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On a generalization of contact metric manifolds

By LUIGIA DI TERLIZZI (Bari)

Abstract. We consider a metric f-structure on a manifold M of dimension
2n + s and suppose that its kernel is parallelizable. We give a sufficient condition
for such a structure to be an S-structure, that is a generalization of the Sasakian
structure. Then we prove some identities for the Ricci operator. We exhibit also
some examples.

1. Introduction

In recent years there is a very interest in contact geometry. Within
the subject of contact geometry there is also the class of contact metric
geometry and its generalizations, [3], [5]. A certain class of such manifolds
is of our interest in the present paper.

Let (M, g) be a Riemannian manifold equipped with a metric f-struc-
ture, i.e. an endomorphism ¢ of the tangent bundle such that ¢ + o = 0
and which is compatible with g; the compatibility means that for each
X, Y € TM we have g(¢(X),Y) = —g(X, p(Y)), cf. [19]. Such manifolds
are a natural generalization of almost Hermitian manifolds (case when
¢ is an isomorphism of T'M). Moreover we assume that the kernel of
 is parallelizable, i.e. there exist global vector fields &1, ..., &5 spanning
ker ¢p. Such manifolds are necessarily of dimension 2n + s where 2n is
the rank of ¢ (supposed to be constant). The study of such manifolds
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was started by D. E. BLAIR, S. I. GOLDBERG, K. Yano, cf. [2], [13],
[14], [6]. Let n',...,n° be the dual 1-forms of ¢1,...,&,. According to the
definitions of [12], the set consisting of M with the geometric structures
(0, &1, -, &,mY, . ...n°%, g), g a compatible metric, is called an almost S-
structure if dn® = F for all k = 1,...,s where F is the Sasaki 2-form
defined by g and . Moreover, when F and the 1-forms n',...,n° are
closed such a structure is called an almost C-structure. Examples may
be constructed using the suspension method or the pull-back of toroidal
bundles, cf. [2], [9], [8], [10].

In the present paper we give a sufficient condition for an almost S-
structure to be an S-structure. We prove that if €1, . . ., &, are Killing vector
fields, n’ are invariant with respect to & (i,j =1,...,s) and the covariant
derivative of ¢ satisfies certain known identity then the structure is an
S-structure, cf. Proposition 3.1. Then we prove the existence of a metric
f-structure with parallelizable kernel under some geometric conditions on
the curvature tensor of M, cf. Proposition 3.2. These conditions were ori-
ginally studied by D. E. Blair. Moreover, we study the Ricci operator of
the almost S-manifolds and obtain conditions for & to be Killing. These
theorems generalize some results of [15], [4]. Then we consider the warped
product of two manifolds and we show a natural method of constructing
metric f-structures with parallelizable kernel. Finally, in the last section
we provide new examples of such structures.

2. Preliminaries

Let M be a (2n + s)-dimensional manifold equipped with an f.pk-
structure, i.e. an f-structure @ with parallelizable kernel. This means that
there exist s global vector fields &, ...,& and 1-forms n',...,n° on M
satisfying the following conditions

P&) =0, nop=0 P=-T+> P, 1) =7
j=1

for all 4,7 = 1,...,s. We denote by X(M) the module of differentiable
vector fields on M. On such a manifold there always exists a compatible
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Riemannian metric g, in the sense that for each X, Y € X(M) g(X,Y) =
9(p(X), p(Y)) + 3254 7/ (X)n? (Y). We fix such a metric on M; then the
structure obtained is called metric f.pk-structure. Let F be the Sasaki
form of ¢ defined by F(X,Y) := g(X,¢Y) for X, Y € X(M). We denote
by D the bundle Im¢p which is the orthogonal complement of the bundle
kerp = (€1, &).

Then the manifold M is equipped with the structure consisting of an
f-structure ¢, the complemented frame &1,. .., &, the 1-forms n',..., 7%,
a compatible metric ¢ and the Sasaki 2-form F'.

We recall the definitions of certain types of metric f-structures which
are used in the present paper, cf. [2], [7], [12]. If F' and the 1-forms
nt,...,n° are closed the structure is called an almost C-structure and the
manifold is said to be an almost C-manifold. If F = dn' = --- = dn® then
the structure is called an almost S-structure and M an almost S-manifold.
If F' is closed and the structure is normal then we deal with a KC-structure.
The normality means that N := [p, ] + 27 dn* ® & = 0 where [, ¢]
is the Nijenhuis torsion of ¢. A normal almost C-manifold is called a C-
manifold and a normal almost S-manifold is called an S-manifold. We

also put 7= 3%, W, E =51 & and h; == (1/2)L¢,p, cf. [7, (2.5)].

3. Some remarks on f.pk-manifolds

Lemma 3.1. Let (M,g) be a Riemannian manifold of dimension
2n + s, &1,...,& Killing orthonormal vector fields and n',...,n° their
dual 1-forms. If Le;n? = 0 for all 4,5 = 1,...,s then V¢, & = 0.

PrOOF. For each i, j, k=1,...,s we have n/([&;, &)= — (Lg,n" ) (£)=0
so that [§;,&] € D. Moreover, 0=(Lg,9)(X,&;)=9(Vx&, &) + 9(Ve, &, X)
foreach X e Dand i,j =1,...,s. Hence

and g(Ve, &5, X) = —9(Vx&j, &) = 9(Vx&i, &) = —g(Ve; &, X), so that

g(VgiSj + VQ&,X) = 0. (3.2)
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On the other hand g([&;, X],&;) = —(Lg;n?) X = 0 while 0 = (Lg,9) (X, &)=
—9([&,&5], X). Combining with (3.2) we obtain

9(Ve,&5, X) = 0. (3.3)

Since [§;,&;] € D from (3.3) we get [§;,§;] = 0. Hence we have g(V¢,&j, &)=

—9(&5, Ve,&i)=— 9(&5, Ve, §i)=9(8i, Ve, §6)= — 9(Ve,; &, &)= — 9(Ve, 655 €k)
and then g(V¢,&;, &) = 0. Using (3.3) we prove the claim. O

Remark 3.1. Under the same assumptions as in Lemma 3.1 from (3.1)
we get that for all X € Dand 4,5 =1,...,s ¢(Vx&,&) = 0. Moreover,
Vx& € D so that 7/ ([X, &) = 9(Vx&i, &) — 9(Ve, X, &) = 0.

Equation (1.10) of [7] is an interesting result about S-manifolds; with
our notation this equation may be rewritten as

(Vxe)(Y) = g(0(X), p(Y))E +7(Y)p*(X) (3.4)

for each X, Y € X(M). In the following proposition we prove a sufficient
condition for an f.pk-manifold to be S-manifold. This may be considered
as the inverse of the above result of D. E. BLAIR, cf. [2], [7].

Proposition 3.1. Let (M, p,&1,...,&,n%,...,n° g) be an f.pk-ma-
nifold. If &, ... & are Killing, Lg;n? = 0 for eachi,j =1,...,s and (3.4)
holds then M is an S-manifold.

PROOF. Applying equation (3.4) to a vector field X and & (k =
1,....s) we get p(Vx&) = X — Yo' (X)& and o(X) = —Vx& +
Yo " (Vx&k)&. Therefore, if X,Y € D then

At (X,¥) = — (X, Y))
— _% [—9(Y,Vx&) + 9(X, Vy&)]
_ _% [9(Y, (X)) — g(X, p(Y))]

= 9(X,¢(Y)) = F(X,Y).

Furthermore, due to Lemma 3.1 and Remark 3.1 we get F(&,X) =0 =
dn¥ (&, X) and also F(&;,&;) = 0 = dn*(&;,&;) for each i, j,k=1,...,s and
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each X € D. We conclude that F = dn! = --- = dn®. To complete the
proof we need to obtain the normality of the structure. If X,Y € D then
from equation (3.4) we have

[, P](X,Y) = (Vo9)(Y) = (Vo) (X) — e((Vxe)(Y))
+ o((Vyp)(X))

= [9(¢*(X), 0(Y)) — g(p(X),*(Y))]€

S S
=-2) F(X,Y)§=-2) dfi(X,Y)4,
=1 =1
that is N(X,Y) = 0. Then we observe that foreach X € Dandi=1,...,s
we have [p, ¢](X,&) = 0. Therefore N(X,&) = 2375, dip/ (X, &) = 0
due to Lemma 3.1 and Remark 3.1. Finally, again from Lemma 3.1, for

each i, =1,...,s we have N(§;,&;) = (,02[&,5]'] +2>7 dnk(fz‘vfj)fk =0.
O

Proposition 3.2. Let (M,g) be a Riemannian manifold, &, ..., &
orthonormal Killing vector fields, £ their sum and n',...,n° their dual 1-
forms. We suppose that R XE—E = X for each X € D and L&.nj = 0 for each
i,7=1,...,s. Then M has a natural f.pk-structure @ and its Sasaki form
F satisfies

F = Z dn'. (3.5)
=1

Here D denotes the orthogonal bundle to &1, ..., &s.

PrROOF. We put p(X) = —Vx¢ for each X € X(M). Then from
Lemma 3.1 it follows that ¢(&) = 0 for i = 1,...,s. Since £ is Killing
then it is also an affine vector field so vg—é =0, vagg = —Rxgg =-X
for each X € D. Hence we have p?(X) = —X. It follows that ¢? =
—I+>%  n°®&. From Remark 3.1 we immediately get that 7' o @ = 0.
To prove that g is a compatible metric, we take X,Y € D and get

9(Vx&, VyE) = —9(X, Rey€) — 9(Vigy)&, X)
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= g(X,Y) — (Ve X) + g((E, VvE], X)
= Q(REEK X) +9(X7Y) = g(X, Y)

where we use the relations vgé = 0 and vagf_ = —X. On the other
hand g(¢(&), (X)) =0 = g(&,X) for each i = 1,...,s, X € D. More-
over g(p(&:),9(&5)) = 0= g(&, &) =2y 1 (EN" (&) for i, j = 1,... s 50
that g is a compatible metric. Finally, from (3.1) it follows that F(X,§;) =
0 =dn'(X,¢&;) for each i,j = 1,...,s and X € X(M). On the other hand,
since &; is Killing then for each X, Y € Dandi=1,...,s

dif (X, Y) = f%ni([X, Y]) =59V, Vx&) = 9(X, Vy&)] = g(Y, Vx&)

DO | =

so that we obtain (3.5). O

Remark 8.2. Suppose that (M, @, &1,. .., &0t ..., 1% g) is an almost
S-manifold. We put

S
gi=sg—(s—1)) n'@n.
=1

Then (M, ¢, &1,...,&,nY...,n°,§) is an f.pk-structure which verifies (3.5).

4. Properties of the Ricci operator
on almost S-manifolds

In this section we study some properties of the curvature of metric
f.pk-manifolds. We give conditions under which the vector fields &; are
Killing.

Proposition 4.1. Let (M, , &1, ...,&5,n",...,n%, g) be an almost S-
manifold and fixi € {1,...,s}. Then¢; is Killing if and only if the sectional
curvatures of all planes generated by &; and any X € D are 1.

PRrooOF. If ¢ is Killing then from Proposition 2.4 of [12], Theorem 2.6
and equation (2.3) of [7] we get Vx§& = —p(X) for each X € X(M). Let
X € D with || X|| = 1. Then using equations (2.3) and (2.4) of [7] we get
Rx¢ & = X so that g(Rxe, &, X) = g(X,X) = 1. Conversely, if X € D
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with ||X|| = 1 then also ¢(X) € D and ||¢(X)| = 1, so that g(Rx¢,&, X) =
9(Ry(x)¢,8i> (X)) = 1. From the first equation in the proof of Theo-
rem 3.8 in [7] it follows that Re, x& — ©(Re,px)&i) = 2(h7 (X) + ¢*(X)).
This implies —2 = g(Re,x& — ©(Rep(x)&i), X ) =29(h}(X) - X, X) =
2(g(hi(X),hi(X)) — 1) so that g(h;(X),h;(X)) = 0. This means h; = 0
that is & is Killing, cf. Theorem 2.6 in [7]. O

Proposition 4.2. Let (M, ,&1,...,&,1m%,...,1° g) be an almost S-
manifold and fix i € {1,...,s}. Then &; is Killing if and only if for each
X € X(M) we have

Rye&i = X = S /()¢ (1)

PROOF. We argue as in the proof of Proposition 4.1: since &; is Killing
then Vx& = —¢(X). Equation (2.3) of [7] and Lemma 3.1 imply Rx¢,& =
Ve, (9(X)) + o([X,&]) = ¢(Vx&) = ¢*(X), that is (4.1) holds. The
converse follows from Proposition 4.1. O

Proposition 4.3. Let (M, ,&1,...,&5,n%,...,n%, g) be an almost S-
manifold and suppose that &1, ..., & are Killing. Then for eachi =1,...,s
we have

Q(&) = 2n€ (4.2)
where @) is the Ricci operator.

PROOF. Since each §; is Killing, hence affine, then Rx¢, Y=V xVy§ —
Vv v&. From Proposition 2.4 of [12] it follows that Re, xY = (Vx¢)(Y).
Then, with respect to a p-basis {X1,..., Xn, 0(X1),...,0(Xpn), &1, -+, &}
and from (2.2) of [7] we have

2n
9(Q(&), &) = Zg (ReixaXor &) = > 9((Vx,#)(Xa), &)
a=1

a=1

2n om
=Y 9(0(Xa), 0(Xa)) = Y 9(Xa, Xa) = 2n,
a=1

a=1
for each 7,5 = 1,...,s. Analogously, using (2.2) of [7] and Corollary 2.1(a

)
of [12] we get g(Q(&), Xp) = 0 and g(Q(&), »(Xs)) = 0 for each i =
L...,sand B=1,...,n. Then Q(&) = >, 9(Q(&), ;)& = 2nk. O
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Lemma 4.1. Let (M, p, &1, ..., 66,1, ..., 0%, g) be an S-manifold. For
eachi=1,...,s and X,Y € D we have

Rxy& =0, Rxg&=X. (4.3)

PROOF. The statement follows immediately from (3.6) of [7]. O

Proposition 4.4. If (M, ,&1,...,&,1,...,1n° g) is an S-manifold
then

Qop=9poQ. (4.4)

PROOF. From (4.3) and Lemma 2.2.b) of [2] considering X,Y € D
and a p-basis {X1,..., X, Xnt1 = o(X1), ..., Xon = ©(Xn), &1, .., &,
we have

2n s
Q(Q(@(X)), QD(Y)) = Z g(ch(X)XaXOH @(Y)) + Z g(Rtp(X)figia SO(Y))
a=1 =1
2n s
= 9(Rpe(xyp(x0)?(Xa) 2 (V) + D g((X),0(Y))
a=1 =1

2n s
=3 9(Rxpxa)®(Xa), V) + ) g(Rxe&i.Y)
a=1 =1

= 9(Q(X),Y) = g(¢(Q(X)), o(Y)).

Thus (4.4) holds on D. From (4.2) it follows that (4.4) is true on D+. O

5. f.pk-structures on warped products

In this section we consider the warped product of f.pk-manifolds. We
show how to construct new examples of f.pk-manifolds.

Let (B,g1), (V,92) be Riemannian manifolds and p : B — R be a
strictly positive function. Let M := B x V,m M — B and o M-V
be the natural projections. Then M carries a structure of warped manifold
with the warping function p i.e. the product manifold equipped with the
metric tensor § = wg1 + p*m5g2. The geometry of the warped product
manifolds has been intensively studied because of its applications in the
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theoretical physics. The bibliography on the subject is very vast, we only
suggest here [1], [16].

The C*°(B)-module X (B) of vector fields on B is naturally immersed
in the C°°(M)-module X (M) of vector fields on M. Analogically, the
C*°(V)-module X (V') of vector fields on V is naturally immersed in the
C(M)-module X (M) of vector fields on M. Hence, with a slight abuse
of notation, we denote the elements of X'(B) and X (V') as vector fields on
M with the same letters.

Let (B, 1,81, &, %, 91), (Vipa, Crs oo, G 0 o, 67, g2) be
two f.pk-manifolds. We consider the following structures on the warped
product M

~ 57, ifizl,...,s
fl’Z: 1 L (51)
;Ci,s ifi=s4+1,...,5+1

=

(5.2)

N v ifi=1,...,s
. pﬂ'gﬁi_s ifi=s+1,...,5+t

and @ := @1 @ .

The following two lemmas are direct consequence of the definitions of
the warped product and the structures on it. The proofs are straightfor-
ward and we omit them here.

Lemma 5.1. (M, 3,81, ... &0, 7%, ..., 75T, §) is a metric f.pk-ma-
nifold.

Then we denote by F the Sasaki form associated with § and .

Lemma 5.2. Foreachi =1,...,s and foreach h=s+1,...,s+1
one has

dit = widn'
dif* = dp A w360" " + prydd”
F =1t Fy + p*ms F,

where Fy and F, are the fundamental forms associated with ¢, and 3.
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From the above Lemmas we get the following corollaries.

__ Corollary 5.1. Suppose that B and V' are almost C-manifolds. Then
M is an almost C-manifold if and only if p is constant.

Corollary 5.2. If B and V are almost S-manifolds then M is never
an almost S-manifold.

Remark 5.1. From a direct computation we get

t
N =Ny, + Ny, +2) dp Amst
=1

so that the structure ¢ is normal if and only if ¢ and @2 are normal
structures and p is constant.

Corollary 5.3. The manifold M is a K-manifold if and only if p is
constant and B, V are K-manifolds.

In the following two corollaries we consider the particular case when
(B, g1,¢1) is an almost Hermitian manifold and dimV' = ¢. Hence V is
parallelizable by (i, ..., ;. From Lemma 5.1 it follows:

Corollary 5.4. The structure (JTJ/, &,5,...,5,%...,%@ defined
by (5.1) and (5.2) is an f.pk-manifold. Moreover, di' = dp A 750" + pr3df’
foreachi=1,...,s and F= m]® where ® is the Kahler form associated
with @1 and ¢;.

Corollary 5.5. The f.pk-structure on M is never almost S. It is an
almost C if and only if p is constant, B is symplectic and 6',...,0° are
closed. Moreover, for eachi,j =1,...,t and each X,Y € X(B) one has

N@(é,g]) = —[Cz'ij]
Na(X, &) = X(In p)G;
Nz(X,Y) = [p1, 1 )(X,Y).

It follows that ¢ is normal if and only if ¢y is integrable, [(;, ;] = 0 and p
is constant.
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In the following two corollaries we assume that dim B = s and hence
B is parallelizable by &i,...,&. Moreover we assume that (V) ga, @) is
an almost Hermitian manifold. Then as an immediate consequence of
Lemma 5.1 we get the following result.

Corollary 5.6. If(]f\\f7 P, 51, . ,gs,'ﬁl, ...,m°,g) is a metric f.pk-ma-
nifold then dij = widn® for alli =1,...,s and F = p*n3®, where ® is the
Kahler form associated with @9 and gs.

Hence we have the following property.

Corollary 5.7. The f.pk-structure on M is never an almost S-mani-
fold. Then M is an almost C-manifold if and only if n', ..., n® are closed,
V' is symplectic and p is constant. Moreover, for each i,7 = 1,...,s and
X,Y € X(V) we have

k=1

N@(va) = [@27902](X)Y)'

Hence, if o is integrable and [&;,§;] = 0 for each i,j = 1,...,s then the
f-pk-structure is normal.

6. Examples

Ezample 6.1. Let (Vj, go, Jo) be a Kdhler manifold with the fundamen-
tal 2-form €2y such that Qg = dwy. We consider the product N = My x R?,
s > 1, which can be thought as the total space of a principal bundle with
structure group R*. The 1-forms n' = m¥wo +dt;, i = 1,...,s, (t1,...,ts
are natural coordinates on R®) verify dn' = 7*Qg and (n',...,n°%) is a
connection form on N. Hence, from [2] we obtain that N admits an S-
structure, whose metric tensor is g = 7*go + > _;_; n* @ n* and the Sasaki
form is F' = 7*Q. If we modify the metric as ¢ = sn*go + > 7, n' @ nt,
then we have F = sF. So we obtain an f.pk-manifold which satisfies
condition (3.5).
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The previous construction of N can be modified by substituting R®
with the s-dimensional torus (S')*. Then the construction goes in the
same way and we obtain the desired f.pk-structure on the toroidal bundle
M() X (Sl)s.

The following example is an application of Corollary 5.6

Ezample 6.2. We consider B := R®* and V := C"™ both with their
canonical Riemannian flat structures and a warping function p:R®* — R

such that p(ty,...,t,) = et We take & = %7‘_'758 — B%s the

canonical vector fields on R® immersed in the warped product M = Bx V.
Using the construction from Lemma 5.1 we obtain that M is a f-pk-
manifold. We observe that &1, ..., & are not Killing since for each X,Y €
X(V)andi=1,...,s we have (L, §)(X,Y) = 2e2tit+)(X V). More-
over the metric g is not flat; for instance, for each X € X(V) and i,j =
1,...,s we have Rx¢,§; = %X = X where H” denotes the Hessian
of p, ct. [16].

Ezxample 6.3. We consider a Kahler manifold (M, Jy, go) such that its
fundamental form is exact, namely Q¢ = dwg. We put M = My x R®,
s =p-+gq, and

m™wo+dt; fori=1,...,p
i =
dt; fori=p+1,...,s,

where t1,...,ts are natural coordinates in R®*. Then M with the metric
g="m"g0+ > i1 n' ®n' is a metric f.pk-structure such that dn’ = F for
allt=1,...,pand dnp; =0 for all « = p+ 1,...,s. This is an example
of metric f.pk-manifold such that dn’ = 0 for some i € {1,...,s} and
dn/ = F for the other values of the index. Such manifolds were firstly
studied in [17], [18]. Moreover, for p =1 and ¢ = s — 1 this is an example
of a metric f.pk-manifold satisfying identity (3.5).

References

[1] J. BEEM, P. EHRLICH and T. POWELL, Warped product manifolds in relativity,
Selected studies: physics-astrophysics, mathematics, history of science, North Hol-
land, Amsterdam — New York, 1982, 41-56.



On a generalization of contact metric manifolds 413

[2] D. E. BLAIR, Geometry of manifolds with structural group U(n) x O(s), J. Diff.
Geometry 4(2) (1970), 155-167.

[3] D. E. BLAIR, Contact manifolds in Riemannian geometry, Lecture Notes in Math.
509, Springer-Verlag, Berlin, 1976.

[4] D. E. BLAIR, T'wo remarks on contact metric structure, Tohoku Math. J. 28 (1977),
319-324.

[5] D. E. BLAIR, Riemannian geometry of contact and symplectic manifolds, Progress
in Math. 203, Birkhauser, Basel, 2001.

[6] D. E. BLAIR, G. D. LUDDEN and K. YaNoO, Differential geometric structures on
principal toroidal bundles, TAMS 181 (1973), 175-184.

[7] J. L. CABRERIZO, L. M. FERNANDEZ and M. FERNANDEZ, The curvature ten-
sor fields on f-manifolds with complemented frames, An. Univ. ‘Al.l. Cuza’, Iasi,
Matematica 36 (1990), 151-161.

[8] L. D1 TERLIZzI and J. J. KONDERAK, On a certain class of metric f-structures,
Toyama Univ. Math. Journal 25 (2002), 181-203.

[9] L. D1 TERrLIZzI, J. KONDERAK, A. M. PASTORE and R. WOLAK, K-structures and
foliations, Annales Univ. Sci. Budapest. 44 (2001), 171-182.

[10] L. D1 TERLIZZI, J. KONDERAK and A. M. PASTORE, On the flatness of a class of
metric f-manifolds, to appear in Bull. Belg. Math. Soc. 10 (2003), 461-474.

[11] L. D1 TerLiZzI and A. M. PASTORE, Some results on K-manifolds, Balkan J. of
Geometry 7(1) (2002), 43-62.

[12] K. L. DuGGAL, S. IaNUS and A. M. PASTORE, Maps interchanging f-structures
and their harmonicity, Acta Applicandae Mathematicae 67, 1 (2001), 91-115.

[13] S. I. GOLDBERG and K. YANO, On normal globally framed f-manifolds, T'6hoku
Math. Journal 22 (1970), 362—-370.

[14] S. I. GoLDBERG and K. YANO, Globally framed f-manifolds, Illinois J. Math.
Journal 22 (1971), 456-474.

[15] Y. HATAKEYAMA, Y. OcAawA and S. TANNO, Some properties of manifolds with
contact metric structures, Téhoku Math. J. 15 (1963), 42-48.

[16] B. O’NEILL, Semi-Riemannian geometry, with applications to relativity, Pure and
applied mathematics, 103, Academic Press, Inc., New York, 1983.

[17] 1. VAISMAN, Generalized Hopf manifolds, Gemetriae Dedicata 13 (1982), 231-255.

[18] I. VAISMAN, A survey of generalized Hopf manifolds, Rend. Sem. Mat., Univ. Po-
litec. Torino (1984), special issue.

[19] K. YANO, On a structure defined by a tensor field f satisfying f> + f = 0, Tensor
14 (1963), 99-109.

LUIGIA DI TERLIZZI
DIPARTIMENTO DI MATEMATICA
UNIVERSITA DI BARI

VIA ORABONA 4, 70125 BARI
ITALY

E-mail: terlizzi@dm.uniba.it



414 Luigia Di Terlizzi

(Received February 18, 2003; revised July 15, 2003)



