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3-dimensional Bol loops corresponding
to solvable Lie triple systems

By ÁGOTA FIGULA (Debrecen)

Abstract. We classify the connected 3-dimensional differentiable Bol loops L hav-

ing a solvable Lie group as the group topologically generated by the left translations of L

using 3-dimensional solvable Lie triple systems. Together with [4] our results complete

the classification of all 3-dimensional differentiable Bol loops.

1. Introduction

The present research on differentiable loops is focused to such loops which
have local forms determined in a unique way by their tangential objects. The
most important and most studied class of differentiable loops are the Bol loops.
Their tangential objects, the Bol algebras, may be seen as Lie triple systems
with an additional binary operation (cf. [15] pp. 84–86, Def. 6.10). As known the
Lie triple systems are in one-to-one correspondence to (global) simply connected
symmetric spaces (cf. [10], [15] Section 6). Hence there is a strong connection
between the theory of differentiable Bol loops and the theory of symmetric spaces.
In particular the theory of connected differentiable Bruck loops (which form a
subclass of the class of Bol loops) is essentially the theory of affine symmetric
spaces (cf. [15] Section 11).

The 2-dimensional differentiable Bol loops are classified in [15] (Section 25).
My goal is to classify differentiable multiplications satisfying the left Bol identity
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on 3-dimensional connected manifolds since these manifolds also play an excep-
tional role.

The 3-dimensional differentiable Bol loops having a non-solvable Lie group as
the group topologically generated by the left translations have been determined
in [4]. In this paper I classify all 3-dimensional connected differentiable (global)
Bol loops in which the left translations generate a solvable Lie group. Since for
differentiable Bol loops the group topologically generated by the left translations is
always a Lie group with the results of this paper the classification of 3-dimensional
differentiable Bol loops is complete.

We treat the differentiable Bol loops as images of global differentiable sec-
tions σ : G/H → G, where G is a connected Lie group, H is a closed subgroup
containing no non-trivial normal subgroup of G and for all r, s ∈ σ(G/H) the
element rsr lies in σ(G/H). In this treatment the exponential images of Lie
triple systems form local Bol loops. Hence for the classification of 3-dimensional
differentiable Bol loops L having a solvable Lie group G as the group topologi-
cally generated by the left translations we proceed in the following way: First we
determine all solvable 3-dimensional Lie triple systems m and all enveloping Lie
algebras g of m. We show that g and therefore the solvable Lie group G topolog-
ically generated by the left translations of a differentiable Bol loop has dimension
four or five. Then we find for any pair (g,m) all subalgebras h containing no
non-trivial ideal of g such that g = m⊕ h and we prove that global Bol loops L

correspond precisely to those exponential images of m, which form a system of
representatives for the cosets of exph in G.

If the group G is nilpotent then G is the 4-dimensional non-decomposab-
le nilpotent Lie group and the corresponding 3-dimensional Bol loops form only
one isotopism class containing precisely two isomorphism classes (Theorem 4,
Section 5.1).

If the solvable Lie group G is 4-dimensional and not nilpotent then it is a
central extension of a 1-dimensional Lie group N either by the 3-dimensional
solvable Lie group G1 with precisely two 1-dimensional normal subgroups or by
the direct product G2 of R and the 2-dimensional non-abelian Lie group. All
loops L corresponding to the extensions of N by G1 are extensions of N by
a loop isotopic to the pseudo-euclidean plane loop (Theorem 6 in Section 5.2
and Theorem 9 in Section 5.3). The 3-dimensional Bol loops having the central
extension of R by G2 as the group topologically generated by their left translations
are all isomorphic (Theorem 6 in Section 5.2).

If the solvable Lie group G is 5-dimensional then it is either a semidirect
product G of R4 by the group S = R such that either no element of S different from
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the identity has a real eigenvalue in R4 or such that G has a 1-dimensional centre
and precisely two 1-dimensional non-central normal subgroups. We prove that for
both groups G there exist infinitely many non-isotopic 3-dimensional differentiable
Bol loops corresponding to G (Theorem 7 in Section 5.2 and Theorem 11 in
Section 6).

The variety of the 3-dimensional differentiable Bol loops having a solvable
Lie group as the group topologically generated by their left translations contains
families of loops depending on up to four real parameters. The size of this variety
is so enormous that a classification of 4-dimensional differentiable Bol loops having
a solvable Lie group as the group generated by the left translations seems to be
not attainable.

2. Some basic notions of the theory of Bol loops

A set L with a binary operation (x, y) 7→ x · y is called a loop if there exists
an element e ∈ L such that x = e · x = x · e holds for all x ∈ L and the equations
a · y = b and x · a = b have precisely one solution which we denote by y = a\b
and x = b/a. The left translation λa : y 7→ a · y : L → L is a bijection of
L for any a ∈ L. Two loops (L1, ◦) and (L2, ∗) are called isotopic if there are
three bijections α, β, γ : L1 → L2 such that α(x) ∗ β(y) = γ(x ◦ y) holds for any
x, y ∈ L1. Isotopy is an equivalence relation. If α = β = γ then the isotopic
loops (L1, ◦) and (L2, ∗) are called isomorphic. Let (L1, ·) and (L2, ∗) be two
loops. The set L = L1 × L2 = {(a, b) | a ∈ L1, b ∈ L2} with the componentwise
multiplication is again a loop, which is called the direct product of L1 and L2,
and the loops (L1, ·), (L2, ∗) are subloops of L.

A loop L is called a Bol loop if for any two left translations λa, λb the product
λaλbλa is again a left translation of L. If L1 and L2 are Bol loops, then the direct
product L1 × L2 is again a Bol loop.

If the elements of L are points of a differentiable manifold and the operations
(x, y) 7→ x ·y, (x, y) 7→ x/y, (x, y) 7→ x\y : L×L → L are differentiable mappings
then L is called a differentiable loop.

If L is a connected differentiable Bol loop then the group G topologically
generated by the left translations is a connected Lie group (cf. [15], p. 33; [11],
pp. 414–416).

Every connected differentiable Bol loop is isomorphic to a loop L realized on
the factor space G/H, where G is a connected Lie group, H is a connected closed
subgroup containing no normal subgroup 6= {1} of G and σ : G/H → G is a
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differentiable section with σ(H) = 1 ∈ G such that the subset σ(G/H) generates
G and for all r, s ∈ σ(G/H) the element rsr is contained in σ(G/H) (cf. [15],
p. 18 and Lemma 1.3, p. 17, [8], Corollary 3.11, p. 51). The multiplication of L

on the factor space G/H is defined by xH ∗ yH = σ(xH)yH.
Let L1 be a loop in the factor space G/H with respect to the section σ :

G/H → G. The loops L2 isomorphic to L1 and having the same set of left
translations σ(G/H) and the same group G as the group generated by σ(G/H)
correspond to automorphisms α of G, which leave σ(G/H) invariant. The loop
L2 corresponding to α is realized on G/α(H) such that the multiplication of L2

is given by xα(H) ∗ yα(H) = [α ◦ σ ◦ α−1
H (xα(H))]yα(H), where the mapping

αH : G/H → G/α(H) is defined by kH → α(k)α(H). Moreover, let L and L′ be
loops having the same group G generated by their left translations. Then L and
L′ are isotopic if and only if there is a loop L′′ isomorphic to L′ having G again
as the group generated by its left translations such that there exists an inner
automorphism τ of G mapping the stabilizer H ′′ of e′′ ∈ L′′ onto the stabilizer H

of e ∈ L (cf. [15], Theorem 1.11, p. 21).

A real vector space V with a trilinear multiplication (. , . , . ) is called a Lie
triple system V, if the following identities are satisfied:

(X,X, Y ) = 0 (1)

(X,Y, Z) + (Y, Z, X) + (Z,X, Y ) = 0 (2)

(X,Y, (U, V, W )) = ((X,Y, U), V,W )

+ (U, (X, Y, V ), W ) + (U, V, (X, Y,W )). (3)

A Bol algebra A is a Lie triple system (V, (. , . , . )) with a bilinear skew-symmetric
operation [[. , . ]], (X, Y ) 7→ [[X,Y ]] : V × V → V such that the following identity
is satisfied:

[[(X, Y, Z),W ]]− [[(X,Y,W ), Z]] +
(
Z,W, [[X, Y ]]

)

− (
X, Y, [[Z,W ]]

)
+

[[
[[X, Y ]], [[Z, W ]]

]]
= 0.

With any connected differentiable Bol loop L we can associate a Bol algebra
in the following way: Let G be the Lie group topologically generated by the
left translations of L, and let (g, [. , . ]) be the Lie algebra of G. Denote by h
the Lie algebra of the stabilizer H of the identity e ∈ L in G and by m =
T1σ(G/H) the tangent space at 1 ∈ G of the image of the section σ : G/H → G

corresponding to the Bol loop L. Then g = m ⊕ h,
[
[m,m],m

] ⊆ m and m
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generates the Lie algebra g. The subspace m with the operations defined by
(X, Y, Z) 7→ [

[X, Y ], Z
]
, (X,Y ) 7→ [X, Y ]m, where X, Y , Z are elements of m

and Z 7→ Zm : g → m is the projection of g onto m along h, is the Bol algebra
of L. The Lie algebra g of G is isomorphic to an enveloping Lie algebra of the
Lie triple system m corresponding to L.

An imbedding T of a Lie triple system V into a Lie algebra LT is a linear
mapping X 7→ XT of V into LT such that

(i) (X, Y, Z)T = [[XT , Y T ], ZT ] holds for all X,Y, Z ∈ V and

(ii) the image VT generates LT .

The Lie algebra LT is called enveloping Lie algebra of the imbedding T . An
imbedding U of a Lie triple system V is called universal and LU = VU⊕[VU ,VU ] is
a universal Lie algebra of V if and only if, for every imbedding T of V the mapping
XU 7→ XT is single-valued and can be extended to a Lie algebra homomorphism
of LU onto LT ([7], p. 519, and [9], p. 219).

In [7] (pp. 517–518) it is shown that for every Lie triple system V there exists
a particular imbedding S such that

∑
i[X

S
i , Y S

i ] = 0 for Xi, Yi ∈ V if and only
if

∑
i(Xi, Yi, Z) = 0 for every Z ∈ V. Moreover LS = VS ⊕ [VS ,VS ]. This

imbedding is called the standard imbedding of V and the Lie algebra LS is the
smallest enveloping algebra. Using the standard imbedding the existence and the
uniqueness of a universal imbedding U of every Lie triple system V follows ([7],
p. 519). Moreover if V is a n-dimensional Lie triple system then the universal Lie
algebra LU of V and therefore every enveloping Lie algebra LT of V has dimension
at least n and at most n(n + 1)/2.

A loop L is called a left A-loop if each λx,y = λ−1
xy λxλy : L → L is an auto-

morphism of L. If L is a differentiable left A-loop then the group G topologically
generated by its left translations is a Lie group (cf. [15], Proposition 5.20, p. 75).
If g is the Lie algebra of G and h is the Lie algebra of the stabilizer H of the
identity e ∈ L in G then one has m ⊕ h = g and [h,m] ⊆ m, where m is the
tangent space TeL (cf. [15], Definition 5.18. and Proposition 5.20. pp. 74–75).

A differentiable loop L is called a Bruck loop if there is an involutory auto-
morphism σ of the Lie algebra g of the connected Lie group G generated by the
left translations of L such that the tangent space Te(L) = m is the −1-eigenspace
and the Lie algebra h of the stabilizer H of e ∈ L in G is the +1-eigenspace of σ.

Let L1 be a loop defined on the factor space G1/H1 with respect to a section
σ1 : G1/H1 → G1 the image of which is the set M1 ⊂ G1. Let G2 be a group, let
ϕ : H1 → G2 be a homomorphism and (H1, ϕ(H1)) = {(x, ϕ(x));x ∈ H1}. A loop
L is called a Scheerer extension of G2 by L1 if L is defined on the factor space
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(G1 ×G2)/(H1, ϕ(H1)) with respect to the section σ : (G1 ×G2)/(H1, ϕ(H1)) →
G1 ×G2 the image of which is the set M1 ×G2 ([15], Section 2).

From [4] we will use often the following fact:

Lemma 1. Let L be a differentiable global loop and denote by m the tangent

space of T1σ(G/H), where σ : G/H → G is the section corresponding to L. Then

m does not contain any element of Adg−1h = ghg−1 for some g ∈ G. Moreover,

every element of G can be written uniquely as a product of an element of σ(G/H)
with an element of H.

3. 3-dimensional solvable Lie triple systems

Let (m, [[. , . ], . ]) be a Lie triple system and let (g∗, [. , . ]) be the standard
enveloping Lie algebra of (m, [[. , . ], . ]) ([9], p. 219). The isomorphism classes of
the 3-dimensional solvable Lie triple systems and their standard enveloping Lie
algebras may be classified as follows:

1. If the Lie triple system m is abelian then it is the 3-dimensional abelian Lie
algebra, which is also the standard enveloping Lie algebra of m (see Theorem 4.1,
Type I in [1]).

2. Since a 3-dimensional Lie triple system cannot have a 2-dimensional centre we
consider now the case that m has a 1-dimensional centre 〈e1〉. Then the factor
Lie triple system m/〈e1〉 is 2-dimensional and according to [5] (pp. 44–45) it is
either abelian or satisfies one of the following relations:

(i) [[e2, e3], e3] = e2, (ii) [[e2, e3], e3] = −e2.

It follows that for m and for the corresponding Lie algebra g∗ we have the fol-
lowing possibilities.

2 a. If m/〈e1〉 is abelian then we have [[e2, e3], e2] = e1, since m is not abelian.
This Lie triple system is isomorphic to the Lie triple system belonging to the
relation [[e2, e3], e3] = e1 under the isomorphism α given by α(e1) = e1, α(e2) =
e3, α(e3) = −e2 (see Theorem 4.1, Type II in [1]). Then the Lie algebra g∗ is
defined by the following non-trivial relations

[e2, e3] = e4, [e4, e3] = e1.

According to [12] (p. 162) this is the unique 4-dimensional nilpotent Lie algebra
with 2-dimensional commutator algebra.
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2 b. The Lie triple system is the direct product of 〈e1〉 with the 2-dimensional Lie
triple system satisfying in 2 either (i) or (ii) respectively. Using the isomorphism α

given by α(e1) = e3, α(e2) = e1, α(e3) = e2 the Lie triple system with the relation
(i) changes into the Lie triple system m+×〈e3〉 satisfying [[e1, e2], e2] = e1 (Type
III in [1]) and the Lie triple system with the relation (ii) becomes the Lie triple
system m− × 〈e3〉 satisfying [[e1, e2], e2] = −e1 (Type III in [1]). The Lie algebra
g∗(+) corresponding to m+ × 〈e3〉 is given by

[e1, e2] = e4, [e4, e2] = e1,

whereas the other products are zero. This shows that g∗(+) is the direct product of
the 3-dimensional solvable Lie algebra having precisely two 1-dimensional ideals
([6], pp. 12–14) and the 1-dimensional Lie algebra.
The Lie algebra g∗(−) belonging to m− × 〈e3〉 is defined by

[e1, e2] = e4, [e4, e2] = −e1,

which shows that g∗(−) is the direct product of the 3-dimensional solvable Lie
algebra having no 1-dimensional ideal ([6], pp. 12–14) and the 1-dimensional Lie
algebra.

2 c. The Lie triple system is a non-split extension of 〈e1〉 by the 2-dimensional
Lie triple system belonging to the relation (i) or (ii) in 2 respectively. Hence it is
characterized by

m+ : [[e2, e3], e2] = e1, [[e2, e3], e3] = e2 or

m− : [[e2, e3], e2] = e1, [[e2, e3], e3] = −e2

(Type V in [1]).
The Lie algebra g∗(+) of m+ is given by

[e2, e3] = e4, [e4, e2] = e1, [e4, e3] = e2

which shows that g∗(+) contains the 3-dimensional nilpotent ideal 〈e1, e2, e4〉 and
the factor Lie algebra g∗(+)/〈e1〉 is the 3-dimensional Lie algebra having precisely
two 1-dimensional ideals. This Lie algebra is isomorphic to g4,8 with h = −1 in
[13] (p. 121).

The Lie algebra g∗(−) of m− is defined by

[e2, e3] = e4, [e4, e2] = e1, [e4, e3] = −e2,
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which shows that it contains the 3-dimensional nilpotent ideal 〈e1, e2, e4〉 and
the basis element e3 acts as a euclidean rotation in the 2-dimensional subspace
〈e2, e4〉. This Lie algebra is isomorphic to g4,9 with p = 0 in [13] (p. 121).

3. It remains to discuss that m has only trivial centre. In this case m is deter-
mined by

[[e2, e3], e3] = e1, [[e3, e1], e3] = e2

(Type VI in [1]).
The corresponding Lie algebra g∗ is defined by:

[e2, e3] = e4, [e4, e3] = e1, [e1, e3] = e5, [e5, e3] = −e2,

and the other products are zero. The Lie algebra g∗ has two 2-dimensional ideals
which are invariant under the action of e3.

Remark 1. Our classification of the 3-dimensional Lie triple system is a slight
modification of Bouetou’s classification ([1]). He has two classes more, namely

a) [[e2, e3], e1] = e1, [[e3, e1], e2] = −e1

b) [[e1, e2], e2] = εe1, [[e1, e2], e3] = e1

[[e3, e1], e2] = −e1, [[e3, e1], e3] = −εe1,

where ε = ±1.
The case a) does not satisfy the property (3) in the definition of a Lie triple

system and the case b) is isomorphic to the case 2 b using the isomorphism

α(e1) = e1, α(e2) = εe2 − e3, α(e3) = −εe2 + (ε + 1)e3.

4. 3-dimensional Bol loops corresponding to the abelian
Lie triple system are abelian groups

Lemma 2. The universal Lie algebra gU of the abelian Lie triple system m
is given by the following multiplication table:

[e1, e2] = e4, [e1, e3] = e5, [e2, e3] = e6,

and the other products are zero.
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Proof. According to the definition of gU we have mU ∩ [mU ,mU ] = 0.
Thus we can choose the elements e1, e2, e3 as a basis of mU and the elements
e4 := [e1, e2], e5 := [e1, e3] and e6 := [e2, e3] as the generators of [mU ,mU ]. Since
m is abelian we obtain the assertion. ¤

The centre Z of gU is generated by the elements e4, e5, e6 and is equal
to [mU ,mU ]. Therefore the Lie group GU of gU is a 6-dimensional nilpotent
Lie group of nilpotency class 2. Every enveloping Lie algebra gT of m is an
epimorphic image of gU . The 4- or 5-dimensional epimorphic images of gU are also
nilpotent and has nilpotency class 2. It follows from [15] (p. 311) that any global
connected differentiable proper Bol loop L having a Lie group of nilpotency class
2 as the group topologically generated by its left translations contains an at least
3-dimensional nilpotent subgroup. Hence there does not exist any differentiable
proper 3-dimensional Bol loop L corresponding to the abelian Lie triple system.

5. 3-dimensional Bol loops belonging to a Lie triple system
with 1-dimensional centre

5.1. Bol loops corresponding to the non-decomposable nilpotent stan-
dard enveloping Lie algebra with dimension 4. We consider the Lie triple
system m of type 2 a in Section 3.

Lemma 3. The universal Lie algebra gU of the Lie triple system m of type

2 a is the 5-dimensional nilpotent Lie algebra defined by the following non-trivial

products:

[e2, e3] = e4, [e4, e3] = e1, [e3, e1] = e5.

The unique 4-dimensional epimorphic image of gU (up to isomorphisms) is the

standard enveloping Lie algebra g∗ described in 2 a.

Proof. Since gU = mU ⊕ [mU ,mU ] we may assume that the set {e1, e2, e3}
is the set of the generators of mU and the elements e4 := [e2, e3], e5 := [e3, e1]
and e6 := [e1, e2] are basis elements of [mU ,mU ]. The relations of the Lie triple
system of type 2 a yield the following multiplication table:

[e2, e3] = e4, [e4, e3] = e1, [e3, e1] = e5, [e1, e2] = e6.

Since [[e4, e3], e2] + [[e3, e2], e4] + [[e2, e4], e3] = e6 this multiplication satisfies the
Jacobi identity if and only if [e1, e2] = 0 and this is the first assertion. The Lie
algebra gU is nilpotent hence every epimorphic images of gU is also nilpotent.
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If g is a 4-dimensional epimorphic image of gU then the commutator subalgebra
of g is image of the commutator subalgebra (gU )′. Since dim(gU )′ = 3 we have
dimg′ = 2 and g is the standard enveloping Lie algebra g∗ (cf. 2 a). ¤

Denote by G the Lie group of the standard enveloping Lie algebra g∗. Using
the Campbell–Hausdorff series the multiplication of G is defined by:

(x1, x2, x3, x4) ∗ (y1, y2, y3, y4)

=




x1 + y1 +
1
2
(x4y3 − x3y4) +

1
12

(x2
3y2 − x3x2y3) +

1
12

(x2y
2
3 − x3y3y2)

x2 + y2

x3 + y3

x4 + y4 +
1
2
(x2y3 − x3y2)




([2], p. 77). A 1-dimensional subalgebra h of g∗ such that h does not contain any
non-trivial ideal of g and h ∩m = {0} holds has the form

h = 〈e4 + a1e1 + a2e2 + a3e3〉, ai ∈ R.

The automorphism group of g consisting of the linear mappings

α(e1) = bf2e1, α(e2) = ae1 + be2, α(e3) = de1 + le2 + fe3, α(e4) = bfe4,

where a, b, d, l, f ∈ R and bf 6= 0, leaves the subspace m = 〈e1, e2, e3〉 invariant
and maps the subalgebra h onto one of the following subalgebras

h1 = 〈e4〉, h2 = 〈e4 + e1〉, h3 = 〈e4 + e2〉, h4 = 〈e4 + e3〉

(see [2]). Since the element e4 + e2 ∈ h3 is conjugate to the element e2− 1
2e1 ∈ m

under g = (0, 0,−1, 0) ∈ G and the element e4 + e3 ∈ h4 is conjugate to the
element e3 ∈ m under g = (0, 1, 0, 0) ∈ G we have a contradiction to Lemma 1.
Therefore we have to consider only the cases (g∗,h1) and (g∗,h2). In [2] it is
proved that for these 2 cases global Bol loops exist. The loop L belonging to the
triple

(G,H1 = exph1 = {(0, 0, 0, h) | h ∈ R}, expm = {(a, b, c, 0) | a, b, c ∈ R})

is a Bruck loop. The loop L∗ corresponding to

(G,H2 = exph2 = {(h, 0, 0, h) | h ∈ R}, expm = {(a, b, c, 0) | a, b, c ∈ R})
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is a left A-loop, because of [h,m] ⊆ m. But it is not a Bruck loop since there is
no involutory automorphism σ : g → g such that σ(m) = −m and σ(h2) = h2.

Since the conjugation by the element g = (0, 0,−1, 0) ∈ G maps the subal-
gebra h1 of H1 onto the subalgebra h2 of H2 the loop L is isotopic to L∗.

Now we consider the universal Lie algebra gU defined in Lemma 3, which is
the Lie algebra L2

5 in [12] (p. 162). Using the Campbell–Hausdorff series ([16])
the multiplication of the Lie group GU of gU is given as follows:

(x1, x2, x3, x4, x5) ∗ (y1, y2, y3, y4, y5)

=




x1 + y1 +
1
2
(x4y3 − x3y4) +

1
12

(x2
3y2 − x3x2y3) +

1
12

(x2y
2
3 − x3y3y2)

x2 + y2

x3 + y3

x4 + y4 +
1
2
(x2y3 − x3y2)

x5 + y5 +
1
2
(x3y1 − x1y3) +

1
12

(−x2
3y4 + x3x4y3)

+
1
12

(−x4y
2
3 + x3y3y4) +

1
24

(x2x3y
2
3 − x2

3y2y3)




.

The class of the 2-dimensional subalgebras h of g1, which does not contain any
non-trivial ideal and h ∩m = {0} has the following shape:

ha,b,a′,b′ = 〈e4 + ae1 + be2, e5 + a′e1 + b′e2〉, a, b, a′, b′ ∈ R, (a′, b′) 6= (0, 0)

([2], p. 80). There is no Bol loop L such that the group topologically generated
by the left translations of L is the group GU and the stabilizer of the identity
e ∈ L in GU is the group

Ha,b,a′,b′ = {(λ1a + λ2a
′, λ1b + λ2b

′, 0, λ1, λ2), λ1, λ2 ∈ R}, a, b, a′, b′ ∈ R,

where (a′, b′) 6= (0, 0). Namely we show that for given a, b, a′, b′ ∈ R with (a′, b′) 6=
(0, 0) we can find (0, 0) 6= (λ1, λ2) ∈ R2 and an element x = (x1, x2, x3, x4, x5) ∈
GU such that

Adx(λ1(e4 + ae1 + be2) + λ2(e5 + a′e1 + b′e2)) ∈ m\{0}

where m = {y1e1 + y2e2 + y3e3; y1, y2, y3 ∈ R}. This is a consequence of the fact
that the following system of equations:

y1 = λ1

(
a− 1

2
x3

)
+ λ2a

′, y2 = λ1b + λ2b
′, y3 = 0
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λ1(1− x3b)− λ2b
′x3 = 0, λ2(1 + x3a

′) + λ1

(
x3a− 1

3
x2

3

)
= 0

has a solution x3 6= 0, (λ1, λ2) 6= (0, 0) and (y1, y2, y3) 6= (0, 0, 0) which holds true
since there exists x3 6= 0 such that

1 + x3(a′ − b) + x2
3(b

′a− ba′)− 1
3
b′x3

3 = 0.

Summarizing our discussion we obtain

Theorem 4. There is only one isotopism class C of 3-dimensional connected

differentiable Bol loops such that the group G topologically generated by their

left translations is a nilpotent Lie group. The group G is isomorphic to the

4-dimensional non-decomposable nilpotent Lie group. The class C consists of

precisely two isomorphism classes C1 and C2 which may be represented by the

Bruck loop L having the group H = {(0, 0, 0, h) | h ∈ R} as the stabilizer of e ∈ L

in G respectively by the left A-loop L∗ having the group H = {(h, 0, 0, h) | h ∈ R}
as the stabilizer of e ∈ L∗ in G.

5.2. Bol loops corresponding to a Lie triple system which is a direct
product of its centre and a non-abelian Lie triple system. We discuss
here the Lie triple systems characterized in 2 b in Section 3.

Lemma 5. The universal Lie algebras gU
(+) and gU

(−) of the Lie triple systems

m+ × 〈e3〉 or m− × 〈e3〉 respectively, are defined by:

[e1, e2] = e4, [e4, e2] = ε e1, [e2, e3] = e5,

where ε = 1 for gU
(+) and −1 for gU

(−), and the other products are zero.

The unique 4-dimensional epimorphic image of gU
(−) is (up to isomorphisms)

the standard enveloping Lie algebra g∗(−) described in 2 b.

The 4-dimensional epimorphic images of gU
(+) are (up to isomorphisms) either

the standard enveloping Lie algebra g∗(+) given in 2 b or the Lie algebra g given

by:

[e1, e2] = e1, [e2, e3] = e4,

whereas the other products are zero.

Proof. For a basis of the universal Lie algebras gU = mU ⊕ [mU ,mU ] one
can choose the elements e1, e2, e3, e4, e5, e6, where e1, e2, e3 are the generators of
mU and e4 := [e1, e2], e5 := [e2, e3], e6 := [e1, e3] are the generators of [mU ,mU ].
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Using the relations of the Lie triple systems of type 2 b we obtain the following
multiplication table:

[e1, e2] = e4, [e4, e2] = ±e1, [e2, e3] = e5, [e1, e3] = e6

and the other products are zero. Since for the elements e2, e3, e4 one has

[[e2, e3], e4] + [[e3, e4], e2] + [[e4, e2], e3] = ±e6,

this multiplication satisfies the Jacobi identity precisely if [e1, e3] = 0, and we
obtain the universal Lie algebras gU

(±). The unique 1-dimensional ideal of gU
(−)

is the centre of gU
(−), which is generated by e5. Moreover, the epimorphic image

α(gU
(−)) under the mapping α(ei) = ei, i = 1, 2, 3, 4, α(e5) = 0 is the Lie algebra

g∗(−).
The 1-dimensional ideals of gU

(+) are i1 = 〈e5〉, i2 = 〈e1 + e4〉, i3 = 〈e4 − e1〉.
The image of gU

(+) under the epimorphism β(ei) = ei, i = 1, 2, 3, 4 and β(e5) = 0
is the Lie algebra g∗(+). The Lie algebras gU

(+)/〈e1 + e4〉 and gU
(+)/〈e4 − e1〉 are

determined by

[e1, e2] = −e1, [e2, e3] = e4; and by

[e1, e2] = e1, [e2, e3] = e4

respectively. This shows that gU
(+)/〈e1 +e4〉 is isomorphic to gU

(+)/〈e4−e1〉 under
the isomorphism γ(ei) = ei, i = 1, 4 and γ(ej) = −ej , j = 2, 3, and the assertion
follows. ¤

First we seek for Bol loops having the standard enveloping Lie algebra g∗(+)

given in 2 b as the Lie algebra of the group topologically generated by their left
translations. The Lie group G of g∗(+) is the direct product G = G1×G2, where G1

is the 3-dimensional solvable Lie group having precisely two 1-dimensional normal
subgroups and G2 is a 1-dimensional Lie group. Since the Lie triple system is the
direct product of its centre C and a 2-dimensional non-abelian Lie triple system A

one has expm = expm1×expm2, where expm1 respectively expm2 corresponds
to A respectively to C. Moreover, expm1 ⊆ G1 and expm2 = G2.

First we assume that the 1-dimensional Lie group H = exph is contained in
G1 × {1}. Then the loop L is the direct product of a 2-dimensional Bol loop L1

and a 1-dimensional Lie group ([15], Proposition 1.19, p. 28). The loop L1 has G1

as the group generated by its left translations, and it is isomorphic to precisely
one of the non-isomorphic loops Lα, α ∈ R with α ≤ −1 given in Theorem 23.1
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of [15]. All loops Lα and hence also L1 are isotopic to the pseudo-euclidean plane
loop ([15], Remark 25.4, p. 326).

If the 1-dimensional Lie group H = exph is not contained in G1 × {1} then
H is isomorphic to R since G1 does not contain any discrete normal subgroup 6= 1.
Therefore G2

∼= R, expm = expm1 × R and H has the shape {(h1, ϕ(h1) | h1 ∈
H1}, where H1

∼= R is a subgroup of G1 and ϕ : H1 → G2 is a monomorphism.
For a loop L corresponding to the pair (G,H) the group G2 is a normal subgroup
of L and the factor loop L/G2 is isomorphic to a loop L1 defined on the factor
space G1/H1. According to Theorem 23.1 in [15] the loop L1 is isomorphic to a
loop Lα. Then the Proposition 2.4 in [15] yields that L is a Scheerer extension of
the group R by a loop Lα.

Now we deal with the standard enveloping Lie algebra g∗(−) given in 2 b. The
Lie group G of g∗(−) is the direct product G = G1×G2 of the 3-dimensional solv-
able Lie group G1 having no non-trivial normal subgroup and a 1-dimensional
Lie group G2. Since expm decomposes into the topological product expm =
expm1×expm2 with expm1 ⊂ G1 and expm2 = G2 the 1-dimensional Lie group
H has the form (H1, ϕ(H1)), where ϕ : H1 → G2 is a homomorphism. Hence
the loop belonging to (G,H, expm) is a Scheerer extension of a 1-dimensional Lie
group and a 2-dimensional loop L̃ (cf. [15] Proposition 1.19, p. 28 and Proposi-
tion 2.4, p. 44). But the group G1 cannot be the group topologically generated
by the left translations of L̃ (cf. [15] Lemma 23.15, p. 312). Therefore there is no
differentiable Bol loop corresponding to the group G.

Now we investigate the Lie algebra g in Lemma 5, which consists of the
matrices

ve1 + ue2 + ze3 + ke4 7→




0 v 0 0 0
0 u 0 0 0
0 0 0 u k

0 0 0 0 z

0 0 0 0 0




; u, v, k, z ∈ R.

It is a central extension of R by the direct product of R and the non-abelian
2-dimensional Lie algebra (see [13], pp. 120–121). The multiplication of the Lie
group G of g is defined by

(x1, x2, x3, x4) ∗ (y1, y2, y3, y4) = (y1 + x1e
y2 , x2 + y2, x3 + y3, x4 + y4 + x2y3).

The 1-dimensional subalgebras h of g which complement m = 〈e1, e2, e3〉 have
the shapes:

ha1,a2,a3 = 〈e4 + a1e1 + a2e2 + a3e3〉,



3-dimensional Bol loops corresponding to solvable Lie triple systems 73

where a1, a2, a3 ∈ R. For a1 = a2 = a3 = 0 the Lie algebra h0,0,0 = 〈e4〉 is an
ideal of g. Therefore we have (a1, a2, a3) 6= (0, 0, 0). The automorphisms γ of g
leaving m invariant are determined by the linear mappings

γ(e1) = ae1, γ(e2) = b1e1 + e2 + b3e3, γ(e3) = de3, γ(e4) = de4,

such that a, d ∈ R\{0} and b1, b3 ∈ R. A suitable automorphism γ of g with
γ(m) = m maps the subalgebra ha1,a2,a3 onto one of the following Lie algebras:

h1 = 〈e4 + e2〉, h2 = 〈e4 + a3e3〉, a3 ∈ R\{0}, h3 = 〈e4 + e1 + a3e3〉, a3 ∈ R.

Because of e2 = Adg(e4 + e2) ∈ m with g = (0, 0,−1, 0) ∈ G the Lie algebra
h1 is excluded. Since for a3 6= 0 and g = (0, a−1

3 , 0, 0) ∈ G one has a3e3 =
Adg(e4 + a3e3) ∈ m and [exp(a−1

3 )]e1 + a3e3 = Adg(e4 + e1 + a3e3) ∈ m we
have to investigate only the triple (g,h = 〈e4 + e1〉,m) (cf. Lemma 1). For the
exponential image of m = 〈e1, e2, e3〉 we obtain

exp m = exp{k1e1 + k2e2 + k3e3; k1, k2, k3 ∈ R}

=
{(

k1
ek2 − 1

k2
, k2, k3,

1
2
k2k3

)
, ki ∈ R, i = 1, 2, 3

}
,

and the subgroup H = exp{a(e4 + e1), a ∈ R} consists of the elements (a, 0, 0, a),
a ∈ R.

Since any element of G decomposes uniquely as (0, y1, y2, y3)(a, 0, 0, a) we
can conclude that expm determines a global Bol loop if and only if each element
g = (0, y1, y2, y3) ∈ G, yi ∈ R, i = 1, 2, 3 can be written uniquely as a product
g = mh or equivalently m = gh−1 with m ∈ expm and h ∈ H. This is the case
since for all given y1, y2, y3 ∈ R the following system of equations

y1 = k2, y2 = k3, y3 − a =
1
2
k2k3, a = −k1

ek2 − 1
k2

has a unique solution (a, k1, k2, k3) ∈ R4 given by

k2 := y1, k3 := y2, a := y3 − 1
2
y1y2, k1 :=

1
2y1y2 − y3

ey1−1
y1

.

Hence the pair (G,H = {(a, 0, 0, a), a ∈ R}) corresponds to a 3-dimensional Bol
loop L. Because of [h,m] ⊆ m the loop L is a left A-loop.

Now we summarize the discussion in
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Theorem 6. Let L be a 3-dimensional connected differentiable Bol loop

corresponding to a Lie triple system which is a direct product of its centre and a

non-abelian 2-dimensional Lie triple system. If the group G topologically gener-

ated by the left translations of L is 4-dimensional, then for L and for G precisely

one of the following cases occur:

1) G is the direct product of the 3-dimensional solvable Lie group having

precisely two 1-dimensional normal subgroups and a 1-dimensional Lie group and

L is either the direct product of the 1-dimensional compact Lie group SO2(R)
with a 2-dimensional Bol loop Lα defined in Theorem 23.1 of [15] or a Scheerer

extension of the group R by a loop Lα.

2) G is the 4-dimensional solvable Lie group with the multiplication

(x1, x2, x3, x4) ∗ (y1, y2, y3, y4) = (y1 + x1e
y2 , x2 + y2, x3 + y3, x4 + y4 + x2y3)

and L is isomorphic to the left A-loop having H = {(a, 0, 0, a) | a ∈ R} as the

stabilizer of the identity of L.

Finally we treat the universal Lie algebras gU
(±) defined in Lemma 5. (The

Lie algebra gU
(+) is isomorphic to the Lie algebra g5,8 with γ = −1 and gU

(−) is
isomorphic to the Lie algebra g5,14 with p = 0 in [14], p. 105.) The multiplication
of the Lie group GU

(±) corresponding to gU
(±) is given by:




x1

x2

x3

x4

x5



∗




y1

y2

y3

y4

y5




=




y1 + x1 cos y2 + εx4 sin y2

y2 + x2

y3 + x3

y4 + x1 sin y2 + x4 cos y2

y5 + x5 + x2y3




.

The triple (cos y2, sin y2, ε) denotes (cosh y2, sinh y2, 1) in case GU
(+) and

(cos y2, sin y2,−1) in case GU
(−).

The 2-dimensional subalgebras h of gU
(±) which are complements to m =

〈e1, e2, e3〉 have the shapes:

ha1,a3,b1,b3 = 〈e4 + a1e1 + a3e3, e5 + b1e1 + b3e3〉,

where a1, a3, b1, b3 ∈ R. Since the ideal 〈e5〉 of gU
(±) lies in ha1,a3,0,0 and the ideal

〈e4 ± e1〉 of gU
(+) is contained in h±1,0,b1,b3 we may suppose that (b1, b3) 6= (0, 0)

in the case of gU
(+) as well as of gU

(−) and (a1, a3) 6= (±1, 0) in the case gU
(+).

For b1 = 0 the element 0 6= b3e3 ∈ m is conjugate to e5 + b3e3 ∈ h under
g = (0,−b−1

3 , 0, 0, 0) ∈ GU
(±) which contradicts Lemma 1.
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If b1 6= 0 then the linear mapping α defined by

α(e1) =
1
b1

e1, α(e2) = e2, α(e3) = e3, α(e4) =
1
b1

e4, α(e5) = e5

is an automorphism of gU
(±). This automorphism leaves the subspace m invariant

and reduces ha1,a3,b1,b3 to ha1,a3,1,b3 .
The Lie group Ha1,a3,1,b3 = expha1,a3,1,b3 consists of the elements

{(la1 + k, 0, la3 + kb3, l, k), l, k ∈ R}

and the exponential image of the subspace m has the form

exp m = exp{k1e1 + k2e2 + k3e3; k1, k2, k3 ∈ R}

=
{(

k1 sin k2

k2
, k2, k3, ε

k1(cos k2 − 1)
k2

,
1
2
k2k3

)
, k1, k2, k3 ∈ R

}
.

Every element of the Lie group GU
(±) can be written uniquely as a product

(x1, x2, x3, x4, x5) = (0, f2, f3, 0, f5)(la1 + k, 0, la3 + kb3, l, k),

where (la1 + k, 0, la3 + kb3, l, k) ∈ Ha1,a3,1,b3 . Each element g = (0, f2, f3, 0, f5),
fi ∈ R for i = 2, 3, 5, has in GU

(±) a unique decomposition as g = m h or equiv-
alently m = g h−1 with m ∈ expm, h ∈ Ha1,a3,1,b3 if and only if for all given
f2, f3, f5, a1, a3, b3 ∈ R the following system of equations

−la1 − k =
k1 sin f2

f2
, k3 = f3 − la3 − kb3, l = −ε

k1(cos f2 − 1)
f2

,

−k + f5 + f2(k3 − f3) = 1
2f2k3, k2 = f2 (∗)

has a unique solution (k1, k2, k3, k, l) ∈ R5.
In the group GU

(−) we find

k2 = f2, k1 = f2(−2f5+f2f3)
ñ ,

k3 = 2[(cos f2−1)(f3a1−f3a3f2+f3b3f2a1+a3f5−b3a1f5)+sin f2(f3+f3b3f2−b3f5)]
ñ ,

k = (2f5−f2f3)[sin f2+a1(cos f2−1)]
ñ , l = (cos f2−1)(−2f5+f2f3)

ñ , (1)

where ñ = (cos f2 − 1)(2a1 − a3f2 + b3f2a1) + (2 + b3f2) sin f2.
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In GU
(+) the system (∗) has the following solution:

k2 = f2, k1 = 2f2ef2 (−2f5+f2f3)
(ef2−1)n

,

k3 = 2[(ef2−1)(−f3a1+f3a3f2−f3b3f2a1−a3f5+b3a1f5)+(ef2+1)(f3+f3b3f2−b3f5)]
n ,

k = (−2f5+f2f3)(a1ef2−ef2−a1−1)
n , l = (ef2−1)(2f5−f2f3)

n , (2)

where n = (1− ef2)(2a1 − a3f2 + b3f2a1) + (ef2 + 1)(2 + b3f2).
The solution (1) respectively the solution (2) is unique if and only if ñ 6= 0

respectively n 6= 0. If for a value f2 one has n(f2) = 0 respectively n′(f2) = 0
then the coset (0, f2, f3, 0, f5)Ha1,a3,1,b3 contains no element of expm.

Considering f2 as a variable x for the function ñ(f2) = ñ(x) one has ñ(x) = 0
if and only if a3(x) =

(
2
x + b3

)(
a1 + sin x

cos x−1

)
, where a1, b3 ∈ R and x ∈ R\{2πl},

l ∈ Z. For all a1 ∈ R the function h(x) := a1 + sin x
cos x−1 has period 2π. It is

continuous and strictly increasing on the intervals (2πl, 2π + 2πl), l ∈ Z such
that limx↘2πl h(x) = −∞ and limx↗2π+2πl h(x) = ∞. The function 2

x + b3 is for
b3 ≤ − 2

3π continuous and negative in (4π, 6π) and for b3 > − 2
3π it is continuous

and positive in (0, 2π). Hence the restriction of the function a3(x) to (4π, 6π)
respectively to (0, 2π) takes all real numbers as values. This means that for all
given a1, a3, b3 there is a value p ∈ R\{2πl}, l ∈ Z such that ñ(p) = 0.

Replacing f2 by the variable x we investigate the function n(f2) = n(x). We
have n(0) = 4. We seek for p ∈ R\{0} with n(p) = 0. Since n(x) is continuous it
is enough to prove that there is x ∈ R\{0} with n(x) < 0. This happens for the
following triples

a) (b3 = 0, a3 = 0, a1 /∈ [−1, 1]) b) (b3 = 0, a3 < 0, a1 ∈ R)

c) (b3 ∈ R\{0}, a3 ≤ 0, a1 ∈ R) d)
(
b3 < 0, a3 > 0, a1 <

a3

b3
+ 1

)

e)
(
b3 > 0, a3 > 0, a1 >

a3

b3
− 1

)
.

Namely, in the case a) limx→−∞
n(x)
ex+1 < 0 for a1 < −1 and limx→∞

n(x)
ex+1 < 0 for

a1 > 1. In the cases b) and e) we have limx→−∞
n(x)
ex+1 = −∞ and in the case d)

one obtains limx→∞
n(x)
ex+1 = −∞. Moreover, in the case c) one has n(− 2

b3
) ≤ 0.

Thus for the above triples (a1, a3, b3) there is p ∈ R\{0} such that n(p) = 0.
Let σ : GU

(±)/Ha1,a3,1,b3 → GU
(±) be a section belonging to a differentiable

Bol loop L with dimension 3. If σ(GU
(±)/Ha1,a3,1,b3) contains expm then any

coset (0, f2, 0, 0, 1)Ha1,a3,1,b3 , (f2 ∈ R) should contain precisely one element s of
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σ(GU
(±)/Ha1,a3,1,b3). For f2 6= p we obtain in the case GU

(−)

s =
(
−2

sin f2

ñ
, f2, k3,

2(cos f2 − 1)
ñ

,
1
2
f2k3

)

and in the case GU
(+)

s =
(−2(ef2 + 1)

n
, f2, k3,

−4ef2(cosh f2 − 1)
(ef2 − 1)n

,
1
2
f2k3

)
.

Since σ is continuous one has

σ((0, p, 0, 0, 1)Ha1,a3,1,b3) = lim
f2→p

σ((0, f2, 0, 0, 1)Ha1,a3,1,b3) = lim
f2→p

s.

But limf2→p
2(cos f2−1)

ñ = ∞ as well as limf2→p
−2(ef2+1)

n = ∞ which are contra-
dictions. Therefore the group GU

(−) cannot be the group topologically generated
by the left translations of a differentiable 3-dimensional Bol loop and for the group
GU

(+) the parameters satisfying the conditions a) till e) are excluded.

Now for GU
(+) it remains to investigate the triples

(i) (b3 = 0, a3 = 0, −1 < a1 < 1) (ii) (b3 = 0, a3 > 0, a1 ∈ R)

(iii)
(
b3 < 0, a3 > 0, a1 >

a3

b3
+ 1

)
(iv)

(
b3 > 0, a3 > 0, a1 <

a3

b3
− 1

)

(v)
(
b3 > 0, a3 > 0, a1 =

a3

b3
− 1

)
(vi)

(
b3 < 0, a3 > 0, a1 = a3

b3
+ 1

)
.

In the case (i) the function n(x) is positive. Therefore there is a con-
nected differentiable 3-dimensional Bol loop, which is realized on the factor space
GU

(+)/Ha1,0,1,0 with −1 < a1 < 1.

In the case (ii) we have

n(x) = ex(xa3 − 2a1 + 2)− xa3 + 2a1 + 2

and for the derivations we obtain

n′(x) = ex(xa3 − 2a1 + 2 + a3)− a3

n′′(x) = ex(xa3 − 2a1 + 2 + 2a3)

n′′′(x) = ex(xa3 − 2a1 + 2 + 3a3).
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Since n′′(x) = 0 only for u = 2a1−2−2a3
a3

holds and n′′′(u) = a3 > 0 the function
n′(x) assumes in u its unique minimum. Moreover, we have

lim
x→∞

n′(x) = ∞, lim
x→−∞

n′(x) < 0, and

lim
x→∞

n(x) = ∞, lim
x→−∞

n(x) = ∞.

Therefore there is only one value p for which n′(p) = 0 and in p the function
n(x) achieves its unique minimum. One obtains n′(p) = 0 if and only if a1 =
1
2 (pa3 + 2 + a3 − a3

ep ). Furthermore, we have n(p) > 0 if and only if p = 0 or
0 < a3 < 4ep

(ep−1)2 if p ∈ R\{0}. Thus for the parameters (a3, a1) satisfying the
properties

0 < a3 and a1 = 1

or
0 < a3 <

4ep

(ep − 1)2
and a1 =

1
2

(
pa3 + 2 + a3 − a3

ep

)

there is a connected differentiable 3-dimensional Bol loop corresponding to the
pair (GU

(+), Ha1,a3,1,0).

In the cases (iii) and (iv) we have

n(x) = (ex + 1)(b3x + 2) + (1− ex)(xb3a1 − xa3 + 2a1)

and for the derivations one obtains

n′(x) = ex(x(b3 + a3 − b3a1) + b3 + a3 − b3a1 + 2− 2a1) + b3 + b3a1 − a3

n′′(x) = ex(x(b3 + a3 − b3a1) + 2b3 + 2a3 − 2b3a1 + 2− 2a1)

n′′′(x) = ex(x(b3 + a3 − b3a1) + 3b3 + 3a3 − 3b3a1 + 2− 2a1).

The same arguments as above show that the function n′(x) has only one minimum
in 2(b3a1−b3−a3+a1−1)

b3+a3−b3a1
and that there exists only one value p such that n′(p) = 0;

for this value p the function n(x) takes its unique minimum.
We have n′(p) = 0 if and only if

p = 0 and a1 = b3 + 1

or

a3 =
ep(1 + p)(b3a1 − b3) + ep(2a1 − 2)− b3 − b3a1

ep(1 + p)− 1
if p ∈ R\{0}.
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Putting a3 into the expression of n(x) we obtain the following: For the value p

one has n(p) > 0 if and only if one of the following cases is satisfied

(I) p = 0 and a1 = b3 + 1

(II) ep(1 + p)− 1 < 0 and p2epb3− a1(e2p + 1) + e2p + 2pep − 1 + 2a1e
p < 0

(III) ep(1 + p)− 1 > 0 and

p2epb3 − a1(e2p + 1) + e2p + 2pep − 1 + 2a1e
p > 0.

In the case (I) the conditions in (iii) reduce to

(iii) a) b3 < 0, a1 = b3 + 1, b2
3 < a3

and from the conditions in (iv) one gets

(iv) b) b3 > 0, a1 = b3 + 1, b2
3 + 2b3 < a3.

In both cases there is a connected differentiable 3-dimensional Bol loop L realized
on the factor space GU

(+)/Ha1,a3,1,b3 .

Now we discuss the case (II). For the parameters satisfying (iii) it is equivalent
to the following system of inequalities

(α) p < 0, b3 < 0, a1b3 < a3 + b3, (β) a3 > 0,

(γ) b3 <
a1(ep − 1)2 − e2p − 2pep + 1

p2ep
,

(δ) a3 =
ep(1 + p)(b3a1 − b3) + ep(2a1 − 2)− b3 − b3a1

ep(1 + p)− 1
.

Using (δ) the condition (α) may replaced by

(α′) a1 < 1, ep(a1 − 1) < b3 < 0, p < 0.

The condition (β) is satisfied if and only if

(β′) εb3 < ε
ep(2− 2a1)

ep(1 + p)(a1 − 1)− (1 + a1)
and εa1 < ε

1 + ep(1 + p)
−1 + ep(1 + p)

with ε ∈ {1,−1} holds. Since p < 0 the condition a1 < 1 gives in (β′) for ε = 1
that a1 < 1+ep(1+p)

−1+ep(1+p) and for ε = −1 that 1+ep(1+p)
−1+ep(1+p) < a1 < 1. Therefore the

expression ep(2−2a1)
ep(1+p)(a1−1)−(1+a1)

is positive for ε = 1 and negative for ε = −1.
Let f(p), l(p, a1) and k(p, a1) be the following functions

f(p) :=
1 + ep(1 + p)
−1 + ep(1 + p)

, l(p, a1) := ep(a1 − 1),

k(p, a1) :=
ep(2− 2a1)

ep(1 + p)(a1 − 1)− (1 + a1)
.

Thus for ε = 1 the conditions (α′) and (β′) yield
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a) l(p, a1) < b3 < 0 and a1 < f(p)

whereas for ε = −1 the conditions (α′) and (β′) give

b) f(p) < a1 < 1 and k(p, a1) < b3 < 0 which satisfy (γ).

The function n(p, a1) := a1(e
p−1)2−e2p−2pep+1

p2ep in (γ) is non negative if and only if

(A) a1 ≥ e2p + 2pep − 1
(ep − 1)2

.

Denote by g(p) the function g(p) = e2p+2pep−1
(ep−1)2 . Using for all p < 0 the inequality

(B) g(p) < f(p)

one sees that the condition a) holds if and only if one of the following systems of
inequalities is satisfied:

c) g(p) ≤ a1 < f(p) and l(p, a1) < b3 < 0,

d) a1 < g(p) and l(p, a1) < b3 < n(p, a1) if l(p, a1) < n(p, a1).

Because of p2e2p − (ep − 1)2 < 0 for all p < 0, the condition l(p, a1) < n(p, a1) is
satisfied if and only if

p2e2p − e2p − 2pep + 1
p2e2p − e2p + 2ep − 1

< a1.

Let h(p) be the function h(p) = p2e2p−e2p−2pep+1
p2e2p−e2p+2ep−1 . Since h(p) < g(p) for all p < 0

the condition d) is satisfied if and only if

e) h(p) < a1 < g(p) and l(p, a1) < b3 < n(p, a1) holds.

Thus for p < 0 and b3 < 0 there is a connected differentiable Bol loop L such that
the group topologically generated by its left translations is the group GU

(+) and
the stabilizer of e ∈ L is the subgroup Ha1,a3,1,b3 if and only if the parameters
a1, a3, b3 satisfy one of the systems of inequalities b), c) or e) and the condition (δ).

For the parameters (iv) the case (II) yields the following system of inequalities

(α) p < 0, b3 > 0, a1b3 < a3 − b3, (β) a3 > 0,

(γ) b3 < n(p, a1), (δ) a3 =
ep(1 + p)(b3a1− b3)+ ep(2a1− 2)− b3− b3a1

ep(1 + p)− 1
.

Using (δ) the condition (α) holds if and only if one of the following cases is satisfied

(α′) p < −1, a1 < 1, 0 < b3 <
a1 − 1
1 + p

,

(α′′) p = −1, a1 < 1, 0 < b3,
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(α′′′) − 1 < p < 0, max
{

0,
a1 − 1
1 + p

}
< b3.

The condition (β) may be replaced by

(β′) εb3 < εk(p, a1) and εa1 < εf(p)

with ε ∈ {1,−1}. Denote by m(p, a1) the function a1−1
1+p . The conditions (α′) and

(β′), (α′′) and (β′), (α′′′) and (β′) yield for ε = 1 the corresponding conditions

a) p < −1, a1 < f(p), 0 < b3 < min{k(p, a1),m(p, a1)},
b) p = −1, a1 < −1, 0 < b3 < k(−1, a1),

c) −1 < p < 0, a1 < f(p), 0 < b3 < k(p, a1)

and for ε = −1 the conditions

d) p < −1, f(p) < a1 < 1, 0 < b3 < k(p, a1),

e) p = −1, a1 < 1, 0 < b3,

f) −1 < p < 0, 1 < a1, max{m(p, a1), k(p, a1)} < b3,

g) −1 < p < 0, f(p) < a1 ≤ 1, 0 < b3.

Now we deal with the condition (γ). Using the inequalities (A) and (B) the
conditions a) till g) hold if and only if the following conditions in the same order
as a) till g) are satisfied:

a’) p < −1, g(p) ≤ a1 < f(p), 0 < b3 < min{k(p, a1),m(p, a1), n(p, a1)},
b’) p = −1, g(−1) ≤ a1 < −1, 0 < b3 < min{k(−1, a1), n(−1, a1)},
c’) −1 < p < 0, g(p) ≤ a1 < f(p), 0 < b3 < min{k(p, a1), n(p, a1)},
d’) p < −1, f(p) < a1 < 1, 0 < b3 < min{k(p, a1), n(p, a1)},
e’) p = −1, g(−1) ≤ a1 < 1, 0 < b3 < n(−1, a1),

f’) −1 < p < 0, 1 < a1, and max{m(p, a1), k(p, a1)} < b3 < n(p, a1),

if max{m(p, a1), k(p, a1)} < b3 < n(p, a1),

g’) −1 < p < 0, f(p) < a1 ≤ 1, 0 < b3 < n(p, a1).

Since for −1 < p < 0 and 1 < a1 one has k(p, a1) < m(p, a1) as well as
(1 + p)(ep − 1)2 − p2ep < 0 the inequality max{m(p, a1), k(p, a1)} < b3 < n(p, a1)
in f’) is satisfied if and only if

a1 <
(1 + p)(e2p + 2pep − 1)− p2ep

(1 + p)(e2p − 2ep + 1)− p2ep
.

The function v(p) = (1+p)(e2p+2pep−1)−p2ep

(1+p)(e2p−2ep+1)−p2ep is greater than 1 for −1 < p < 0.
Hence the condition f’) is equivalent to
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h’) −1 < p < 0, 1 < a1 < v(p), m(p, a1) < b3 < n(p, a1). It follows that for
p < 0 and b3 > 0 there is a differentiable Bol loop L defined on the factor space
GU

(+)/Ha1,a3,1,b3 if and only if the parameters a1, a3, b3 satisfy one of the systems
of inequalities a’) till h’) and the condition (δ).

Now we discuss the case (III). For (iii) we obtain the following system of
inequalities

(α) p > 0, b3 < 0, a1b3 < a3 + b3,

(β) a3 > 0, (γ) b3 > n(p, a1),

(δ) a3 =
ep(1 + p)(b3a1 − b3) + ep(2a1 − 2)− b3 − b3a1

ep(1 + p)− 1
.

Using (δ) the condition (α) yields

(α′) b3 < min{0, ep(a1 − 1)} and p > 0.

Furthermore, (β) is satisfied if and only if

(β′) εb3 > εk(p, a1) and εa1 > εf(p)

with ε ∈ {1,−1} holds. Since p > 0 the conditions (α′) and (β′) give for ε = 1

a) a1 > f(p) and k(p, a1) < b3 < 0

whereas for ε = −1 we obtain one of the following conditions

b) 1 < a1 < f(p) and b3 < 0

c) a1 < 1 and b3 < min{l(p, a1), k(p, a1)}.
Since for a1 < 1 and p > 0 we have l(p, a1) < k(p, a1) the condition c) yields

d) a1 < 1 and b3 < l(p, a1).

Now we investigate the condition (γ). The function n(p, a1) is non negative if and
only if

(C) a1 ≥ e2p+2pep−1
(ep−1)2 .

Because of

(D) f(p) < g(p) for all p > 0

the condition a) may be replaced by

e) f(p) < a1 < g(p) and max{k(p, a1), n(p, a1)} < b3 < 0.

Moreover the condition b) is equivalent to

f) 1 < a1 < f(p) and n(p, a1) < b3 < 0

whereas the condition d) is equivalent to

g) a1 < 1 and n(p, a1) < b3 < l(p, a1) for n(p, a1) < l(p, a1).
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Since for p > 0 one has

p2e2p − (ep − 1)2 > 0 and h(p) < 1

the relation n(p, a1) < l(p, a1) holds if and only if h(p) < a1. Using this inequality
and h(p) < 1 the condition g) is equivalent to

h) h(p) < a1 < 1 and n(p, a1) < b3 < l(p, a1).

Thus for p > 0 and b3 < 0 there exists a differentiable Bol loop, which is realized
on the factor space GU

(+)/Ha1,a3,1,b3 if and only if a1, a3, b3 satisfy one of the
systems of inequalities e), f) or h) and the condition (δ).

For the parameters (iv) the case (III) is equivalent to the following system
of inequalities

(α) p > 0, b3 > 0, a1b3 < a3 − b3,

(β) a3 > 0, (γ) b3 > n(p, a1),

(δ) a3 =
ep(1 + p)(b3a1 − b3) + ep(2a1 − 2)− b3 − b3a1

ep(1 + p)− 1
.

Using (δ) the condition (α) may be replaced by the condition

(α′) 1 < a1, 0 < b3 < m(p, a1) and p > 0.

Furthermore, the condition (β) is satisfied if and only if

(β′) εb3 > εk(p, a1) and εa1 > εf(p)

with ε ∈ {1,−1} holds. Since p > 0 the conditions (α′) and (β′) give for ε = 1

a) f(p) < a1 and 0 < b3 < m(p, a1)

and for ε = −1

b) 1 < a1 < f(p) and 0 < b3 < k(p, a1).

Now we deal with the property (γ). Using the inequalities (C) and (D) one sees
that the inequalities in b) satisfy (γ) and that the condition a) holds if and only
if one of the following cases is true:

c) f(p) < a1 ≤ g(p) and 0 < b3 < m(p, a1)

d) g(p) < a1 and n(p, a1) < b3 < m(p, a1) if n(p, a1) < m(p, a1).

Since (1 + p)(ep − 1)2 − p2ep > 0 for p > 0 the condition n(p, a1) < m(p, a1)
is equivalent to a1 < v(p). Moreover, for p > 0 one has g(p) < v(p) and the
condition d) is satisfied if and only if

e) g(p) < a1 < v(p) and n(p, a1) < b3 < m(p, a1).

Hence for p > 0 and b3 > 0 there exists a differentiable Bol loop L having GU
(+)
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as the group topologically generated by the left translations and the subgroup
Ha1,a3,1,b3 as the stabilizer of e ∈ L in GU

(+) if and only if the parameters a1, a3,
b3 satisfy one of the conditions b), c) or e) and (δ).

For the parameters (v) we have n′(p) = 0 if and only if

p = 0 and
a3

b3
= b3 + 2 or a3 = b3(pb3 + b3 + 2) if p ∈ R\{0}.

Hence n(p) > 0 if and only if one of the following cases holds true:

1) b3 > 0, a3 = b3(b3 + 2), a1 = a3
b3
− 1 if p = 0

and

2) b3(p + 1− ep) + 2 > 0 for p ∈ R\{0}.
For the parameters in 1) there is a differentiable Bol loop L having GU

(+) as
the group topologically generated by its left translations and the group Ha1,a3,1,b3

as the stabilizer in GU
(+).

The case 2) is equivalent to the following system of inequalities

(α) b3 > 0, b3(p + 1− ep) + 2 > 0, (β) a3 > 0, a3 = b3(pb3 + b3 + 2).

Because of p + 1− ep < 0 for all p ∈ R\{0} the condition (α) may be replaced by

(α′) 0 < b3 < − 2
p+1−ep .

The condition (β) is satisfied if and only if one of the following holds:

(β′) p > −1 and b3 > − 2
p + 1

, (β′′) p = −1 and b3 > 0,

(β′′′) p < −1 and b3 < − 2
p + 1

.

Comparing the conditions (α′) and (β′) respectively (α′) and (β′′) we obtain that
for p ≥ −1 one has 0 < b3 < − 2

p+1−ep . Since − 2
p+1 > − 2

p+1−ep for all p < −1
holds (α′) and (β′′′) reduces to 0 < b3 < − 2

p+1−ep . Hence for p ∈ R\{0} there
exists a differentiable Bol loop realized on the factor space GU

(+)/Ha1,a3,1,b3 if and
only if

0 < b3 < − 2
p + 1− ep

, a3 = b3(pb3 + b3 + 2), a1 =
a3

b3
− 1.

For the parameters (vi) we have n′′(x) = −2exa3b
−1
3 > 0 for all x ∈ R.

Hence the function n′(x) = −2exa3b
−1
3 + 2b3 is strongly monotone increasing.

Thus n′(x) = 0 is satisfied only for p = ln(b2
3a
−1
3 ) and n(p) > 0 if and only if

b3

(
ln

b2
3

a3
− 1

)
+ 2 +

a3

b3
> 0.
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This condition is necessary and sufficient that a group Ha1,a3,1,b3 with parameters
in (vi) is the stabilizer of a differentiable Bol loop realized on the factor spaces
GU

(+)/Ha1,a3,1,b3 .

From the above discussion we obtain the main part of the following

Theorem 7. Let L be a 3-dimensional connected differentiable Bol loop cor-

responding to a solvable Lie triple system which is the direct product of its centre

and a non-abelian 2-dimensional Lie triple system. If the group G topologically

generated by the left translations of L is at least 5-dimensional then G is the

5-dimensional solvable Lie group defined by:

(x1, x2, x3, x4, x5) ∗ (y1, y2, y3, y4, y5) = (y1 + x1 cosh y2 + x4 sinh y2,

y2 + x2, y3 + x3, y4 + x1 sinh y2 + x4 cosh y2, y5 + x5 + x2y3).

Let

(a) Ha,0,0 = {(la + k, 0, 0, l, k); l, k ∈ R}, −1 < a < 1,

(b) Ha1,a3,0 = {(la1 + k, 0, la3, l, k); l, k ∈ R}, a3 > 0, such that either

a1 = 1 or a3 < 4ep

(ep−1)2 and a1 = 1
2 (pa3 + 2 + a3 − a3

ep ) with p ∈ R\{0}.
(c) Ha1,a3,b3 = {(la1 + k, 0, la3 + kb3, l, k); l, k ∈ R} such that for the real

parameters a1, a3, b3 one of the following conditions is satisfied:

(α) b3 < 0, b2
3 < a3, a1 = b3 + 1,

(β) b3 > 0, b2
3 + 2b3 ≤ a3, a1 = b3 + 1,

(γ) b3 < 0, a3 > 0, a1 = a3b
−1
3 + 1, b3(ln

b23
a3
− 1) + 2 + a3

b3
> 0.

Any subgroup in (a), (b) and (c) is the stabilizer of the identity e of L

in G. No loop having the stabilizer of e in (a) is isotopic to a loop having the

stabilizer in (b). Moreover, the loops La and Lb corresponding to the stabilizers

Ha,0,0 respectively Hb,0,0 are isomorphic if and only if b = ±a. The loops L1,a3,0

and L1,a′3,0 corresponding to the stabilizers H1,a3,0 respectively H1,a′3,0 in (b) are

isotopic precisely if a3 = a′3. No loop having the stabilizer of e in (c) is isotopic

to a loop with the stabilizer of e in (a) as well as to a loop L1,a3,0. There are

infinitely many non-isotopic loops having stabilizers in (c).

Denote by f(p), g(p), h(p), k(p, a1), l(p, a1), n(p, a1), m(p, a1) and v(p) the

following functions of the real variables p and a1:

f(p) =
1 + ep(1 + p)
−1 + ep(1 + p)

, g(p) =
e2p + 2pep − 1

(ep − 1)2
, h(p) =

p2e2p− e2p− 2pep+1
p2e2p − e2p + 2ep − 1

,

k(p, a1) =
ep(2− 2a1)

ep(1 + p)(a1− 1)− (1+ a1)
, l(p, a1) = ep(a1− 1), m(p, a1) =

a1−1
1+p
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n(p, a1) =
a1(ep− 1)2− e2p− 2pep+ 1

p2ep
, v(p) =

(1 + p)(e2p + 2pep − 1)− p2ep

(1 + p)(e2p − 2ep + 1)− p2ep
.

If a loop L has a stabilizer H of e not contained in (a), (b) or (c) then H =
Ha1,a3,b3 = {(la1 + k, 0, la3 + kb3, l, k); l, k ∈ R} and there exists either a real

number p < 0 such that one of the following conditions is satisfied:

(i) f(p) < a1 < 1, k(p, a1) < b3 < 0,

(ii) g(p) ≤ a1 < f(p), l(p, a1) < b3 < 0,

(iii) h(p) < a1 < g(p), l(p, a1) < b3 < n(p, a1),

(iv) p < −1, g(p) ≤ a1 < f(p), 0 < b3 < min{k(p, a1),m(p, a1), n(p, a1)}
(v) p = −1, g(−1) ≤ a1 < −1, 0 < b3 < min{k(−1, a1), n(−1, a1)},
(vi) − 1 < p < 0, g(p) ≤ a1 < f(p), 0 < b3 < min{k(p, a1), n(p, a1)},
(vii) p < −1, f(p) < a1 < 1, 0 < b3 < min{k(p, a1), n(p, a1)},
(viii) p = −1, g(−1) ≤ a1 < 1, 0 < b3 < n(−1, a1),

(ix) − 1 < p < 0, f(p) < a1 ≤ 1, 0 < b3 < n(p, a1),

(x) − 1 < p < 0, 1 < a1 < v(p), m(p, a1) < b3 < n(p, a1),

(xi) 0 < b3 < − 2
p + 1− ep

,

or there exists a real number p > 0 such that one of the following conditions

holds:

(xii) f(p) < a1 < g(p), max {k(p, a1), n(p, a1)} < b3 < 0,

(xiii) 1 < a1 < f(p), n(p, a1) < b3 < 0,

(xiv) h(p) < a1 < 1, n(p, a1) < b3 < l(p, a1),

(xv) 1 < a1 < f(p), 0 < b3 < k(p, a1),

(xvi) f(p) < a1 ≤ g(p), 0 < b3 < m(p, a1),

(xvii) g(p) < a1 < v(p), n(p, a1) < b3 < m(p, a1),

(xviii) 0 < b3 < − 2
p + 1− ep

.

Moreover, one has a3 = ep(1+p)(b3a1−b3)+ep(2a1−2)−b3−b3a1
ep(1+p)−1 in the cases (i) till

(x) and (xii) till (xvii), whereas a3 = b3(pb3 + b3 + 2) and a1 = a3
b3
− 1 holds true

in the cases (xi) and (xviii).
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There are infinitely many non-isotopic loops L having stabilizers Ha1,a3,b3

such that the parameters a1, a3 and b3 satisfy one of the conditions (i) till (xviii).
No loop for which the parameters a1, a3 and b3 satisfy one of (i) till (xviii)

is isotopic to a loop corresponding to a stabilizer contained in (a). Moreover, no

loop for which the parameters a1, a3 and b3 satisfy one of the conditions (i) till
(iii), (x) and (xii) till (xviii) is isotopic to a loop having as stabilizer H1,a3,0 of (b).

Proof. It remains to prove the assertions concerning the isotopisms between
loops having G as the group topologically generated by the left translations.

The loops La1,a3,b3 and La′1,a′3,b′3 corresponding to the pairs (G,Ha1,a3,b3) and
(G,Ha′1,a′3,b′3) are isotopic if there exists an element g∈G such that g−1ha1,a3,b3g =
ha′1,a′3,b′3 , where ha1,a3,b3 is the Lie algebra of the stabilizer Ha1,a3,b3 . The group
G is the semidirect product of the 4-dimensional normal abelian subgroups
{(x1, 0, x3, x4, x5); x1, x3, x4, x5 ∈ R} by the 1-dimensional subgroup
{(0, x2, 0, 0, 0); x2 ∈ R}. Hence ha1,a3,b3 and ha′1,a′3,b′3 are conjugate if and only
if they are conjugate under an element (0, x2, 0, 0, 0) ∈ G. This is the case if and
only if there exists x2 ∈ R such that the following system (I) of equations

− a3 + (a1a
′
3 + b′3 − a1b

′
3a
′
1) sinh x2 + (a′3 + a1b

′
3 − a′1b

′
3) cosh x2 = 0 (1)

(a′3 − a′1b
′
3) sinh x2 − b3 + b′3 cosh x2 = 0 (2)

(a1 − a′1 + a′3x2 − a′1b
′
3x2 + a1b

′
3x2) cosh x2

+ (1− a1a
′
1 + a′3a1x2 + b′3x2 − a1a

′
1b
′
3x2) sinh x2 = 0 (3)

(1 + b′3x2) cosh x2 − 1 + (a′3x2 − a′1 − a′1b
′
3x2) sinh x2 = 0 (4)

has a solution. From the equation (2) we obtain that for sinh x2 6= 0

a′3 =
b3 − b′3 cosh x2 + a′1b

′
3 sinh x2

sinhx2
.

Putting this expression into the equations (1), (3) and (4) one obtains

b′3 = −a3 sinhx2 − a1b3 sinhx2 − b3 cosh x2 (1’)

(a1 − a′1) cosh x2 sinhx2 + a2b3x2 sinhx2 − 1 + a1a
′
1

+ x2b3 cosh x2 + (1− a1a
′
1)(cosh x2)2 − x2b

′
3 = 0 (3’)

− 1 + cosh x2 − a′1 sinhx2 + x2b3 = 0. (4’)

The equation (4’) yields for sinh x2 6= 0 that

a′1 =
cosh x2 + x2b3 − 1

sinhx2
.
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Using this expression for a′1 the equation (3’) reduces to

−1 + cosh x2 − x2b
′
3 + a1 sinhx2 = 0. (3”)

If we substitute for b′3 from the equation (1’) in (3”) we see that the system (I) is
solvable if and only if x2 is the solution of the equation

(a1b3x− a3x− a1)(e2x − 1)− (ex − 1)2 + b3x(e2x + 1) = 0, (i)

the parameters b′3 respectively a′1 satisfies (1’) respectively (4’) and a′3 = a3 holds.
The condition a3 = a′3 yields the following claims:

No loop with stabilizer in (a) can be isotopic to a loop having the stabilizer of e

not in (a).
The loops L1,a3,0 and L1,a′3,0 are not isotopic if a3 6= a′3.
The loops having the stabilizers Hb+1,b2+1,b and Hb′+1,b′2+1,b′ with b, b′ < 0 and
b 6= b′ are not isotopic.
Among the loops having the stabilizers Ha1,a3,b3 such that the parameters a1, a3,
b3 satisfy one of the conditions (i) till (xviii) there are infinitely many correspond-
ing to different values of a3. Hence there are infinitely many isotopism classes of
such loops.

For b3 = a3 = 0 and 0 ≤ a1 < 1 the equation (i) reduces to

(ex − 1)[(1 + ex)a1 + (ex − 1)] = 0.

The solutions of this equation are x2 = 0 and x2 = ln 1−a1
1+a1

. Therefore the
loop La1 with the stabilizer Ha1,0,0 in (a) is isotopic to the loop L−a1 having the
stabilizer H−a1,0,0. Since the automorphism α of the Lie algebra g of G given by

α(e1) = −e1, α(e5) = −e5, α(ei) = ei, i = 2, 3, 4

leaves the subspace m invariant and changes the Lie algebra ha1,0,0 to h−a1,0,0

the loops La1 and L−a1 are already isomorphic.

For b3 = 0, a1 = 1 and a3 > 0 the equation (i) reduces to

(ex − 1)[(1 + ex)(xa3 + 1) + (ex − 1)] = 0. (ii)

We consider the function

f(y) = (1 + ey)(ya3 + 1) + (ey − 1), where a3 > 0.
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For the derivations of f(y) one has

f ′(y) = ey(ya3 + a3 + 2) + a3,

f ′′(y) = ey(ya3 + 2a3 + 2),

f ′′′(y) = ey(ya3 + 3a3 + 2).

Since f ′′(y) = 0 only for p = −2 − 2
a3

holds and f ′′′(p) > 0, the function f ′(y)
assumes in p its unique minimum. The function f(y) is monotone increasing since
f ′(p) = a3(1 − ep) > 0. We have limy→∞ f(y) = ∞ and limy→−∞ f(y) = −∞.
Hence there is only one value u for which f(u) = 0. Since f(y) > 0 for all y ≥ 0
we obtain that u < 0 and thus the equation (ii) has precisely two solutions x2 = 0
and x2 = u. The unique loop isotopic to the loop L1,a3,0 corresponds to the
stabilizer Ha′1,a′3,b′3 the parameters a′1, a′3, b′3 of which satisfy

a′3 = a3 > 0, a′1 =
eu − 1
eu + 1

< 0, b′3 =
a3(1− e2u)

2eu
> 0.

But for such parameters none of the conditions (α), (β), (γ) in (c) and none of
the conditions (i) till (iii), (x) and (xii) till (xviii) is satisfied. ¤

5.3. Bol loops corresponding to a Lie triple system which is a non-split
extension of its centre. Now we treat the Lie triple systems described in the
case 2 c in Section 3.

Lemma 8. The universal Lie algebras gU
± of the Lie triple systems m± =

〈e1, e2, e3〉 of type 2 c coincide with the standard enveloping Lie algebras g∗(±)

given in 2 c.

Proof. Since for gU one has mU∩[mU ,mU ] = 0 we may assume that mU =
〈e1, e2, e3〉 and that a basis of [mU ,mU ] consists of e4 := [e2, e3], e5 := [e1, e3]
and e6 := [e1, e2]. Using the Lie triple system relations given in 2 c we have the
following multiplication:

[e2, e3] = e4, [e4, e2] = e1, [e4, e3] = ±e2, [e1, e3] = e5, [e1, e2] = e6

and the other products are zero. Moreover, one has

[[e2, e3], e4] + [[e3, e4], e2] + [[e4, e2], e3] = e5

[[e4, e3], e1] + [[e3, e1], e4] + [[e1, e4], e3] = ∓e6.

Hence the Jacobi identity is satisfied if and only if [e1, e3] = [e1, e2] = 0. From
this the assertion follows. ¤
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The Lie groups G(+) and G(−) corresponding to the Lie algebras g∗(+) or g∗(−)

respectively, are the semidirect products of the 1-dimensional Lie group

C =








1 0 0 0
0 cos t sin t 0
0 ε sin t cos t 0
0 0 0 1


 , t ∈ R





and the 3-dimensional nilpotent Lie group

B =








1 −x2 x4 x1

0 1 0 x4

0 0 1 x2

0 0 0 1


 , x1, x2, x4 ∈ R





,

where the triple (cos t, sin t, ε) denotes (cosh t, sinh t, 1) in case G(+) and (cos t,
sin t, −1) in case G(−).
Denoting the elements of G(±) by g(t, x1, x2, x4) we see that the multiplication in
G(±) is given by

g(t1, x1, x2, x4) · g(t2, y1, y2, y4)

= g(t1 + t2, x1 + y1 + εy4(x2 cos t2 − εx4 sin t2)− εy2(x4 cos t2 − x2 sin t2),

y2 + x2 cos t2 − εx4 sin t2, y4 − x2 sin t2 + x4 cos t2).

A 1-dimensional subalgebra h of g∗(±) which complements m = 〈e1, e2, e3〉, can
be written as:

h = 〈e4 + αe1 + βe2 + γe3〉 with α, β, γ ∈ R.

Any automorphism α of g∗(±) leaving m = 〈e1, e2, e3〉 invariant is given by

α(e1) = ±a2e1, α(e2) = ±εace1 +ae2, α(e3) = be1 +ce2±e3, α(e4) = ±ae4,

where a ∈ R\{0}, b, c ∈ R, ε = 1 in the case g∗(+) and ε = −1 for g∗(−). Using
suitable automorphisms of this form we can reduce h to one of the following:

h1 = 〈e4〉, h2 = 〈e4 + e3〉, h3,y = 〈e4 + ye2〉, y > 0, h4 = 〈e4 + e1〉.

The exponential image of the subspace m has the shape

expm = exp{ne1 + ke2 + te3, t, n, k ∈ R}
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=
{

g(t, n +
k2

t
− k2

t2
sin t,

k

t
sin t,

k

t
(1− cos t)), t, n, k ∈ R

}

(cf. [3] p. 11 and p. 12) if we identify m with the subspace generated by

〈






0 0 0 0
0 0 t 0
0 εt 0 0
0 0 0 0


 ,




0 −k 0 n

0 0 0 0
0 0 0 k

0 0 0 0







〉
.

First we investigate the group G(−). The element g(π
2 , 0, 1, 0) ∈ G(−) conjugates

exp e4 ∈ H1 to exp(−2e1) ∈ expm and exp(e4 + e1) ∈ H4 to exp(−e2 − e1) ∈
exp m. Moreover, exp π(e4 +e3) ∈ H2 is conjugate to exp π(e1 +e3) ∈ expm un-
der g(0, 0,−1, 0) ∈ G(−) and exp(e4+ye2) ∈ H3,y is for all y ∈ R\{0} conjugate to
exp[(sin arc ctg y)−1e2] ∈ expm under g(− arc ctg y, 0, 0, 0) ∈ G(−). Hence there
is no 3-dimensional differentiable Bol loop L such that the group topologically
generated by its left translations is the Lie group G(−) (cf. Lemma 1).

Finally we deal with the group G(+). The element exp(e4 + e3) ∈ H2 is
conjugate to exp(e3 − e1) of expm under g(0, 0, 1, 0) ∈ G(+). The element
exp l(e4 + ye2) ∈ H3,y with l = − sinh

(
1
2 ln y−1

y+1

)
is conjugate to exp e2 ∈ expm

under g
(

1
2 ln y−1

y+1 , 0, 0, 0
) ∈ G(+) for all y > 1. Therefore we may suppose that

the stabilizer of the identity of a Bol loop L is either the Lie group H1 or H4 or
H3,y, where 0 < y ≤ 1.

Each element g ∈ G(+) can be represented uniquely as a product g = mh,
where m ∈ expm and h is an element of H1, H4 or H3,y with 0 < y ≤ 1
respectively, if and only if for given t1, x1, x2, x4 ∈ R the equation

g(t1, x1, x2, x4) = g
(
t, n +

k2

t
− k2

t2
sinh t,

k

t
sinh t,

k

t
(1− cosh t)

)
· h

is uniquely solvable for

h = g(0, 0, 0, a) ∈ H1, h = g(0, a, 0, a) ∈ H4, and h = g(0, 0, ly, l) ∈ H3,y.

In the case of H1 the unique solution is given by:

t := t1, k :=
x2

sinh t1
t1

, a := x4 − x2(1− cosh t1)
sinh t1

,

n := x1 − x4x2 +
x2

2(1− cosh t1)
sinh t1

− x2
2(t1 − sinh t1)

sinh2 t1
.
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In the case of H4 we obtain as unique solution

t := t1, k :=
x2

sinh t1
t1

, a := x4 − x2(1− cosh t1)
sinh t1

,

n := x1 − (1 + x2)
[
x4 − x2(1− cosh t1)

sinh t1

]
− x2

2(t1 − sinh t1)
sinh2 t1

.

Moreover, in the case of H3,y for y ∈ (0, 1] the unique solution is given as follows:
For t1 = 0 we have t = 0, l = x4, k = x2 − x4y, n = x1 − x4(x2 − yx4),
whereas for t1 6= 0 we obtain

t = t1, l =
x4 sinh t1 + x2 cosh t1 − x2

sinh t1 − y + y cosh t1
, k =

(x2 − yx4)t1
sinh t1 − y + y cosh t1

,

n = x1 +
(sinh t1 − t1)(x2 − yx4)2

(sinh t1 − y + y cosh t1)2
− (x4 sinh t1 + x2 cosh t1 − x2)(x2 − yx4)

(sinh t1 − y + y cosh t1)
.

It follows that the group G(+) is the group topologically generated by the left
translations of infinitely many non-isomorphic differentiable 3-dimensional Bol
loops L. Every such loop L has a normal subgroup N = exp{λe1, λ ∈ R} =
{g(0, λ, 0, 0), λ ∈ R} isomorphic to R and the factor loop L/N is isomorphic to
a loop Lα with α ≤ −1 defined in Theorem 23.1 of [15] and thus isotopic to
the pseudo-euclidean plane loop. Hence L is an extension of the group R by a
loop Lα.

The loop L1 having H1 as the stabilizer of e ∈ L1 in G(+) is a Bruck loop.
The loop L2 which is realized on the factor space G/H4 is a left A-loop. The
stabilizer H1 is conjugate to H4 under g(0, 0,− 1

2 , 0) ∈ G(+) and to H3,y under
g(artanh(−y), 0, y, 1) ∈ G(+) with y ∈ (0, 1). Hence the loops corresponding
to these stabilizers are isotopic. In contrast to this the loop corresponding to
H3,1 = {g(0, 0, l, l); l ∈ R} does not belong to the isotopism class of L1.

These considerations yield the following

Theorem 9. If L is a 3-dimensional connected differentiable Bol loop cor-

responding to a Lie triple system, which is a non-split extension of its centre and

a 2-dimensional non-abelian Lie triple system, then the group G topologically

generated by the left translations of L is the semidirect product of the normal

group R and the 3-dimensional non-abelian nilpotent Lie group such that the

multiplication of G is given by

g(t1, x1, x2, x4) · g(t2, y1, y2, y4)

= g(t1 + t2, x1 + y1 + y4(x2cosh t2 − x4sinh t2)− y2(x4cosh t2 − x2sinh t2),
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y2 + x2cosh t2 − x4sinh t2, y4 − x2sinh t2 + x4cosh t2).

All loops L are extensions of the Lie group R by a loop Lα described in Theo-

rem 23.1 of [15] and form precisely two isotopism classes C1, C2.

All loops in C1 are isomorphic and may be represented by the loop L which

has the group H = {g(0, 0, l, l); l ∈ R} as the stabilizer of its identity in G.

The class C2 contains (up to isomorphisms) a Bruck loop L1 correspond-

ing to H1 = {g(0, 0, 0, a), a ∈ R}, a left A-loop L2 corresponding to H2 =
{g(0, a, 0, a), a ∈ R} and the loops Ly with y ∈ (0, 1) corresponding to the

groups Hy = {g(0, 0, ly, l), l ∈ R} as the stabilizers of the identity.

6. Bol loops corresponding to the Lie triple system
having trivial centre

Now we deal with the case 3 in Section 3.

Lemma 10. The universal Lie algebra gU of the Lie triple system m =
〈e1, e2, e3〉 of type 3 is the standard enveloping Lie algebra g∗ characterized in 3
of Section 3.

Proof. Because of mU∩[mU ,mU ] = 0 we may assume that mU = 〈e1, e2, e3〉
and take for a basis of [mU ,mU ] the vectors e4 := [e2, e3], e5 := [e1, e3] and
e6 := [e1, e2]. The relations of the Lie triple system of type 3 yield the following
multiplication:

[e2, e3] = e4, [e4, e3] = e1, [e1, e3] = e5, [e1, e2] = e6,

whereas the other products are zero. For e2, e3, e4 one has

[[e2, e3], e4] + [[e3, e4], e2] + [[e4, e2], e3] = e6

and the Jacobi identity is satisfied if and only if [e1, e2] = 0. This is the assertion.
¤

The mapping β

β(e1) =
1
2

√
2e1 − 1

2

√
2e4 − 1

2

√
2e2 +

1
2

√
2e5,

β(e2) =
1
2

√
2e1 − 1

2

√
2e4 +

1
2

√
2e2 − 1

2

√
2e5,
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β(e3) =
1
2

√
2e3, β(e4) = e1 + e4, β(e5) = −e2 − e5

yields an isomorphism of g∗ onto the Lie algebra g defined by the following non-
trivial products:

[e1, e3] = e1 − e2, [e2, e3] = e1 + e2, [e4, e3] = −e4 + e5, [e5, e3] = −e5 − e4.

(We remark, that g is isomorphic to the Lie algebra g5,17 for s = −1, q = −1,
p = 1 in [14] (p. 105)). The elements xe1 + ye2 + ze3 + ue4 + ve5 of g can be
identify with the matrices




0 y x 0 0 0
0 z z 0 0 0
0 −z z 0 0 0
0 0 0 0 v u

0 0 0 0 −z −z

0 0 0 0 z −z




; x, y, z, u, v ∈ R.

Then the multiplication in G is determined by

g(a1, b1, c1, d1, f1)g(a2, b2, c2, d2, f2)

= g(a2 + b1e
c2 sin c2 + a1e

c2 cos c2, b2 + b1e
c2 cos c2 − a1e

c2 sin c2,

c1 + c2, d2 − f1e
−c2 sin c2 + d1e

−c2 cos c2, f2 + f1e
−c2 cos c2 + d1e

−c2 sin c2).

The isomorphism β maps the Lie triple system 〈e1, e2, e3〉 onto the Lie triple
system m = 〈e1 − e4, e2 − e5, e3〉 and one has

expm = exp{n(e1 − e4) + m(e2 − e5) + se3;n,m, s ∈ R}

=
{

g

(
(n−m)(es cos s− 1) + (n + m)es sin s

2s
,

(n + m)(es cos s− 1) + (m− n)es sin s

2s
, s,

(n−m)(e−s cos s− 1)− (m + n)e−s sin s

2s
,

(n + m)(e−s cos s− 1) + (n−m)e−s sin s

2s

)
, n, m, s ∈ R

}
.

The 2-dimensional subalgebras h of g with the property h ∩ 〈e3〉 = {0} have the
following forms:

ha2,a4,b2 = 〈e5 + a2e2 + a4e4, e1 + b2e2〉 with a2, a4, b2 ∈ R,
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ha1,a4,b1 = 〈e5 + a1e1 + a4e4, b1e1 + e2〉, where a1, a4, b1 ∈ R,

ha1,a2,b1,b2 = 〈e5 + a1e1 + a2e2, e4 + b1e1 + b2e2〉, where a1, a2, b1, b2 ∈ R.

The automorphism α : g → g given by

α(e1) = b2e1 + e2, α(e2) = −e1 + b2e2, α(e3) = e3,

α(e4) = b2e4 − e5, α(e5) = e4 + b2e5,

where b2 ∈ R, and the automorphism β : g → g determined by

β(e1) = e1 + b1e2, β(e2) = −b1e1 + e2, β(e3) = e3,

β(e4) = e4 − b1e5, β(e5) = b1e4 + e5

where b1 ∈ R, leave the subspace m invariant. If b2 6= a4 then α maps ha2,a4,b2

onto
ha,b = 〈e5 + ae1 + be4, e2〉 with a, b ∈ R

and if b2 = a4 then α reduces ha2,a4,b2 to

ha = 〈e4 + ae1, e2〉 with a ∈ R.

For b1 6= 1
a4

the automorphism β maps ha1,a4,b1 to ha,b, whereas for b1 = 1
a4

the
subalgebras ha1,a4,b1 reduce to ha. Since ha,b ∩m is not trivial if a = −b we may
assume that for ha,b one has a 6= −b.

For a1 = a2 = b1 = b2 = 0 the subalgebra h0,0,0,0 = 〈e5, e4〉 is an ideal of
g. Therefore we suppose that in ha1,a2,b1,b2 not all parameters a1, a2, b1, b2 are 0.
Moreover, (a2 + 1)(1 + b1)− a1b2 6= 0, since otherwise ha1,a2,b1,b2 ∩m 6= 0.

The Lie groups corresponding to the Lie algebras ha, ha,b, ha1,a2,b1,b2 have
the forms

a) Ha = expha = {g(ka, l, 0, k, 0); k, l ∈ R}, a ∈ R
b) Ha,b = expha,b = {g(ka, l, 0, kb, k); k, l ∈ R}, a, b ∈ R, a 6= b

c) Ha1,a2,b1,b2 = expha1,a2,b1,b2 = {g(ka1 + lb1, ka2 + lb2, 0, l, k); k, l ∈ R},
where (a2 + 1)(1 + b1)− a1b2 6= 0 and not all a1, a2, b1, b2 are equal 0.

Each element of G has a unique decomposition as

g(x1, x2, x3, x4, x5) = g(y1, 0, y2, 0, y3)g(ka, l, 0, k, 0) in the case a)

g(x1, x2, x3, x4, x5) = g(y1, 0, y2, y3, 0)g(ka, l, 0, kb, k) in the case b)

g(x1, x2, x3, x4, x5) = g(y1, y3, y2, 0, 0)g(ka1 + lb1, ka2 + lb2, 0, l, k); l, k ∈ R}
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in the case c).

A differentiable Bol loop L exists precisely if in the case a) every element
g(y1, 0, y2, 0, y3), in the case b) every element g(y1, 0, y2, y3, 0) and in the case c)
every element g(y1, y3, y2, 0, 0), yi ∈ R, i = 1, 2, 3, can be written uniquely as a
product g = mh or equivalently m = gh−1, where m ∈ expm and h is a suitable
element of the stabilizer Ha, Ha,b or Ha1,a2,b1,b2 respectively. This happens if and
only if for given y1, y2, y3 ∈ R the following system of equations

s = y2, A =
u(es cos s− 1) + ves sin s

2s
, B =

v(es cos s− 1)− ues sin s

2s
,

C =
u(e−s cos s− 1)− ve−s sin s

2s
, D =

v(e−s cos s− 1) + ue−s sin s

2s
, (I)

with A = y1 − ka, B = −l, C = −k, D = y3 in the case a),

with A = y1 − ka, B = −l, C = y3 − kb, D = −k in the case b) and

A = y1 − ka1 − lb1, B = y3 − ka2 − lb2, C = −l, D = −k, in the case c)

has a unique solution (u, v, s, k, l) ∈ R5.
Assuming y2 6= 0 and putting

m11 = ey2 cos y2 − 1− a(e−y2 cos y2 − 1), m21 = e−y2 sin y2,

m12 = ey2 sin y2 + ae−y2 sin y2, m22 = e−y2 cos y2 − 1

in the case a),

m11 = ey2 cos y2 − 1 + ae−y2 sin y2, m12 = ey2 sin y2 − a(e−y2 cos y2 − 1),
m21 = e−y2 cos y2 − 1− be−y2 sin y2, m22 = −e−y2 sin y2 − b(e−y2 cos y2 − 1)

in the case b) and

m11 = ey2 cos y2 + 1− a1e
−y2 sin y2 − b1(e−y2 cos y2 − 1),

m12 = ey2 sin y2 − a1(e−y2 cos y2 − 1) + b1e
−y2 sin y2,

m21 = −ey2 sin y2 − a2e
−y2 sin y2 − b2(e−y2 cos y2 − 1),

m22 = ey2 cos y2 + 1− a2(e−y2 cos y2 − 1) + b2e
−y2 sin y2

in the case c), we see that the system (I) yields the following system of linear
equations

m11u + m12v = 2y1y2
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m21u + m22v = 2y2y3. (II)

If y1 = y3 = 0 and det (mij) = 0 i, j ∈ {1, 2} then the system (II) has infinitely
many solutions.

The condition det (mij) = 0 holds if and only if in the case a) the function

f(x) = −(ex + e−x) cos x− a(e−2x − 2e−x cosx + 1) + 2 cos2 x,

in the case b) the function

g(x) = (2ae−2x − 2b) cos2 x− (2 + 2abe−2x) cos x sin x + bex cosx

+ (b− 2a)e−x cos x + ex sin x + (2ab + 1)e−x sin x + a− ae−2x

and in the case c) the function

h(x) = e2x + e−2x(b1a2 − a1b2) + (ex + e−x) sin x(a1 − b2)

+ ex cos x(a2 + b1 − 2) + e−x cosx(2a1b2 − 2a2b1 + b1 + a2)

+ 1 + (2b2 − 2a1) sin x cos x− (2b1 + 2a2) cos2 x + b1a2 − b2a1

assumes the value 0.

If k = max{100, 2|a|} then for x = 2πk and y = π + 2πk we obtain that
f(x) < 0 and f(y) > 0. Hence in the open interval

(
2πk, π +2πk

)
there is a value

y2 such that f(y2) = 0.

For p1 = π
2 + 2πk and p2 = 3π

2 + 2πk with k = max{100, 2|a|, 4|ab|} one has
g(p1) > 0 and g(p2) < 0. Hence the open interval (π

2 + 2πk, 3π
2 + 2πk) contains a

value y2 such that g(y2) = 0.
Therefore there is no 3-dimensional differentiable Bol loop L such that the

group topologically generated by its left translations is the group G and the
stabilizer of e ∈ L in G is a subgroup Ha or Ha,b.

In the case c) one has

a) limx→+∞ h(x) = +∞,

b) limx→−∞ h(x) = −∞ if b1a2 − a1b2 < 0

c) limx→−∞ h(x) = ∞ if b1a2 − a1b2 > 0.

The first and second derivative of h(x) are

h′(x) = 2e2x + (a1 − b2)[(ex − e−x) sin x + (ex + e−x) cos x]

+ (a2 + b1 − 2)(ex cosx− ex sin x)− 2e−2x(b1a2 − a1b2)
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− (b1 + a2 − 2a2b1 + 2a1b2)(e−x cos x + e−x sin x)

+ (2b2 − 2a1)(cos2 x− sin2 x) + 4 cos x sin x(b1 + a2)

and

h′′(x) = 4e2x + 4e−2x(b1a2 − a1b2) + 2(a1 − b2)(ex − e−x) cos x

+ 2(b1 + a2 − 2a2b1 + 2a1b2)e−x sin x− 2(a2 + b1 − 2)ex sin x

+ 4(b1 + a2)(cos2 x− sin2 x)− 8(b2 − a1) cos x sin x.

One obtains h(0) = h′(0) = 0 and h′′(0) = 4 + 4(b1 + a2) + 4(a2b1 − a1b2). Since
h′′(0) 6= 0 we have two possibilities: h′′(0) < 0 or h′′(0) > 0. The function h(x)
has in 0 a maximum or a minimum according as h′′(0) < 0 or h′′(0) > 0. Now
from the properties a) and b) it follows that for h′′(0) < 0 and for h′′(0) > 0 with
b1a2 − a1b2 < 0 there is a value p ∈ R\{0} such that h(p) = 0.

For b1a2 − a1b2 = 0 one has

h(x) = e2x + (ex + e−x) sin x(a1 − b2) + ex cos x(a2 + b1 − 2)

+ e−x cosx(b1 + a2) + 1 + (2b2 − 2a1) sin x cos x− (2b1 + 2a2) cos2 x.

First we assume that a1 − b2 6= 0. Then we have εh(p1) > 0 and εh(p2) < 0
if p1 = −(π

2 + 2πk) and p2 = −( 3π
2 + 2πk), where k = max

{
100, 4

|a1−b2|
}

and
ε = 1 if a1 − b2 < 0, whereas ε = −1 for a1 − b2 > 0. Hence in the open interval(− 3π

2 − 2πk,−π
2 − 2πk

)
the function h assumes 0.

For a1 = b2 we obtain

h(x) = e2x + (b1 + a2)(ex + e−x) cos x− 2ex cos x + 1− (2b1 + 2a2) cos2 x.

If p1 = −2πk and p2 = −π− 2πk then we have εh(p1) > 0 and εh(p2) < 0, where
k = max

{
100, 4|1−2b1−2a2|

|b1+a2|
}

and ε = 1 or ε = −1 according as b1 + a2 > 0 or
b1 + a2 < 0. Therefore the interval (−π− 2πk,−2πk) contains a value p ∈ R\{0}
such that h(p) = 0.

It follows that a differentiable Bol loop L does not exist if the parameters a1,
a2, b1, b2 satisfy either

1 + b1 + a2 + a2b1 − a1b2 < 0

or
1 + b1 + a2 + a2b1 − a1b2 > 0 and a2b1 − a1b2 ≤ 0.
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For y2 = 0 = s the system (I) reduces to

y1 − ka1 − lb1 = n, y3 − ka2 − lb2 = m, l = n, k = m, with n,m ∈ R. (III)

Since for the parameters a1, a2, b1, b2 one has (a2 + 1)(1 + b1) − a1b2 6= 0 the
system (III) has precisely one solution for all y1, y3 ∈ R. Namely, if b1 6= −1 we
obtain

l = n =
y1 −ma1

1 + b1
, k = m =

y3(1 + b1)− f1b2

(a2 + 1)(1 + b1)− a1b2
,

whereas for b1 = −1 one has a1b2 6= 0 and

k = m =
y1

a1
, l = n =

y3a1 − y1a2 − y1

b2a1
.

The above discussion yields the following

Theorem 11. If L is a 3-dimensional connected differentiable Bol loop cor-

responding to a Lie triple system which has trivial centre, then the group topo-

logically generated by its left translations is the 5-dimensional Lie group G the

multiplication of which is given by

g(a1, b1, c1, d1, f1)g(a2, b2, c2, d2, f2)

= g(a2 + b1e
c2 sin c2 + a1e

c2 cos c2, b2 + b1e
c2 cos c2 − a1e

c2 sin c2,

c1 + c2, d2 − f1e
−c2 sin c2 + d1e

−c2 cos c2, f2 + f1e
−c2 cos c2 + d1e

−c2 sin c2).

Moreover, the stabilizer of the identity of L in G is the subgroup

Ha1,a2,b1,b2 = {g(ka1 + lb1, ka2 + lb2, 0, l, k); k, l ∈ R}

such that the parameters a1, a2, b1, b2 satisfy

1 + b1 + a2 + a2b1 − a1b2 > 0 and a2b1 − a1b2 > 0

and the function

h(x) = e2x + e−2x(b1a2 − a1b2) + (ex + e−x) sin x(a1 − b2)

+ ex cos x(a2 + b1 − 2) + e−x cosx(2a1b2 − 2a2b1 + b1 + a2)

+ 1 + (2b2 − 2a1) sin x cos x− (2b1 + 2a2) cos2 x + b1a2 − b2a1

is positive for all x ∈ R\{0}.
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There are many differentiable 3-dimensional Bol loops on the factor space
G/Ha1,a2,b1,b2 . For instance choosing a1, a2, b1, b2 ∈ R such that a1 = b2, a2 =
2− b1 and c = b1a2 − a1b2 = −(b1 − 1)2 − b2

2 + 1 with 3
7 < c ≤ 1 the function

h(x) = e2x + (2− 2c)e−x cos x + ce−2x + 1 + c− 4 cos2 x

of Theorem 11 is positive for all x ∈ R\{0}. To prove this it is enough to show
that the function

k(x) = e2x + (2− 2c)e−x cosx + ce−2x + c− 3

is positive for all x ∈ R\{0}. The second derivative

k′′(x) = 4e2x + 4ce−2x + 4(1− c)e−x sinx

is positive if and only if

4e2x + 4ce−2x − 4(1− c)e−x > 0

or

l(x) = e4x + (c− 1)ex + c > 0 for all x ∈ R.

For the derivations of l(x) we obtain

l′(x) = 4e4x + (c− 1)ex, l′′(x) = 16e4x + (c− 1)ex.

One has l′(p) = 0 if and only if p = 1
3 ln 1−c

4 . For this value p the function l(x)

takes its unique minimum since l′′(p) =
(

1−c
4

) 1
3 (3−3c) > 0. Because of 3

7 < c ≤ 1

we get l(p) = c− 3
(

1−c
4

) 4
3 ≥ c− 3

4 (1− c) > 0. It follows k′′(x) > 0 for all x ∈ R
and therefore k′(x) is a strictly monotone increasing function. Since k′(0) = 0 the
value 0 is the unique minimum of k(x). Furthermore one has k(x) ≥ 0 because of
k(0) = 0 and limx→−∞ k(x) = limx→+∞ k(x) = +∞.

Let La1,a2 be the Bol loop belonging to the triple (G,Ha1,a2,2−a2,a1 , expm),
where − 4

7 < −(a2−1)2−a2
1 ≤ 0. Among these loops only the loop L0,1 is a left A-

loop. Since there is no element g ∈ G such that g−1ha1,a2,2−a2,a1g = ha′1,a′2,2−a′2,a′1
for two different pairs (a1, a2), (a′1, a

′
2) holds the loops La1,a2 and La′1,a′2 are not

isotopic. Therefore there are infinitely many non-isotopic Bol loops La1,a2 .
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