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On affine translation hypersurfaces of constant mean
curvature

By HUAFEI SUN (Beijing) and CHUN CHEN (Beijing)

Abstract. The purpose of this paper is to classify the affine translation
hypersurfaces with nonzero constant mean curvature.

1. Introduction

An n-dimensional hypersurface in En+1 is called a translation hy-
persurface if it is obtained as the graph of the function F (x1, . . . , xn) =
f1(x1)+ · · ·+fn(xn), where f1(x1), . . . , fn(xn) are differentiable functions.
A hypersurface is said to be minimal if its mean curvature is zero identi-
cally. As well known, a minimal translation surface in the 3-dimensional
Euclidean space E3 must be a plane or a surface which is the graph of
the function F (x1, x2) = 1

a(ln cos(ax1)− ln cos(ax2)), where a is a nonzero
constant. For a translation hypersurface M with constant mean curvature
in En+1, we have obtained [2]

(1) when M is minimal, then F (x1, . . . , xn) is a linear function or

F (x1, . . . , xn) =
1
a

ln
cos(ax1)

cos(ax2) . . . cos(axk)
+ ck+1xk+1 + · · ·+ cnxn,
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(2) when M is not minimal, then

F (x1, . . . , xn) = −
√

1 + a2

2H

√
1− 4H2x2

1 + ax2 + a3x3 + · · ·+ anxn,

where a, ck+1, . . . , cn, a3, . . . , an are constant. Naturally, one can consider
the similar problem: to classify affine translation hypersufaces in the affine
space Rn+1. Of course, the case of affine hypersurfaces in Rn+1 is more
complicated than that of hypersurfaces in En+1. In [7], F. Manhart stud-
ied nondegenerate affine minimal translation surfaces in an affine space R3

and gave a complete classification.
As a generalization, W. Yang and D. Qiu [11] classified affine mini-

mal translation hypersurfaces in Rn+1.
In [10] and [9], the first author of this paper and H. Pabel classified

the affine translation surfaces with nonzero constant mean curvature in R3,
respectively.

The purpose of the present paper is to classify affine translation hyper-
surfaces in Rn+1 with nonzero constant mean curvature. Our main result
is:

Theorem. Let M be an n-dimensional nondegenerate affine transla-

tion hypersurface with nonzero constant mean curvature in Rn+1. Then

up to affine transformations, M is the graph of the following function:

xn+1 = α

∫ x1

x0

{∫ t

t0

(
Hs2 + a1

)−n+2
n+1 ds

}
dt + a2x

2
2 + · · ·+ anx2

n,

where α, a1, . . . , an are constant and H(6= 0) is the affine mean curvature

of M in Rn+1.

2. Preliminaries

Let f : M → Rn+1 be an immersion of a connected differentiable n-
manifold M into the affine space Rn+1 equipped with usual flat connection
D and a parallel volume element ω, and let ξ be an arbitrary local field of
transversal vector to f(M). For any vector fields X, Y on M , we write

DXf∗(Y ) = f∗(∇XY ) + h(X, Y )ξ, (2.1)
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DXξ = −f∗(SX) + τ(X)ξ, (2.2)

Thus we have an affine connection ∇, a symmetric tensor h of type (0, 2),
a tensor S of type (1.1) and 1-form τ on M . We call h, S and τ the affine
fundamental form, the affine shape operator and the transversal connection
form, respectively. We define by H = 1

ntraceS the affine mean curvature
of M . We call M affine minimal if H is zero identically. We define a
volume element θ on M by

θ(X1, . . . , Xn) = ω(f∗(X1), . . . , f∗(Xn), ξ)

= det(f∗(X1), . . . , f∗(Xn), ξ),
(2.3)

for any tangent vectors X1, . . . , Xn to M .
We say that f is nondegenerate if h is nondegenerate. This nonde-

generacy does not depend on the choice of ξ. If f is nondegenerate, it
is known that there is a unique ξ up to sign such that the correspond-
ing induced connection ∇, the affine fundamental form h,and the induced
volume element θ satisfy

(i) ∇θ = 0, thus (∇, θ) is an equiaffine structure on M .

(ii) θ = ωh, ωh(X1, . . . , Xn) = | det(h(Xi, Xj))| 12 (volume element given
by h).

We call such ξ the affine normal of f . Condition (i) implies that τ = 0 so
that DXξ = −f∗(SX).

Let xn+1 = F (x1, . . . , xn) be a differentiable function on a domain
D ⊂ Rn. We shall determine the affine normal of an immersion

f : D 3 (x1, . . . , xn) 7→ (x1, . . . , xn, F (x1, . . . , xn)) ∈ Rn+1.

We start with a tentative choice of transversal field ξ = (0, . . . , 0, 1). Since
D∂iξ = 0, we have τ = 0. Denote by ∂j the coordinate vector field ∂/∂xj .
Then we have

f∗(∂1) = (1, 0, . . . , 0, F1), . . . , f∗(∂n) = (0, . . . , 0, 1, Fn),

where Fj = ∂F/∂xj . Thus we get

D∂if∗(∂j) = (0, . . . , 0, Fij) = Fijξ, Fij =
∂2F

∂xi∂xj
,
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and
∇∂i(∂j) = 0, h(∂i, ∂j) = Fij .

Thus the immersion is nondegenerate if and only if det(Fij) 6= 0. We find
that

θ(∂1, . . . , ∂n) = det(f∗(∂1), . . . , f∗(∂n), ξ) = 1.

Hence taking φ = |det(Fij)|
1

n+2 , we can find Z such that φξ +Z = ξ̄ is the
affine normal field and ξ̄ is given by

ξ̄ = −
∑

j,k

(
F kjφj

)
f∗(∂k) + φξ,

where φj = ∂φ/∂xj , (F ij) is the inverse of the matrix (F ij). From which
we have

D∂i ξ̄ = −
∑

j,k

∂i

(
F kjφj

)
f∗(∂k)

and
S(∂i) =

∑

j,k

∂i

(
F kjφj

)
∂k.

Hence we see that the affine mean curvature of M satisfies

H =
1
n

∑

i,j

∂i

(
F ijφj

)
. (2.4)

3. Proof of the main theorem

Throughout this section, we assume that M is a translation hypersur-
face, i.e., it is obtained as the graph of function F (x1, . . . , xn) = f1(x1) +
· · ·+ fn(xn), where f1, . . . , fn are differentiable functions. Thus we have

(Fij) =




f ′′1 (x1) 0
. . .

0 f ′′n(xn)


 ,

(F ij) = (Fij)−1 =




(f ′′1 (x1))
−1 0

. . .
0 (f ′′n(xn))−1


 ,
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and from the nondegeneracy assumption, we have

φ = |det(Fij)|
1

n+2 =
∣∣f ′′1 (x1) . . . f ′′n(xn)

∣∣ 1
n+2

never vanishes, so the f ′′i ’s never vanish either. Let Gi = εifi satisfy
G′′

i = εif
′′
i = |f ′′i |, where εi = 1 when f ′′i > 0 and εi = −1 when f ′′i < 0.

Thus we get

φi =
1

n + 2
G
′′−1
i G′′′

i (G′′
1 . . . G′′

n)
1

n+2

and

φii =
1

n + 2
(G′′

1 . . . G′′
n)

1
n+2

(
−n + 1

n + 2
G
′′−2
i G

′′′2
i + G

′′−1
i G

(4)
i

)
.

Therefore, by a direct calculation we have

nH =
∑

i

∂i

(
F iiφi

)
=

∑

i

(
(∂iF

ii)φi + F iiφii

)

=
1

n + 2
(G′′

1 . . . G′′
n)

1
n+2

·
∑

i

(
− f ′′′i

f
′′2
i

G′′′
i G

′′−1
i − n + 1

n + 2
f
′′−1
i G

′′−2
i G

′′′2
i + f

′′−1
i G

′′−1
i G

(4)
i

)

=
1

n + 2
(
G′′

1 . . . G′′
n

) 1
n+2

∑

i

(
−εiG

′′′2
i

G
′′3
i

− n + 1
n + 2

εiG
′′′2
i

G
′′3
i

+
εiG

(4)
i

G
′′2
i

)

=
1

n + 2
(
G′′

1 . . . G′′
n

) 1
n+2

∑

i

(
−2n + 3

n + 2
εiG

′′′2
i

G
′′3
i

+
εiG

(4)
i

G
′′2
i

)

=
1

n + 2
(G′′

1 . . . G′′
n)

1
n+2

∑

i

εi

G
′′3
i

(
−2n + 3

n + 2
G
′′′2
i + G

′′
i G

(4)
i

)

= (G′′
2 . . . G′′

n)
1

n+2 ε1G
′′− 3n+5

n+2

1

(
− 2n + 3

(n + 2)2
G
′′′2
1 +

1
n + 2

G′′
1G

(4)
1

)

+ (G′′
1G

′′
3 . . . G′′

n)
1

n+2 ε2G
′′− 3n+5

n+2

2

(
− 2n + 3

(n + 2)2
G
′′′2
2 +

1
n + 2

G′′
2G

(4)
2

)

+ . . .

+ (G′′
1 . . . G′′

n−1)
1

n+2 εnG
′′− 3n+5

n+2
n

(
− 2n + 3

(n + 2)2
G
′′′2
n +

1
n + 2

G′′
nG(4)

n

)
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so we have

nH = (G′′
2 . . . G′′

n)
1

n+2 Q1(x1) + · · ·+ (G′′
1 . . . G′′

n−1)
1

n+2 Qn(xn), (3.1)

where

Qi(xi) = εiG
′′− 3n+5

n+2

i

(
− 2n + 3

(n + 2)2
G
′′′2
i +

1
n + 2

G′′
i G

(4)
i

)
. (3.2)

In order to prove our Theorem, we need the following Lemma.

Lemma. If H is a non-zero constant, then there exists i (i = 1, . . . , n)
such that G′′′

i 6= 0 and G′′′
j = 0 for j 6= i.

Proof. We first prove that if all G′′′
i 6= 0, then H = 0. In fact,

differentiating (3.1) with respect to xi we get

0 = (G′′
1 . . . G′′

i−1G
′′
i+1 . . . G′′

n)
1

n+2 Q′
i(xi)

+
1

n + 2
G
′′ 1

n+2
−1

i G′′′
i

[
(G′′

2 . . . G′′
i−1G

′′
i+1 . . . G′′

n)
1

n+2 Q1(x1)

+ · · ·+ (G′′
1 . . . G′′

i−1G
′′
i+1 . . . G′′

n−1)
1

n+2 Qn(xn)
]

from which we get

−(n + 2)Q′
i(xi)

G
′′−n+1

n+2

i G′′′
i

=
Q1(x1)

G
′′ 1

n+2

1

+ · · ·+ Qi−1(xi−1)

G
′′ 1

n+2

i−1

+
Qi+1(xi+1)

G
′′ 1

n+2

i+1

+ · · ·+ Qn(xn)

G
′′ 1

n+2
n

.

(3.3)

Differentiating (3.3) with respect to xj , we can get easily that

Qj(xj)

G
′′ 1

n+2

j



′

xj

= 0, j 6= i.

In the other hand, changing i to k (k 6= i) in (3.3) and differentiating with
respect to xj , we get


Qj(xj)

G
′′ 1

n+2

j



′

xj

= 0, j 6= k.
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From the above two formulas, we can get

Qj(xj)

G
′′ 1

n+2

j



′

= 0 j = 1, . . . , n. (3.4)

And so
Qj(xj) = cjG

′′ 1
n+2

j , (j = 1, . . . , n), (3.5)

where cj ’s are constant. From (3.5) we get

Q′
j(xj) =

1
n + 2

cjG
′′−n+1

n+2

j G′′′
j . (3.6)

Therefore, combining (3.3), (3.5) with (3.6) we can get

c1 + · · ·+ cn = 0. (3.7)

Combining (3.1), (3.5) with (3.7) we get

nH = (G′′
1 . . . G′′

n)
1

n+2 (c1 + · · ·+ cn) = 0,

and so H = 0.
Then we assume that G′′′

n (xn) = 0. In this case, G′′
n = dn = constant

and Qn(xn) = 0. From (3.1) we get

nHd
− 1

n+2
n = (G′′

2 . . . G′′
n−1)

1
n+2 Q1(x1)

+ · · ·+ (
G′′

1 . . . G′′
n−2

) 1
n+2 Qn−1(xn−1).

(3.8)

If G′′′
i (xi) 6= 0 (i = 1, . . . , n− 1), using the same method as above we can

get nHd
− 1

n+2
n = 0 and so H = 0. Thus continuing such process we can get

G′′
2 = d2, . . . , G′′

n = dn

and
nH = (d2 . . . dn)

1
n+2 Q1(x1)

i.e.

nH = (d2 . . . dn)
1

n+2 ε1G
′′− 3n+5

n+2

1

(
− 2n + 3

(n + 2)2
G
′′′2
1 +

1
n + 2

G′′
1G

(4)
1

)
, (3.9)
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where d2, . . . , dn are constant and G′′′
1 6= 0 so that H 6= 0. This completes

the proof of Lemma.
Now we begin the proof of Theorem. Affine minimal translation hy-

persurfaces, that is the case H = 0 are classified in [7], [11]. Then by
Lemma, we only need to treat with the case that G′′′

2 = · · · = G′′′
n = 0 and

G′′′
1 6= 0. Hence from (3.9) we get

HCG
′′3− 1

n+2

1 = −2n + 3
n + 2

G
′′′2
1 + G′′

1G
(4)
1 , (3.10)

where
C = n(n + 2)ε1(d2 . . . dn)−

1
n+2 .

Let g(x1) = G′′
1(x1) and s = g′. Then from (3.10) we have

g′′ − 2n + 3
n + 2

1
g
g
′2 = CHg

2n+3
n+2

and so
ds2

dg
− 2(2n + 3)

n + 2
1
g
s2 = 2CHg

2n+3
n+2 . (3.11)

Thus we get

s2 = g
2(2n+3)

n+2

(
−2(n + 2)

n + 1
CHg−

n+1
n+2 + d

)
,

where d is a constant. Then we have

g′ = s = ±g
2n+3
n+2

(
−2(n + 2)

n + 1
CHg−

n+1
n+2 + d

) 1
2

.

Let g−
n+1
n+2 = m. Then

±n + 1
n + 2

(am + d)
1
2 dx1 = dm, (3.12)

where a = −2(n+2)
n+1 CH.

From (3.12) we get

2
a

(am + d)
1
2 = ±n + 1

n + 2
x1 + e
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and

g = m−n+2
n+1 =

[
a

4

(
n + 1
n + 2

x1 ± e

)2

− d

a

]−n+2
n+1

,

i.e.

g =

[
− n + 2

2(n + 1)
CH

(
n + 1
n + 2

x1 ± e

)2

+
(n + 1)d

2(n + 2)CH

]−n+2
n+1

, (3.13)

where e is a constant. So we get

G1(x1) =
∫ x1

x0





∫ t

t0

[
AH

(
n + 1
n + 2

s±B

)2

+ a1

]−n+2
n+1

ds



 dt

=

[
A

(
n + 1
n + 2

)2
]−n+2

n+1 ∫ x1

x0

{∫ t

t0

(
Hs2 + a1

)−n+2
n+1 ds

}
dt,

where
A = −(n + 2)C

2(n + 1)
, B = e, a1 =

(n + 1)d
2(n + 2)CH

.

Therefore, under equiaffine translation we get

xn+1 = α

∫ x1

x0

{∫ t

t0

(
Hs2 + a1

)−n+2
n+1 ds

}
dt + a2x

2
2 + · · ·+ anx2

n, (3.14)

where α, a2, . . . , an are constant.
This completes the proof of Theorem. ¤

In particular, taking a1 = 0 from (3.14) we get

xn+1 = A1(x1 + B1)
− 2

n+1 + A2x1 + B2 + a2x
2
2 + · · ·+ anx2

n, (3.15)

where Ai, Bi, ai are constant.

Acknowledgements. The first author would like to thank Professor
K. Yamada for his sincere advice. And the special thanks to the referees
for giving us very valuable suggestions. We could not get the present
version of this paper without the referees’ help.



390 H. Sun and C. Chen : On affine translation hypersurfaces. . .

References

[1] W. Blaschke, Vorlesungen Uber Differentialgeometrie II, Berlin, 1923.

[2] C. Chen and H. Sun, On translation hypersurfaces with constant mean curvature
in (n + 1)-dimentional spaces, J. Beijing Institute of Technology 12, no. 3 (2003)
(to appear).

[3] F. Dillen, A. Martinez, F. Milan, F. G. Santos and L. Vrancken, On the
pick invariant, the affine mean curvature and the Gauss curvature of affine surfaces,
Results in Mathematics 20 (1991), 622–642.

[4] A. M. Li, U. Simon and G. Zhao, Global Affine Differential Geometry of Hyper-
surfaces, W. De Gruyer, Berlin and New York, 1993.

[5] H. Liu, Translation surfaces with constant mean curvature in 3-dimensional space,
J. Geom. 64 (1999), 141–149.

[6] M. A. Magid, Timelike Thomsen surfaces, Results in Mathematics 20 (1991),
691–697.

[7] F. Manhart, Die affineminimalruckungfachen, Arch. Math. 44 (1985), 547–556.

[8] K. Nomizu and T. Sasaki, Affine Differential Geometry, Cambridge University
Press, Cambridge, New York, 1994.

[9] H. Pabel, Translationsflachen in der Aquiaffinen Differentialgeometrie, J. of Geom.
40 (1991), 148–164.

[10] H. Sun, On affine translation surfaces of constant mean curvature, Kumamoto J.
Math. 13 (2000), 49–57.

[11] W. Yang and D. Qiu, On affine minimal translation hypersurfaces in An+1,
J. Math. (PRC) 12 (1992), 27–33.

HUAFEI SUN

DEPARTMENT OF MATHEMATICS

BEIJING INSTITUTE OF TECHNOLOGY

BEIJING 100081

CHINA

E-mail: sunhuafei@hotmail.com

CHUN CHEN

DEPARTMENT OF MATHEMATICS

BEIJING INSTITUTE OF TECHNOLOGY

BEIJING 100081

CHINA

E-mail: springchench@163.com

(Received February 1, 2003; revised July 17, 2003)


