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On a multivalued iterative equation

By KAZIMIERZ NIKODEM (Bielsko–BiaÃla) and
WEINIAN ZHANG∗ (Chengdu)

Abstract. A second order iterative functional equation is considered for
multifunctions. A result on the existence and uniqueness of solutions in some
class of multifunctions is presented.

1. Introduction

In the theory of functional equations in a single variable an important
role is played by equations with superpositions of the unknown function
(cf. [2], [7]). Among them is the iterative equation of the form

λ1f(x) + λ2f
2(x) + · · ·+ λnfn(x) = g(x), (∗)

where g is a given function. This equation (and its various special cases)
was considered by many authors and there is a large number of papers
devoted to it. In particular results on the existence, uniqueness and sta-
bility of its solutions in several classes of functions can be found, e.g., in
[5], [8], [9], [17]–[19]. Up to the authors’ best knowledge, equation (∗) was
not considered so far in the class of multifunctions, cf. however the papers
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[12], [13], [16]. Multivalued solutions of functional equations in several
variables were investigated by several authors, cf., e.g., [10], [11], [14], [15].

The subject of this note is the second order multivalued iterative equa-
tion

λ1F (x) + λ2F
2(x) = G(x), (1.1)

where G is a given multifunction, F is an unknown multifunction, and λ1,
λ2 are real constants. Here F 2 stands for the second iterate of F , that is
F 2(x) := ∪{F (y) : y ∈ F (x)}. We present a result on the existence and
uniqueness of solutions in some class of upper semicontinuous multifunc-
tions. As the upper semicontinuity for multifunctions is much weaker than
the continuity for functions, the method used for continuous solutions and
smooth solutions in [17], [18] has to be improved substantially.

2. A class of multifunctions

Let I = [a, b] be a given interval and cc(I) denote the family of all
nonempty convex compact subsets of I. This family endowed with the
Hausdorff distance defined by

h(A,B) = max{sup{d(a,B) : a ∈ A}, sup{d(b, A) : b ∈ B}}, (2.2)

where d(a,B) = inf{|a − b| : b ∈ B}, is a complete metric space (cf. e.g.
[6], Cor. 4.3.12).

A multifunction F : I → cc(I) is increasing (resp. strictly increasing) if
for every x, y ∈ I, x < y, we have maxF (x) ≤ minF (y) (resp. maxF (x) <

minF (y)) (cf. [1], Def. 3.5.1).
F : I → cc(I) is upper semicontinuous (abbreviated by USC) at a

point x0 ∈ I if for every open set V ⊂ R with F (x0) ⊂ V there exists a
neighbourhood Ux0 of x0 such that F (x) ⊂ V for every x ∈ Ux0 . F is USC
on I if it is USC at every point in I.

Let F(I) be the family of all multifunctions F : I → cc(I) and let
Φ(I) be its subfamily defined by

Φ(I) = {F ∈ F(I) : is USC, increasing, F (a) = {a}, F (b) = {b}}. (2.3)

We endow Φ(I) with the metric

D(F1, F2) = sup{h(F1(x), F2(x)) : x ∈ I}, ∀F1, F2 ∈ Φ(I). (2.4)
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Lemma 1. The metric space (Φ(I), D) is complete.

Proof. Let (Fn) be a Cauchy sequence in Φ(I). Then for every fixed
x ∈ I, (Fn(x)) is a Cauchy sequence in cc(I). Since (cc(I), h) is complete,
there exists limn→∞ Fn(x) =: F (x) ∈ cc(I). Then Fn → F in the sense of
the metric D. To see this, fix arbitrarily ε > 0. Since (Fn) is a Cauchy
sequence, there exists an n0 ∈ N such that D(Fn, Fk) ≤ ε for all n, k ≥
n0. Hence h(Fn(x), Fk(x)) ≤ ε, ∀x ∈ I. Letting k → ∞, we obtain
h(Fn(x), F (x)) ≤ ε, ∀x ∈ I, which means that D(Fn, F ) ≤ ε.

Now we will show that F ∈Φ(I). Of course F (a)= {a} and F (b) = {b}.
To prove that F is USC, fix an x0 ∈ I and take an open set V containing
F (x0). Since F (x0) is compact, there exists an ε > 0 such that F (x0) +
(−ε, ε) ⊂ V . Using the fact that Fn → F , we can find an n0 ∈ N such that
D(Fn0 , F ) < ε/3. Hence h(Fn0(x), F (x)) < ε/3, ∀x ∈ I. Consequently,

F (x) ⊂ Fn0(x) + (−ε/3, ε/3) and

Fn0(x0) ⊂ F (x0) + (−ε/3, ε/3).
(2.5)

Since Fn0 is USC at x0, there exists a neighbourhood Ux0 of x0 such that

Fn0(x) ⊂ Fn0(x0) + (−ε/3, ε/3) ,∀x ∈ Ux0 . (2.6)

Using (2.5) and (2.6) we get F (x) ⊂ F (x0) + (−ε, ε), ∀x ∈ Ux0 , which
proves that F is USC at x0.

Finally we will show that F is increasing. On the contrary, suppose
that there exist x1, x2 ∈ I , x1 < x2, such that supF (x1) > inf F (x2). Put
ε := sup F (x1) − inf F (x2). Since Fn(x1) → F (x1) and Fn(x2) → F (x2),
we can find an n0 ∈ N such that F (x1) ⊂ Fn0(x1) + (−ε/2, ε/2) and
F (x2) ⊂ Fn0(x2) + (−ε/2, ε/2). Hence

supF (x1) < supFn0(x1) + ε/2 and

inf F (x2) > inf Fn0(x2)− ε/2.
(2.7)

Consequently, using (2.7) and the definition of ε, we obtain

supFn0(x1) > supF (x1)− ε/2 = inf F (x2) + ε/2 > inf Fn0(x2),

which contradicts the fact that Fn0 is increasing. ¤
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Lemma 2. If F,G ∈ Φ(I) and F (x) ⊂ G(x) for all x ∈ I, then

F = G.

Proof. Suppose, contrary to our claim, that F (x0) 6= G(x0) for some
x0 ∈ I. Take a point y0 ∈ G(x0)\F (x0). Since F (x0) is a compact interval,
we have

y0 < minF (x0) or y0 > maxF (x0).

Assume that the first case occurs (the proof in the second case is anal-
ogous). Put ε := minF (x0) − y0. Since F is USC at x0, there exists a
neighbourhood Ux0 of x0 such that

F (x) ⊂ F (x0) + (−ε, ε), ∀x ∈ Ux0 . (2.8)

By the monotonicity of G we have

maxG(x) ≤ minG(x0) ≤ y0, ∀x < x0. (2.9)

Using (2.8), the definition of ε and (2.9), we obtain for every x ∈ Ux0 ,
x < x0

maxG(x) ≤ y0 = min F (x0)− ε < minF (x).

This contradicts the fact that F (x) ⊂ G(x) and completes the proof. ¤

3. The result

Theorem 1. Let G ∈ Φ(I), λ1 > λ2 ≥ 0 and λ1 + λ2 = 1. Then

equation (1.1) has a unique solution F ∈ Φ(I).

Proof. Define the mapping L : Φ(I) → F(I) by

LF (x) = λ1x + λ2F (x), ∀x ∈ I, (3.10)

where F ∈ Φ(I). Clearly, LF is USC and LF (a) = {a}, LF (b) = {b}.
Moreover, for any x2 > x1 in I, we have minF (x2)−maxF (x1) ≥ 0 since
F is increasing. Therefore

minLF (x2)−maxLF (x1) = λ1x2 − λ1x1 + λ2 minF (x2)− λ2 maxF (x1)
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≥ λ1(x2 − x1) > 0, (3.11)

for λ1 > 0 and λ2 ≥ 0. This means that LF is strictly increasing and,
consequently,

LF (x) ∩ LF (y) = ∅, ∀x 6= y. (3.12)

Thus, LF ∈ Φ(I). Furthermore,

LF (I) := ∪x∈ILF (x) = I (3.13)

because a, b ∈ LF (I) and LF (I) is connected as the image of a connected
set by an USC multifunction with connected values (cf. [4], Prop. 2.24).

By (3.12), the multifunction (LF )−1, defined by (LF )−1(y)= {x∈ I :
y ∈ LF (x)} for each y ∈ I, is single-valued. Moreover, it is also increasing
(cf. [1], p. 105) and USC (cf. [1], Prop. 1.4.8). Consequently, being single-
valued, it is continuous. Define the mapping T : Φ(I) → F(I) by

T F (x) = (LF )−1(G(x)), ∀F ∈ Φ(I), ∀x ∈ I. (3.14)

For every F ∈ Φ(I), T F has values in cc(I) as continuous images of
compact intervals. T F is also USC as a composition of USC multifunctions
(cf. e.g. [4], Prop. 2.56 or [3], Prop. 14.10), increasing and T F (a) = {a},
T F (b) = {b}. Therefore T F : Φ(I) → Φ(I). Moreover,

(LF )−1(y2)− (LF )−1(y1) ≤ 1
λ1

(y2 − y1), (3.15)

for any y2 > y1 in I. In fact, let xj = (LF )−1(yj) (where j = 1, 2) since
(LF )−1 is single-valued. Then yj ∈ LF (xj) and therefore minLF (x2) ≤ y2

and maxLF (x1) ≥ y1. From (3.11) we see that

(LF )−1(y2)−(LF )−1(y1) ≤ 1
λ1

(minLF (x2)−maxLF (x1)) ≤ 1
λ1

(y2−y1),

which proves (3.15). Thus, for F1, F2 ∈ Φ(I), we obtain by (3.15) and
(2.2) that

sup
y∈I

|(LF1)−1(y)− (LF2)−1(y)|
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= sup
y∈I

|(LF1)−1(y)− (LF1)−1(LF1((LF2)−1(y)))| (3.16)

≤ 1
λ1

sup
y∈I

d(y, LF1((LF2)−1(y))) ≤ 1
λ1

sup
x∈I

h(LF2(x), LF1(x)),

where we note that LF2(I) = I and that d(y, LF1((LF2)−1(y))) =
d(y, LF1(x)) ≤ h(LF2(x), LF1(x)) because x = (LF2)−1(y) is single-valued
and y ∈ LF2(x). For every z ∈ I and y` ∈ G(z),

d((LF1)−1(y`), (LF2)−1(G(z))) = inf
y∈G(z)

|(LF1)−1(y`)− (LF2)−1(y)|

≤ |(LF1)−1(y`)− (LF2)−1(y`)|+ inf
y∈G(z)

|(LF2)−1(y`)− (LF2)−1(y)|

≤ 1
λ1

sup
x∈I

h(LF2(x), LF1(x)) +
1
λ1

inf
y∈G(z)

|y` − y|

=
1
λ1

sup
x∈I

h(LF2(x), LF1(x)) (3.17)

by (3.15) and (3.16). Similarly we get

d((LF2)−1(y`), (LF1)−1(G(z))) ≤ 1
λ1

sup
x∈I

h(LF2(x), LF1(x)). (3.18)

By (3.17) and (3.18) we see that for every F1, F2 ∈ Φ(I),

D(T F1, T F2) = sup
z∈I

h((LF1)−1(G(z)), (LF2)−1(G(z)))

≤ 1
λ1

sup
x∈I

h(LF2(x), LF1(x)).
(3.19)

By the definition of L and the known properties of Hausdorff metric,
we obtain for every x ∈ I

h(LF1(x), LF2(x)) = h(λ1x + λ2F1(x), λ1x + λ2F2(x))

= λ2h(F1(x), F2(x)).
(3.20)

From (3.19) and (3.20) we obtain that

D(T F1, T F2) ≤ 1
λ1

sup
x∈I

h(LF1(x), LF2(x))

≤ λ2

λ1
sup
x∈I

h(F1(x), F2(x)) ≤ λ2

λ1
D(F1, F2),

(3.21)

which implies that T is a contraction because λ2 < λ1. Therefore, by the
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Banach’s fixed point principle, T has a unique fixed point F in Φ(I), i.e.

(LF )−1(G(x)) = F (x), ∀x ∈ I. (3.22)

Hence we obtain

λ1F (x) + λ2F
2(x) = (LF )(F (x)) = LF (LF )−1(G(x)) ⊃ G(x), ∀x ∈ I.

Since G, λ1F + λ2F
2 ∈ Φ(I), using Lemma 2 we get

λ1F (x) + λ2F
2(x) = G(x), ∀x ∈ I.

This completes the proof. ¤

For example, the multifunction

G(x) =





2x, x ∈
[
0,

1
4

]
,

1
2
, x ∈

(
1
4
,
1
2

)
,

[
1
2
,
3
4

]
, x =

1
2
,

1
2
x +

1
2
, x ∈

(
1
2
, 1

]

is in the class Φ(I) where I = [0, 1]. With this G in (1.1) our theorem can
be applied.

As another example, G(x) = 3
√

x, being a continuous single-valued
function on I = [−1, 1], is not differentiable at x = 0. Thus G does not
satisfy the Lipschitzian condition and Theorems in [17] and [18] do not
work for this G. However, G ∈ Φ(I). So our theorem can be applied.

Since we do not require the Lipschitz condition, in this paper some
techniques used in [17] and [18] cannot be employed to generalize our
result to equation (∗) (of the n-th order). Discussing the general n-th
iterative equation will be the subject of our next work.
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