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On a generalization of contact metric manifolds

By LUIGIA DI TERLIZZI (Bari)

Abstract. We consider a metric f -structure on a manifold M of dimension
2n+ s and suppose that its kernel is parallelizable. We give a sufficient condition
for such a structure to be an S-structure, that is a generalization of the Sasakian
structure. Then we prove some identities for the Ricci operator. We exhibit also
some examples.

1. Introduction

In recent years there is a very interest in contact geometry. Within
the subject of contact geometry there is also the class of contact metric
geometry and its generalizations, [3], [5]. A certain class of such manifolds
is of our interest in the present paper.

Let (M, g) be a Riemannian manifold equipped with a metric f -struc-
ture, i.e. an endomorphism ϕ of the tangent bundle such that ϕ3 + ϕ = 0
and which is compatible with g; the compatibility means that for each
X,Y ∈ TM we have g(ϕ(X), Y ) = −g(X,ϕ(Y )), cf. [19]. Such manifolds
are a natural generalization of almost Hermitian manifolds (case when
ϕ is an isomorphism of TM). Moreover we assume that the kernel of
ϕ is parallelizable, i.e. there exist global vector fields ξ1, . . . , ξs spanning
kerϕ. Such manifolds are necessarily of dimension 2n + s where 2n is
the rank of ϕ (supposed to be constant). The study of such manifolds

Mathematics Subject Classification: 53D10, 70G45.
Key words and phrases: metric f -structure, almost S-manifold.
Research supported by the Italian MIUR 60%.



402 Luigia Di Terlizzi

was started by D. E. Blair, S. I. Goldberg, K. Yano, cf. [2], [13],
[14], [6]. Let η1, . . . , ηs be the dual 1-forms of ξ1, . . . , ξs. According to the
definitions of [12], the set consisting of M with the geometric structures
(ϕ, ξ1, . . . , ξs, η

1, . . . , ηs, g), g a compatible metric, is called an almost S-
structure if dηk = F for all k = 1, . . . , s where F is the Sasaki 2-form
defined by g and ϕ. Moreover, when F and the 1-forms η1, . . . , ηs are
closed such a structure is called an almost C-structure. Examples may
be constructed using the suspension method or the pull-back of toroidal
bundles, cf. [2], [9], [8], [10].

In the present paper we give a sufficient condition for an almost S-
structure to be an S-structure. We prove that if ξ1, . . . , ξs are Killing vector
fields, ηi are invariant with respect to ξj (i, j = 1, . . . , s) and the covariant
derivative of ϕ satisfies certain known identity then the structure is an
S-structure, cf. Proposition 3.1. Then we prove the existence of a metric
f -structure with parallelizable kernel under some geometric conditions on
the curvature tensor of M , cf. Proposition 3.2. These conditions were ori-
ginally studied by D. E. Blair. Moreover, we study the Ricci operator of
the almost S-manifolds and obtain conditions for ξi to be Killing. These
theorems generalize some results of [15], [4]. Then we consider the warped
product of two manifolds and we show a natural method of constructing
metric f -structures with parallelizable kernel. Finally, in the last section
we provide new examples of such structures.

2. Preliminaries

Let M be a (2n + s)-dimensional manifold equipped with an f.pk-
structure, i.e. an f -structure ϕ with parallelizable kernel. This means that
there exist s global vector fields ξ1, . . . , ξs and 1-forms η1, . . . , ηs on M

satisfying the following conditions

ϕ(ξi) = 0 , ηi ◦ ϕ = 0, ϕ2 = −I +
s∑

j=1

ηj ⊗ ξj , ηi(ξj) = δi
j

for all i, j = 1, . . . , s. We denote by X (M) the module of differentiable
vector fields on M . On such a manifold there always exists a compatible
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Riemannian metric g, in the sense that for each X, Y ∈ X (M) g(X,Y ) =
g(ϕ(X), ϕ(Y )) +

∑s
j=1 ηj(X)ηj(Y ). We fix such a metric on M ; then the

structure obtained is called metric f.pk-structure. Let F be the Sasaki
form of ϕ defined by F (X, Y ) := g(X, ϕY ) for X, Y ∈ X (M). We denote
by D the bundle Imϕ which is the orthogonal complement of the bundle
kerϕ = 〈ξ1, . . . , ξs〉.

Then the manifold M is equipped with the structure consisting of an
f -structure ϕ, the complemented frame ξ1, . . . , ξs, the 1-forms η1, . . . , ηs,
a compatible metric g and the Sasaki 2-form F .

We recall the definitions of certain types of metric f -structures which
are used in the present paper, cf. [2], [7], [12]. If F and the 1-forms
η1, . . . , ηs are closed the structure is called an almost C-structure and the
manifold is said to be an almost C-manifold. If F = dη1 = · · · = dηs then
the structure is called an almost S-structure and M an almost S-manifold.
If F is closed and the structure is normal then we deal with a K-structure.
The normality means that N := [ϕ,ϕ] + 2

∑s
i=1 dηi ⊗ ξi = 0 where [ϕ,ϕ]

is the Nijenhuis torsion of ϕ. A normal almost C-manifold is called a C-
manifold and a normal almost S-manifold is called an S-manifold. We
also put η̄ =

∑s
j=1 ηj , ξ̄ =

∑s
i=1 ξi and hi := (1/2)Lξi

ϕ, cf. [7, (2.5)].

3. Some remarks on f.pk-manifolds

Lemma 3.1. Let (M, g) be a Riemannian manifold of dimension

2n + s, ξ1, . . . , ξs Killing orthonormal vector fields and η1, . . . , ηs their

dual 1-forms. If Lξiη
j = 0 for all i, j = 1, . . . , s then ∇ξiξj = 0.

Proof. For each i, j, k=1, . . . , s we have ηj([ξi, ξk])=− (Lξiη
j)(ξk)=0

so that [ξi, ξk] ∈ D. Moreover, 0=(Lξig)(X, ξj)=g(∇Xξi, ξj) + g(∇ξjξi, X)
for each X ∈ D and i, j = 1, . . . , s. Hence

g(∇Xξi, ξj) = −g(∇ξj
ξi, X) (3.1)

and g(∇ξi
ξj , X) = −g(∇Xξj , ξi) = g(∇Xξi, ξj) = −g(∇ξj

ξi, X), so that

g(∇ξiξj +∇ξjξi, X) = 0. (3.2)
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On the other hand g([ξi, X], ξj) = −(Lξiη
j)X = 0 while 0 = (Lξig)(X, ξj)=

−g([ξi, ξj ], X). Combining with (3.2) we obtain

g(∇ξiξj , X) = 0. (3.3)

Since [ξi, ξj ] ∈ D from (3.3) we get [ξi, ξj ] = 0. Hence we have g(∇ξiξj , ξk)=
−g(ξj ,∇ξiξk)=− g(ξj ,∇ξk

ξi)=g(ξi,∇ξjξk)=− g(∇ξjξi, ξk)=− g(∇ξiξj , ξk)
and then g(∇ξiξj , ξk) = 0. Using (3.3) we prove the claim. ¤

Remark 3.1. Under the same assumptions as in Lemma 3.1 from (3.1)
we get that for all X ∈ D and i, j = 1, . . . , s g(∇Xξi, ξj) = 0. Moreover,
∇Xξi ∈ D so that ηj([X, ξi]) = g(∇Xξi, ξj)− g(∇ξiX, ξj) = 0.

Equation (1.10) of [7] is an interesting result about S-manifolds; with
our notation this equation may be rewritten as

(∇Xϕ)(Y ) = g(ϕ(X), ϕ(Y ))ξ̄ + η̄(Y )ϕ2(X) (3.4)

for each X,Y ∈ X (M). In the following proposition we prove a sufficient
condition for an f.pk-manifold to be S-manifold. This may be considered
as the inverse of the above result of D. E. Blair, cf. [2], [7].

Proposition 3.1. Let (M, ϕ, ξ1, . . . , ξs, η
1, . . . , ηs, g) be an f.pk-ma-

nifold. If ξ1, . . . , ξs are Killing, Lξiη
j = 0 for each i, j = 1, . . . , s and (3.4)

holds then M is an S-manifold.

Proof. Applying equation (3.4) to a vector field X and ξk (k =
1, . . . , s) we get ϕ(∇Xξk) = X − ∑s

i=1 ηi(X)ξi and ϕ(X) = −∇Xξk +∑s
i=1 ηi(∇Xξk)ξi. Therefore, if X, Y ∈ D then

dηk(X,Y ) = −1
2
ηk([X,Y ])

= −1
2
[−g(Y,∇Xξk) + g(X,∇Y ξk)

]

= −1
2
[
g(Y, ϕ(X))− g(X,ϕ(Y ))

]

= g(X, ϕ(Y )) = F (X,Y ).

Furthermore, due to Lemma 3.1 and Remark 3.1 we get F (ξi, X) = 0 =
dηk(ξi, X) and also F (ξi, ξj) = 0 = dηk(ξi, ξj) for each i, j, k = 1, . . . , s and
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each X ∈ D. We conclude that F = dη1 = · · · = dηs. To complete the
proof we need to obtain the normality of the structure. If X,Y ∈ D then
from equation (3.4) we have

[ϕ, ϕ](X, Y ) = (∇ϕ(X)ϕ)(Y )− (∇ϕ(Y )ϕ)(X)− ϕ((∇Xϕ)(Y ))

+ ϕ((∇Y ϕ)(X))

=
[
g(ϕ2(X), ϕ(Y ))− g(ϕ(X), ϕ2(Y ))

]
ξ̄

= −2
s∑

i=1

F (X,Y )ξi = −2
s∑

i=1

dηi(X,Y )ξi,

that is N(X, Y ) = 0. Then we observe that for each X ∈ D and i = 1, . . . , s

we have [ϕ,ϕ](X, ξi) = 0. Therefore N(X, ξi) = 2
∑s

j=1 dηj(X, ξi)ξj = 0
due to Lemma 3.1 and Remark 3.1. Finally, again from Lemma 3.1, for
each i, j = 1, . . . , s we have N(ξi, ξj)= ϕ2[ξi, ξj ] + 2

∑s
k=1 dηk(ξi, ξj)ξk =0.

¤

Proposition 3.2. Let (M, g) be a Riemannian manifold, ξ1, . . . , ξs

orthonormal Killing vector fields, ξ̄ their sum and η1, . . . , ηs their dual 1-

forms. We suppose that RXξ̄ ξ̄ = X for each X ∈ D and Lξiη
j = 0 for each

i, j = 1, . . . , s. Then M has a natural f.pk-structure ϕ and its Sasaki form

F satisfies

F =
s∑

i=1

dηi. (3.5)

Here D denotes the orthogonal bundle to ξ1, . . . , ξs.

Proof. We put ϕ(X) = −∇X ξ̄ for each X ∈ X (M). Then from
Lemma 3.1 it follows that ϕ(ξi) = 0 for i = 1, . . . , s. Since ξ̄ is Killing
then it is also an affine vector field so ∇ξ̄ ξ̄ = 0, ∇∇X ξ̄ ξ̄ = −RXξ̄ ξ̄ = −X

for each X ∈ D. Hence we have ϕ2(X) = −X. It follows that ϕ2 =
−I +

∑s
i=1 ηi ⊗ ξi. From Remark 3.1 we immediately get that ηi ◦ ϕ = 0.

To prove that g is a compatible metric, we take X, Y ∈ D and get

g(∇X ξ̄,∇Y ξ̄) = −g(X,Rξ̄Y ξ̄)− g(∇[ξ̄,Y ]ξ̄, X)

+ ξ̄(g(X,∇Y ξ̄)) + g([X, ξ̄],∇Y ξ̄)
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= g(X,Y )− g(∇[ξ̄,Y ]ξ̄, X) + g([ξ̄,∇Y ξ̄], X)

= g(Rξ̄ξ̄Y,X) + g(X, Y ) = g(X, Y )

where we use the relations ∇ξ̄ ξ̄ = 0 and ∇∇X ξ̄ ξ̄ = −X. On the other
hand g(ϕ(ξi), ϕ(X)) = 0 = g(ξi, X) for each i = 1, . . . , s, X ∈ D. More-
over g(ϕ(ξi), ϕ(ξj)) = 0 = g(ξi, ξj)−

∑s
k=1 ηk(ξi)ηk(ξj) for i, j = 1, . . . , s so

that g is a compatible metric. Finally, from (3.1) it follows that F (X, ξi) =
0 = dηi(X, ξj) for each i, j = 1, . . . , s and X ∈ X (M). On the other hand,
since ξi is Killing then for each X, Y ∈ D and i = 1, . . . , s

dηi(X, Y ) = −1
2
ηi([X,Y ]) =

1
2
[
g(Y,∇Xξi)− g(X,∇Y ξi)

]
= g(Y,∇Xξi)

so that we obtain (3.5). ¤

Remark 3.2. Suppose that (M, ϕ, ξ1, . . . , ξs, η
1, . . . , ηs, g) is an almost

S-manifold. We put

g̃ := sg − (s− 1)
s∑

i=1

ηi ⊗ ηi.

Then (M,ϕ, ξ1, . . . , ξs, η
1, . . . , ηs, g̃) is an f.pk-structure which verifies (3.5).

4. Properties of the Ricci operator
on almost S-manifolds

In this section we study some properties of the curvature of metric
f.pk-manifolds. We give conditions under which the vector fields ξi are
Killing.

Proposition 4.1. Let (M, ϕ, ξ1, . . . , ξs, η
1, . . . , ηs, g) be an almost S-

manifold and fix i ∈ {1, . . . , s}. Then ξi is Killing if and only if the sectional

curvatures of all planes generated by ξi and any X ∈ D are 1.

Proof. If ξi is Killing then from Proposition 2.4 of [12], Theorem 2.6
and equation (2.3) of [7] we get ∇Xξi = −ϕ(X) for each X ∈ X (M). Let
X ∈ D with ‖X‖ = 1. Then using equations (2.3) and (2.4) of [7] we get
RXξiξi = X so that g(RXξiξi, X) = g(X, X) = 1. Conversely, if X ∈ D
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with ‖X‖ = 1 then also ϕ(X) ∈ D and ‖ϕ(X)‖ = 1, so that g(RXξiξi, X) =
g(Rϕ(X)ξi

ξi, ϕ(X)) = 1. From the first equation in the proof of Theo-
rem 3.8 in [7] it follows that RξiXξi − ϕ(Rξiϕ(X)ξi) = 2(h2

i (X) + ϕ2(X)).
This implies −2 = g(RξiXξi − ϕ(Rξiϕ(X)ξi), X) = 2g(h2

i (X) − X, X) =
2(g(hi(X), hi(X)) − 1) so that g(hi(X), hi(X)) = 0. This means hi = 0
that is ξi is Killing, cf. Theorem 2.6 in [7]. ¤

Proposition 4.2. Let (M, ϕ, ξ1, . . . , ξs, η
1, . . . , ηs, g) be an almost S-

manifold and fix i ∈ {1, . . . , s}. Then ξi is Killing if and only if for each

X ∈ X (M) we have

RXξiξi = X −
s∑

j=1

ηj(X)ξj . (4.1)

Proof. We argue as in the proof of Proposition 4.1: since ξi is Killing
then ∇Xξi = −ϕ(X). Equation (2.3) of [7] and Lemma 3.1 imply RXξiξi =
∇ξi

(ϕ(X)) + ϕ([X, ξi]) = ϕ(∇Xξi) = ϕ2(X), that is (4.1) holds. The
converse follows from Proposition 4.1. ¤

Proposition 4.3. Let (M, ϕ, ξ1, . . . , ξs, η
1, . . . , ηs, g) be an almost S-

manifold and suppose that ξ1, . . . , ξs are Killing. Then for each i = 1, . . . , s

we have

Q(ξi) = 2nξ̄ (4.2)

where Q is the Ricci operator.

Proof. Since each ξi is Killing, hence affine, then RXξiY =∇X∇Y ξi−
∇∇XY ξi. From Proposition 2.4 of [12] it follows that RξiXY = (∇Xϕ)(Y ).
Then, with respect to a ϕ-basis {X1, . . . , Xn, ϕ(X1), . . . , ϕ(Xn), ξ1, . . . , ξs}
and from (2.2) of [7] we have

g(Q(ξi), ξj) =
2n∑

α=1

g(RξiXαXα, ξj) =
2n∑

α=1

g((∇Xαϕ)(Xα), ξj)

=
2n∑

α=1

g(ϕ(Xα), ϕ(Xα)) =
2n∑

α=1

g(Xα, Xα) = 2n,

for each i, j = 1, . . . , s. Analogously, using (2.2) of [7] and Corollary 2.1(a)
of [12] we get g(Q(ξi), Xβ) = 0 and g(Q(ξi), ϕ(Xβ)) = 0 for each i =
1, . . . , s and β = 1, . . . , n. Then Q(ξi) =

∑s
j=1 g(Q(ξi), ξj)ξj = 2nξ̄. ¤
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Lemma 4.1. Let (M, ϕ, ξ1, . . . , ξs, η
1, . . . , ηs, g) be an S-manifold. For

each i = 1, . . . , s and X,Y ∈ D we have

RXY ξi = 0, RXξiξi = X. (4.3)

Proof. The statement follows immediately from (3.6) of [7]. ¤

Proposition 4.4. If (M, ϕ, ξ1, . . . , ξs, η
1, . . . , ηs, g) is an S-manifold

then

Q ◦ ϕ = ϕ ◦Q. (4.4)

Proof. From (4.3) and Lemma 2.2.b) of [2] considering X, Y ∈ D
and a ϕ-basis {X1, . . . , Xn, Xn+1 = ϕ(X1), . . . , X2n = ϕ(Xn), ξ1, . . . , ξs},
we have

g(Q(ϕ(X)), ϕ(Y )) =
2n∑

α=1

g(Rϕ(X)Xα
Xα, ϕ(Y )) +

s∑

i=1

g(Rϕ(X)ξi
ξi, ϕ(Y ))

=
2n∑

α=1

g(Rϕ2(X)ϕ(Xα)ϕ(Xα), ϕ2(Y ))+
s∑

i=1

g(ϕ(X), ϕ(Y ))

=
2n∑

α=1

g(RXϕ(Xα)ϕ(Xα), Y ) +
s∑

i=1

g(RXξiξi, Y )

= g(Q(X), Y ) = g(ϕ(Q(X)), ϕ(Y )).

Thus (4.4) holds on D. From (4.2) it follows that (4.4) is true on D⊥. ¤

5. f.pk-structures on warped products

In this section we consider the warped product of f.pk-manifolds. We
show how to construct new examples of f.pk-manifolds.

Let (B, g1), (V, g2) be Riemannian manifolds and ρ : B → R be a
strictly positive function. Let M̃ := B × V , π1 : M̃ → B and π2 : M̃ → V

be the natural projections. Then M̃ carries a structure of warped manifold
with the warping function ρ i.e. the product manifold equipped with the
metric tensor g̃ = π∗1g1 + ρ2π∗2g2. The geometry of the warped product
manifolds has been intensively studied because of its applications in the
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theoretical physics. The bibliography on the subject is very vast, we only
suggest here [1], [16].

The C∞(B)-module X (B) of vector fields on B is naturally immersed
in the C∞(M̃)-module X (M̃) of vector fields on M̃ . Analogically, the
C∞(V )-module X (V ) of vector fields on V is naturally immersed in the
C∞(M̃)-module X (M̃) of vector fields on M̃ . Hence, with a slight abuse
of notation, we denote the elements of X (B) and X (V ) as vector fields on
M̃ with the same letters.

Let (B,ϕ1, ξ1, . . . , ξs, η
1, . . . , ηs, g1), (V, ϕ2, ζ1, . . . , ζt, θ

1, . . . , θt, g2) be
two f.pk-manifolds. We consider the following structures on the warped
product M̃

ξ̃i : =

{
ξi if i = 1, . . . , s
1
ρζi−s if i = s + 1, . . . , s + t

(5.1)

η̃i : =

{
π∗1η

i if i = 1, . . . , s

ρπ∗2θ
i−s if i = s + 1, . . . , s + t

(5.2)

and ϕ̃ := ϕ1 ⊕ ϕ2.
The following two lemmas are direct consequence of the definitions of

the warped product and the structures on it. The proofs are straightfor-
ward and we omit them here.

Lemma 5.1. (M̃, ϕ̃, ξ̃1, . . . , ξ̃s+t, η̃
1, . . . , η̃s+t, g̃) is a metric f.pk-ma-

nifold.

Then we denote by F̃ the Sasaki form associated with g̃ and ϕ̃.

Lemma 5.2. For each i = 1, . . . , s and for each h = s + 1, . . . , s + t

one has

dη̃i = π∗1dηi

dη̃h = dρ ∧ π∗2θ
h−s + ρπ∗2dθh−s

F̃ = π∗1F1 + ρ2π∗2F2,

where F1 and F2 are the fundamental forms associated with ϕ1 and ϕ2.



410 Luigia Di Terlizzi

From the above Lemmas we get the following corollaries.

Corollary 5.1. Suppose that B and V are almost C-manifolds. Then

M̃ is an almost C-manifold if and only if ρ is constant.

Corollary 5.2. If B and V are almost S-manifolds then M̃ is never

an almost S-manifold.

Remark 5.1. From a direct computation we get

Neϕ = Nϕ1 + Nϕ2 + 2
t∑

l=1

dρ ∧ π∗2θ
l

so that the structure ϕ̃ is normal if and only if ϕ1 and ϕ2 are normal
structures and ρ is constant.

Corollary 5.3. The manifold M̃ is a K-manifold if and only if ρ is

constant and B, V are K-manifolds.

In the following two corollaries we consider the particular case when
(B, g1, ϕ1) is an almost Hermitian manifold and dimV = t. Hence V is
parallelizable by ζ1, . . . , ζt. From Lemma 5.1 it follows:

Corollary 5.4. The structure (M̃, ϕ̃, ξ̃1, . . . , ξ̃t, η̃
1, . . . , η̃t, g̃) defined

by (5.1) and (5.2) is an f.pk-manifold. Moreover, dη̃i = dρ∧π∗2θ
i +ρπ∗2dθi

for each i = 1, . . . , s and F̃ = π∗1Φ where Φ is the Kähler form associated

with ϕ1 and g1.

Corollary 5.5. The f.pk-structure on M̃ is never almost S. It is an

almost C if and only if ρ is constant, B is symplectic and θ1, . . . , θs are

closed. Moreover, for each i, j = 1, . . . , t and each X,Y ∈ X (B) one has

Neϕ(ξ̃i, ξ̃j) = −[ζi, ζj ]

Neϕ(X, ξ̃i) = X(ln ρ)ζi

Neϕ(X,Y ) = [ϕ1, ϕ1](X, Y ).

It follows that ϕ̃ is normal if and only if ϕ1 is integrable, [ζi, ζj ] = 0 and ρ

is constant.
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In the following two corollaries we assume that dimB = s and hence
B is parallelizable by ξ1, . . . , ξs. Moreover we assume that (V, g2, ϕ2) is
an almost Hermitian manifold. Then as an immediate consequence of
Lemma 5.1 we get the following result.

Corollary 5.6. If (M̃, ϕ̃, ξ̃1, . . . , ξ̃s, η̃
1, . . . , η̃s, g̃) is a metric f.pk-ma-

nifold then dη̃i = π∗1dηi for all i = 1, . . . , s and F̃ = ρ2π∗2Φ, where Φ is the

Kähler form associated with ϕ2 and g2.

Hence we have the following property.

Corollary 5.7. The f.pk-structure on M̃ is never an almost S-mani-

fold. Then M̃ is an almost C-manifold if and only if η1, . . . , ηs are closed,

V is symplectic and ρ is constant. Moreover, for each i, j = 1, . . . , s and

X,Y ∈ X (V ) we have

Neϕ(ξ̃i, ξ̃j) =
s∑

k=1

ηk[ξj , ξi]ξk

Neϕ(X, ξ̃i) = 0

Neϕ(X,Y ) = [ϕ2, ϕ2](X, Y ).

Hence, if ϕ2 is integrable and [ξi, ξj ] = 0 for each i, j = 1, . . . , s then the

f.pk-structure is normal.

6. Examples

Example 6.1. Let (V0, g0, J0) be a Kähler manifold with the fundamen-
tal 2-form Ω0 such that Ω0 = dω0. We consider the product N = M0×Rs,
s ≥ 1, which can be thought as the total space of a principal bundle with
structure group Rs. The 1-forms ηi = π∗ω0 + dti, i = 1, . . . , s, (t1, . . . , ts
are natural coordinates on Rs) verify dηi = π∗Ω0 and (η1, . . . , ηs) is a
connection form on N . Hence, from [2] we obtain that N admits an S-
structure, whose metric tensor is g = π∗g0 +

∑s
i=1 ηi ⊗ ηi and the Sasaki

form is F = π∗Ω0. If we modify the metric as g̃ = sπ∗g0 +
∑s

i=1 ηi ⊗ ηi,
then we have F̃ = sF . So we obtain an f.pk-manifold which satisfies
condition (3.5).
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The previous construction of N can be modified by substituting Rs

with the s-dimensional torus (S1)s. Then the construction goes in the
same way and we obtain the desired f.pk-structure on the toroidal bundle
M0 × (S1)s.

The following example is an application of Corollary 5.6

Example 6.2. We consider B := Rs and V := Cn both with their
canonical Riemannian flat structures and a warping function ρ :Rs→R
such that ρ(t1, . . . , ts) = et1+···+ts . We take ξ1 = ∂

∂t1
, . . . , ξs = ∂

∂ts
the

canonical vector fields on Rs immersed in the warped product M̃ = B×ρV .
Using the construction from Lemma 5.1 we obtain that M̃ is a f.pk-
manifold. We observe that ξ1, . . . , ξs are not Killing since for each X,Y ∈
X (V ) and i = 1, . . . , s we have (Lξi g̃)(X,Y ) = 2e2(t1+···+ts)〈X, Y 〉. More-
over the metric g̃ is not flat; for instance, for each X ∈ X (V ) and i, j =
1, . . . , s we have RXξiξj = Hρ(ξi,ξj)

ρ X = X where Hρ denotes the Hessian
of ρ, cf. [16].

Example 6.3. We consider a Kähler manifold (M0, J0, g0) such that its
fundamental form is exact, namely Ω0 = dω0. We put M = M0 × Rs,
s = p + q, and

ηi :=





π∗ω0 + dti for i = 1, . . . , p

dti for i = p + 1, . . . , s,

where t1, . . . , ts are natural coordinates in Rs. Then M with the metric
g = π∗g0 +

∑s
i=1 ηi ⊗ ηi is a metric f.pk-structure such that dηi = F for

all i = 1, . . . , p and dηi = 0 for all i = p + 1, . . . , s. This is an example
of metric f.pk-manifold such that dηi = 0 for some i ∈ {1, . . . , s} and
dηj = F for the other values of the index. Such manifolds were firstly
studied in [17], [18]. Moreover, for p = 1 and q = s− 1 this is an example
of a metric f.pk-manifold satisfying identity (3.5).
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