get the Sylvester expansion of x,

x =
1

d1(x)
+

1
d2(x)

+ · · ·+ 1
dn(x)

+ . . . . (27)

Here hn(j) = j(j − 1) and Tn(x) = dn(x)
dn−1(x)(dn−1(x)−1) − 1 if dn(x)

dn−1(x)(dn−1(x)−1) is

an integer and
[ dn(x)

dn−1(x)(dn−1(x)−1)

]
otherwise. By Corollary 2.4, we have for each

m ≥ 2,
dimH{x ∈ (0, 1] : 1 ≤ Tn(x) ≤ m for all n ≥ 1} = 1.
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Example 3. Cantor product. Take an(d1, . . . , dn) = dn + 1,
bn(d1, . . . , dn) = dn, (n = 1, 2, . . . ), the expansion (2) yields the Cantor product,

1 + x =
(

1 +
1

d1(x)

)(
1 +

1
d2(x)

)
. . .

(
1 +

1
dn(x)

)
. . . . (28)

Here hn(j) = j2 − 1 and Tn(x) = dn(x)
d2

n−1(x)−1
− 1 if dn(x)

d2
n−1(x)−1

is an integer and
[ dn(x)

d2
n−1(x)−1

]
otherwise. By Corollary 2.4, we have for each m ≥ 2,

dimH{x ∈ (0, 1] : 1 ≤ Tn(x) ≤ m for all n ≥ 1} = 1.

Example 4. Modified Engel expansion. Let an(d1, . . . , dn)= 1,
bn(d1, . . . , dn) = dn − 1, (n = 1, 2, . . . ). We get the modified Engel expansion
of x,

x =
1

d1(x)
+ · · ·+ 1

(d1(x)−1)(d2(x)−1) . . . (dn−1(x)−1)dn(x)
+ . . . . (29)

Thus hn(j) = j and Tn(x) = dn(x)
dn−1(x) − 1 if dn(x)

dn−1(x) is an integer and
[ dn(x)

dn−1(x)

]

otherwise. By Corollary 2.4, we have for each m ≥ 2,

dimH{x ∈ (0, 1] : 1 ≤ Tn(x) ≤ m for all n ≥ 1} = 1.

Example 5. Daróczy–Kátai-Birthday expansion. Choose an(d1, . . . , dn)=dn,
bn(d1, . . . , dn) = 1, (n = 1, 2, . . . ), the resulting series expansion of x takes the
form,

x =
1

d1(x)
+

d1(x)
d2(x)

+ · · ·+ d1(x)d2(x) . . . dn−1(x)
dn(x)

+ . . . . (30)

The Daróczy–Kátai-Birthday expansion was introduced for the first time in
Galambos [9]. Here hn(j) = j2(j − 1) and Tn(x) = dn(x)

d2
n−1(x)(dn−1(x)−1)

− 1

if dn(x)
d2

n−1(x)(dn−1(x)−1)
is an integer and

[ dn(x)
d2

n−1(x)(dn−1(x)−1)

]
otherwise. By Corol-

lary 2.4, we have for each m ≥ 2,

dimH{x ∈ (0, 1] : 1 ≤ Tn(x) ≤ m for all n ≥ 1} = 1.

Remark 2.6. A modification of (1) and (3) to the algorithm 0 < x ≤ 1,
x = x1, and

1
Dn + 1

< xn ≤ 1
Dn

,
1

Dn
− xn =

an

bn
· xn+1. (31)
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generates an alternating series representation

x ∼ 1
D1

− a1

b1

1
D2

+ · · ·+ (−1)n a1a2 . . . an

b1b2 . . . bn

1
Dn+1

+ . . . , (32)

called alternating Oppenheim expansion. The metric theory for the alternating
Oppenheim expansion was studied recently in [10]. Using the same method,
we can get the corresponding results of Theorem 2.3 and Corollary 2.4 for this
expansion.
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