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Class numbers of real cyclotomic fields

By STÉPHANE R. LOUBOUTIN (Marseille)

Abstract. We use simplest sextic fields to produce real cyclotomic fields of
class numbers greater than their conductors.

1. Introduction

In 1985, G. Cornell and L. C. Washington used simplest quartic fields
(associated with the quartic polynomials Pm(x) = x4−mx3−6x2+mx+1)
to prove that for infinitely many composite n the class number h+

n of the
maximal real subfield of the cyclotomic field of conductor n satisfies h+

n >

n3/2−ε. Due to the use of the Brauer–Siegel theorem, their lower bound is
ineffective. Here, by using simplest sextic fields (associated with the sextic
polynomials Pm(x) = x6−2mx5−5(m+3)x4−20x3+5mx2+2(m+3)x+1)
we prove that for at least À x1/2 of the not necessarily composite n ≤ x

the class numbers h+
n of the maximal real subfield of the cyclotomic field

of conductor n satisfies h+
n > n2−ε. Our lower bound being effective and

explicit, we can prove that if n = m2 + 3m + 9 ≡ 1 (mod 4) is square-free
(but not necessarily composite), then h+

n > n for m > 24 · 106 (see [Lou5]
and the references therein for even more convincing arguments according
to which Vandiver’s conjecture (i.e., that p never divides h+

p for p a prime)
is non trivial). More precisely, we will prove:
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Theorem 1. Assume that ∆m = m2 +3m+9 ≡ 1 (mod 4) is square-

free (m ≥ −1). Let tm denote its number of distinct prime factors. Then,

the class number of the maximal real subfield Q(ζ∆m)+ of the cyclotomic

field of conductor ∆m satisfies

hQ(ζ∆m )+ ≥
1
5e

∆2
m

3tm log6(4∆m)
. (1)

In particular, it holds that hQ(ζ∆m )+ > ∆m for m ≥ 24 · 106.

2. Simplest cubic fields

In [Bye], [Lou4], [LP], [Sha] and [Wa], various authors dealt with the
so called simplest cubic fields, the real cyclic cubic number fields associated
with the Q-irreducible cubic polynomials

Pm(x) = x3 −mx2 − (m + 3)x− 1

of discriminants

dm = ∆2
m where ∆m = m2 + 3m + 9.

Pm(x) has three distinct real roots φm, φ′m and φ′′m that satisfy φ′′m < −1 <

φ′m < 0 < φm, we have φ′m = σ(φm) = −1/(φm + 1), φ′′m = σ2(φm) =
−(φm + 1)/φm and Pm(x) defines a real cyclic cubic field Km = Q(φm)
and σ is a generator of its Galois group Gal(Km/Q). We have

φm =
1
3

(
2
√

∆m cos

(
1
3

arctan

( √
27

2m + 3

))
+ m

)

=
√

∆m − 1
2

+ O

(
1√
∆m

) (2)

(for the formula, see the proof of Lemma 7, for the asymptotic expansion
then use m = (

√
4∆m − 27 − 3)/2). Since −x3Pm(1/x) = P−m−3(x), we

may assume that m ≥ −1. Moreover, we will assume that the conductor of
Km is equal to ∆m, which amounts to asking that (i) m 6≡ 0 (mod 3) and
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∆m is squarefree, or (ii) m ≡ 0, 6 (mod 9) and ∆m/9 is squarefree (see
[Wa, Proposition 1 and Corollary]). In that situation, {−1, φm, σ(φm) =
−1/(φm+1)} generate the full group of algebraic units of Km, the regulator
of Km is

RegKm
= log2 φm − (log φm)(log(1 + φm)) + log2(1 + φm), (3)

which in using (2) yields

RegKm
=

1
4

log2 ∆m − log ∆m√
∆m

+ O

(
log ∆m

∆m

)

and proves that

RegKm
≤ 1

4
log2 ∆m (4)

for m large enough. By checking numerically that this bound is valid for
the remaining m, we obtain that (4) is valid for all m ≥ −1. Since the
regulators of these Km are small, they should have large class numbers (by
Siegel–Brauer’s theorem). In fact, we proved (see [Lou4, (12)]):

hKm ≥ ∆m

e log3 ∆m

(5)

(where e = exp(1) = 2.71828 . . . ). From now on, to further simplify, we
assume that ∆m = m2 +3m+9 is squarefree. To begin with, we note that
there are infinitely many simplest cubic (and sextic) fields:

Proposition 2. Set

c =
1
3

∏

p≡1 (mod 3)

(
1− 2

p2

)
= 0.311 . . .

Then, #{1 ≤ m ≤ x; m2 + 3m + 9 is squarefree} is asymptotic to 2cx,

and #{1 ≤ m ≤ x; m2 + 3m + 9 ≡ 1 (mod 4) is squarefree} is asymptotic

to cx.

3. Simplest sextic fields

In [Gra2] M. N. Gras dealt with the so called simplest sextic fields, the
real cyclic sextic number fields Km associated with the sextic polynomials

Pm(x) = x6 − 2mx5 − 5(m + 3)x4 − 20x3 + 5mx2 + 2(m + 3)x + 1
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(set m = (t− 6)/4 in [Gra2, (8)]) of discriminants

dm = 66∆5
m where ∆m = m2 + 3m + 9 ≥ 7

and roots θ1 = θ, θ2 = σ(θ) = (θ − 1)/(θ + 2), θ3 = σ2(θ) = −1/(θ + 1)
θ4 = σ3(θ) = −(θ + 2)/(2θ + 1), θ5 = σ4(θ) = −(θ + 1)/θ and θ6 =
σ5(θ) = −(2θ +1)/(θ− 1). Since x6Pm(1/x) = P−m−3(x), we may assume
that m ≥ −1. Since Pm(1) = −27 < 0, Pm(x) has at least one root
θ > 1 and, according to the previous formula, for this root θ we have
−2 < θ5 < −1 < θ4 < −1/2 < θ3 < 0 < θ2 < 1 < θ1. Hence, Pm(x) has
only one root ρm > 1. Moreover, it is easily seen that

ρm = 2
√

∆m − 1
2
− 19

8
√

∆m
+ O

(
1

∆m

)
. (6)

The real quadratic subfield of Km is k2 = Q(
√

dm ) = Q(
√

∆m ). Since
φ = 1/θ1+σ3

= −(2θ + 1)/(θ(θ + 2)) is a root of x3 −mx2 − (m + 3)x− 1,
the real cubic subfield of Km is k3 = Q(φ), and k3 is a simplest cubic field.
From now on, we assume that m ≥ −1 is such that ∆m = m2 +3m+9 ≡ 1
(mod 4) is squarefree (hence, we must have m ≡ 0, 1 (mod 4)). In that
case, the conductors of k2, k3 and Km are equal to ∆m.

3.1. Real cyclic sextic fields. Let K be a real cyclic sextic field. Let
fK , hK , UK and σ be its conductor, class number, group of algebraic
units and a generator of its Galois group. Let k2 and k3 denote its real
quadratic and real cyclic cubic subfields. Let fi, hki and Uki denote their
conductors, class numbers and unit groups. Moreover, let ε2 > 1 be the
fundamental unit of k2, and let ε3 and ε′3 be any algebraic units of k3 such
that {−1, ε3, ε

′
3} generate the full group of algebraic units of k3. Finally,

let U∗
K = {ε ∈ UK ; NK/k2

(ε) ∈ {±1} and NK/k3
(ε) ∈ {±1}} denote the

group of so-called relative units of K. If ±1 6= ε ∈ U∗
K , then εσ ∈ U∗

K and

Reg(ε2, ε3, ε
′
3, ε, ε

σ) = 12 Regk2
Regk3

Reg∗ε

where
Reg∗ε := (log |ε|)2 + (log |εσ|)2 − (log |ε|)(log |εσ|) > 0.

It is known that there exists some so-called generating relative unit ε∗ ∈ U∗
K

such that {−1, ε∗, εσ∗} generate U∗
K , and we set

Reg∗K := Reg∗ε∗ = (log |ε∗|)2 + (log |εσ
∗ |)2 − (log |ε∗|)(log |εσ

∗ |) > 0
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(which does not depend on the generating relative unit). With the previous
notation, we have:

Lemma 3. It holds that

Reg(ε2, ε3, ε
′
3, ε∗, ε

σ
∗ ) = 12 Regk2

Regk3
Reg∗K = QK RegK

for some QK ∈ {1, 3, 4, 12}.

Proof. Noticing (i) that NK/k2
(NK/k3

(η)) = NK/k3
(NK/k2

(η)) =
NK/Q(η) = ±1 for η ∈ UK , (ii) that NK/k2

(η3) = Nk3/Q(η3) = ±1 and
NK/k3

(η3) = η2
3 for η3 ∈ Uk3 , and (iii) that NK/k3

(η2) = Nk2/Q(η2) = ±1
and NK/k2

(η2) = η3
2 for η3 ∈ Uk2 , we obtain that the kernel of

UK

NK/k2
×NK/k3−−−−−−−−−→ Uk2 × Uk3 −→ Uk2/U3

k2
× Uk3/〈−1,U2

k3
〉

is equal to Uk2Uk3U
∗
K . Hence, the index QK := (UK : Uk2Uk3U

∗
K) di-

vides 12. ¤

Since fk2 and fk3 divide fK and dK = fk2f
2
k3

f2
K (by the conductor-

discriminant formula), we cannot have dK = d3
k2

(= f3
k2

) nor dK = d2
k3

(= f4
k3

). Hence, K/k3 and K/k2 are ramified, and hk2 and hk3 divide
hK . In fact, we have the better following result (see [CW, Lemma 1]):
the product hk2hk3 divides hK . We now give explicit lower bounds for the
ratio hK/hk2 (see Theorem 5).

Lemma 4.

1. (See [Lou3, Lemma 6].) Let K be a totally real sextic field. Assume

that dK ≥ 8 · 1020. Then, ζK(1− (2/ log dK)) ≤ 0 implies

Ress=1(ζK(s)) ≥ 2
e log dK

, (7)

and 1− (2/ log dK) ≤ β < 1 and ζK(β) = 0 imply

Ress=1(ζK(s)) ≥ 1− β

6e
. (8)
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2. (See [Lou2, Corollaire 5A(a) and Corollaire 7B].) Let k2 be a real

quadratic field. Set κ0 = 2 + γ − log(4π) = 0.046 . . . , where γ =
0.577 . . . denotes Euler’s constant. Then,

Ress=1(ζk2(s)) ≤
1
2
(log fk2 + κ0), (9)

and 1
2 ≤ β < 1 and ζk2(β) = 0 imply

Ress=1(ζk2(s)) ≤
1− β

8
log2 fk2 . (10)

Theorem 5. Set κ0 = 2 + γ − log(4π) = 0.04619 . . . Let K be a

real cyclic sextic field of conductor fK and discriminant dK = fk2f
2
k3

f2
K ≥

8 · 1020. Then,

hK/hk2 ≥
QKfk3fK

48e Regk3
Reg∗K(log dK)(log fk2 + κ0)

. (11)

Proof. We follow the proofs of [Lou1, Theorem 5] and [Lou3, The-
orem 7], to which we refer the reader. According to the the conductor-
discriminant and analytic class number formulae (see [Lan, Theorem 2
page 259]), it holds that

hK/hk2 =
fKfk3

16RegK /Regk2

Ress=1(ζK(s))
Ress=1(ζk2(s))

=
QKfKfk3

192Regk3
Reg∗K

Ress=1(ζK(s))
Ress=1(ζk2(s))

.

For s > 0 real we have

(ζK/ζk2)(s) = |L(s, χk3)|2|L(s, χK)|2 ≥ 0.

Now, there are two cases to consider.
First, it holds that ζk2(1−2/ log dK) ≤ 0. Then ζK(1−2/ log dK) ≤ 0,

and (7) and (9) yield

Ress=1(ζK(s))
Ress=1(ζk2(s))

≥ 4
e(log dK)(log fk2 + κ0)

. (12)
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Second, it holds that ζk2(1 − 2/ log dK) > 0. Then, there exists β in
the range 1 − (2/ log dK) ≤ β < 0 such that ζk2(β) = 0, which implies
ζK(β) = 0, and (8) and (10)

Ress=1(ζK(s))
Ress=1(ζk2(s)

≥ 8
6e log2 fk2

≥ 4
3e(log fK)(log fk2 + κ0)

. (13)

Since the right hand side of (12) is always less than or equal to the right
hand side of (13) (for fk2fk3 ≥ lcm(fk2 , fk3) = fK yields dK = fk2f

2
k3

f2
K ≥

f3
K), the lower bound (12) is always valid and the desired result follows. ¤

3.2. Simplest sextic fields.

Lemma 6 (See [Gra2, Theorem 2]). Assume that m > 1 is such that

∆m = m2 + 3m + 9 is squarefree (hence, m ≥ 4 and ∆m ≥ 37), and set

a = 4
√

∆m. Then,

ε∗ := ρ1−σ3

m = −ρm(2ρm + 1)/(ρm + 2)

is a generating relative unit of the simplest sextic field Km,

ε∗ = −
√

4a(a− 9)
9

cos

(
1
3

arctan

(√
27(a2 − 108)

2a2 − 27a + 54

))
+ 1− a

3
,

εσ
∗ =

√
4a(a + 9)

9
cos

(
1
3

arctan

(√
27(a2 − 108)

2a2 + 27a + 54

)
+

π

3

)
+ 1 +

a

3
,

and

Reg∗Km
= Reg∗ε∗ = log2 a− 30

log a

a2
+ O

(
log a

a3

)

is asymptotic to 1
4 log2 ∆m and satisfies Reg∗Km

≤ 1
4 log2(16∆m). There-

fore, by (3), it holds that

Regk3
Reg∗Km

≤ 1
16

log4(4∆m). (14)

Proof. Since ε∗ and εσ∗ are roots of (x − 1)6 − 16∆m(x2 + x)2 (see
[Gra2, Section 4]) and since ρm > 1 yields ε∗ = −ρm(2ρm + 1)/(ρm + 2) <

−1 < εσ∗ = −(ρm(ρm − 1))/((ρm + 1)(ρm + 2)) < 0, it follows that ε∗ is a
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root of (x − 1)3 + a(x2 + x) whereas εσ∗ is a root of (x − 1)3 − a(x2 + x),
both of discriminant a2(a2 − 108). Now, in the range a >

√
108 the roots

of these cubic polynomials depend continuously on a, and ρm = 1
2a −

1
2 − 19

2 a−1 + O(a−2) (by (6)) yields ε∗ = −a + 4 + 7a−1 + O(a−2) and
εσ∗ = −1 + 8a−1 + O(a−2). Hence, the following lemma provides us with
the desired result. ¤

Lemma 7. Assume that a >
√

108 and a 6= (27 +
√

297 )/4. Then,

the three real roots of the cubic polynomial (x− 1)3 + a(x2 + x) ∈ R[x] of

discriminant a2(a2 − 108) > 0 are

ρ = −
√

4a(a− 9)
9

cos

(
1
3

arctan

( √
27(a2 − 108)

|2a2 − 27a + 54|

)
+

2kπ

3

)
+ 1− a

3

=





−a + 4 + 7a−1 + O(a−2) for k = 0

a−1 + O(a−2) for k = 1

−1− 8a−1 + O(a−2) for k = 2,

and the three real roots of the cubic polynomial (x−1)3−a(x2 +x) ∈ R[x]
of discriminant a2(a2 − 108) > 0 are

ρ′ =

√
4a(a + 9)

9
cos

(
1
3

arctan

(√
27(a2 − 108)

2a2 + 27a + 54

)
+

2kπ

3

)
+ 1 +

a

3

=





a + 4− 7a−1 + O(a−2) for k = 0

v − 1 + 8a−1 + O(a−2) for k = 1

−a−1 + O(a−2) for k = 2.

Proof. The roots of a cubic polynomial x3 − px− q, with p ≥ 0 and
q 6= 0 and of discriminant d = 4p3 − 27q2 > 0, are

2 sgn (q)
√

p

3
cos

(
1
3

arctan

(√
d

27q2

)
+

2kπ

3

)
, 0 ≤ k ≤ 2,

where sgn (q) = +1 for q > 0 and sgn(q) = −1 for q < 0. ¤
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Theorem 8. Assume that ∆m = m2 +3m+9 ≡ 1 (mod 4) is square-

free (m ≥ −1). Let hk2 denote the class number of the real quadratic

subfield k2 of the simplest sextic field Km. Then,

hKm/hk2 ≥
∆2

m

15e log6(4∆m)
. (15)

In particular, for m ≥ 105 it holds that hKm > ∆m.

Proof. If ∆m ≤ 2 · 104 then

hKm/hk2 ≥ hk3 ≥
∆m

e log3 ∆m

≥ ∆2
m

15e log6(4∆m)
,

by (5), and (15) holds true (recall that the cubic subfield k3 of the simplest
sextic field Km is the simplest cubic field of conductor ∆m and that the
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product hk2hk3 divides hKm). If ∆m ≥ 2 · 104 then dKm = ∆5
m > 8 · 1020

and (15) holds true, by (11) and (14). ¤

4. Proof of Theorem 1

For proving (1), we use the following Lemma and then apply (15):

Lemma 9. Assume that ∆m = m2+3m+9 ≡ 1 (mod 4) is squarefree

(m ≥ −1) and let the notation be as in Theorem 8. Then, hQ(ζ∆m )+ ≥
31−tmhKm/hk2 .

Proof. We argue as in [CW, page 269]. Let Hm and G+
m denote

the Hilbert class field and the maximal real subfield of the narrow genus
field of the simplest sextic field Km of conductor ∆m. Hence, G+

m =
Hm ∩ Q(ζ∆m)+. Let G3 denote the genus field of k3 and let G+

2 denote
the maximal real subfield of the narrow genus field of k2. Then, G3 is real,
(G3 : k3) = 3tm−1 (for the conductor of k3 is equal to ∆m), G+

m = G3G
+
2

and
(G+

m : Km) = (G3 : k3)(G+
2 : k2) = 3tm−1(G+

2 : k2)

divides 3tm−1h2.
Now, since

(HmQ(ζ∆m)+ : Q(ζ∆m)+) = (Hm : Hm ∩Q(ζ∆m)+)

= (Hm : G+
m)

=
(Hm : Km)
(G+

m : Km)
=

hKm

(G+
m : Km)

≥ hKm

3tm−1h2

divides the class number of Q(ζ∆m)+, the proof of the lemma is complete.
¤

Let us now prove the last assertion of Theorem 1. If tm ≥ 10 then
∆m ≥ Ptm and

1
5e

∆m

3tm log6(4∆m)
≥ 1

5e

Ptm

3tm log6(4Ptm)
:= utm ≥ u10 > 1,

where Pt denotes the product of the least t primes p ≡ 1 (mod 6) (for p

divides ∆m implies p ≡ 1 (mod 6) and x/ log6(4x) increases with x for
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x ≥ e6/4 and ut increases with t for t ≥ 3). Finally, if tm ≤ 9 and
m ≥ 24 · 106, then

1
5e

∆m

3tm log6(4∆m)
≥ 1

5e

∆m

39 log6(4∆m)
> 1,

which completes the proof of the last assertion of Theorem 1.

Corollary 10. Let c = 0.311 . . . be as in Proposition 2. Let ε > 0 be

given. For at least (c + o(1))x1/2 positive odd squarefree integers n ≤ x

(where this o(1) is effective) it holds that the class number h+
n of the

maximal real subfield Q(ζn)+ of the cyclotomic field Q(ζn) of conductor

n satisfies h+
n > n2−ε.

Proof. Let n range over the squarefree integers of the form n =
∆m := m2 + 3m + 9 ≡ 1 (mod 4), m ≥ −1. The number of such n ≤ x

is asymptotic to c
√

x, by Proposition 2. The well known upper bound
t = ω(n) ¿ (log n)/ log log n implies 3n = no(1), and we use (1) to obtain
the desired result. ¤

This result is better than the non-effective one given in [CW, Theo-
rem 2] according to which h+

n > n3/2−ε for infinitely many composite n.
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