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Local set-valued solutions of the Jensen
and Pexider functional equations

By WILHELMINA SMAJDOR (Katowice)

Abstract. Local solutions of the Jensen and Pexider functional equations for set-
valued functions are given. The obtained results are applied to find a form of the locally
Lipschitzian Nemytskii operator.

1. The Jensen functional equation

Z. F1FER in [2] (cf. also [5]) has proved that every set-valued Jensen
function f defined in the interval [0, o0) with compact non-empty values in
a normed space Y is of the form

(1) f(z) = A(x)+ B, x€0,00),

where A is an additive set-valued function in [0, c0) with compact convex
non-empty values in Y and B is a compact convex non-empty subset of
Y. The main purpose of this paper is to give a local version of this result.

Example. The set-valued Jensen function given by the formula
f(z)=10,1—x] for x € [0,1]
cannot be represented in the form (1).

Let (Y, || -||) be a normed space. We denote by ¢(Y') the family of all
compact non-empty subsets of Y and cc(Y') the family of all convex sets
from ¢(Y’). The symbol R stands for the set of all reals, and N for the set
of positive integers.

Let I = [0,a) C R be an interval. A set-valued function F : I — 2Y
is said to be a Jensen function if

i (a;;—y) _ %[F(a:) + F(y)]
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for z,y € I.

It is easily seen that the values of a Jensen function F' : I — ¢(Y)
belong to cc(Y).

We shall apply the following

Lemma 1. (cf. [7]). Let A, B and C # 0 be subsets of a topological
Hausdorff vector space such that A+C C B+C'. If B is convex and closed
and C' is bounded, then A C B.

The Hausdorff metric in the set of all closed bounded and non-empty
subsets of a normed space Y will be denoted by d. The following lemma
collects the main properties of d:

Lemma 2. (cf. [7]).
(a) d(A+C,B+C)=d(A,B);
(b) d(MA, AB) = |\|d(A, B);
(¢) d(A+C, B+ D)<d(A,B)+d(C,D)
for A, B,C, D from cc(Y') and for any real number \.

The main result of this paper is the following

Theorem 1. If Y is a normed space and F'(0) is convex, then F' : I —
c(Y)) is a Jensen function if and only if there exist sets A, B € cc(Y') and
an additive function a : R — Y such that

F(z)+ 2B =F(0)+xA+a(z) forall zel.

Proor. The sufficiency is easily verifiable.

Necessity. Let F': I — ¢(Y) be a Jensen set-valued function. There
exist an additive function a : R — Y and a convex continuous (with respect
to the Hausdorff metric d in cc(Y')) set-valued function G : (0,a) — cc(Y)
such that

F(z)=a(x)+ G(z) forall =z € (0,a)

(cf. K. NIKODEM [4]). Put G(0) := F(0). We notice that G is the Jensen
function in /.
Let ”~” denote Radstrém’s equivalence relation in cc(Y) defined by

(A,B)~ (C,D) ifand only if A+ D=B+C

(cf. [7]). For any pair (A, B) denote by [A, B] the equivalence class con-
taining this pair. Define the addition of two equivalence classes by

[A,B]+[C,D] =[A+C,B + D]
and multiplication with a A > 0 by
AMA, B] = [MA, \B].
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The metric § on the space of all equivalence classes is given by
5([A, B, [C, D)) = d(A+ D, B+ C).

The formula

g(z) = [G(x), G(0)]

introduces a function of the type g : I — (cc(Y) x cc(Y))/~. We shall
show that g is additive. Since

29 (3) = e (3) 2e0) =
= [G(x) + G(0),G(0) + G(0)] = [G(x), G(0)] = g(a)

for all x € I, thus we get

9(x +y) =29 (m;ry) _ 2[0 (w;,) ,G(O)} —9 [M,G(O) _

= [G(2) + G(y),2G(0)] = [G(x), G(0)] + [G(y), G(0)] = g(x) + g(y)
for all x,y € I such that x +y € I. Moreover

6(9(x),9(y)) = 0(|G(2), G(0)], [G(y),G(0)]) =
= d(G(z) + G(0), G(0) + G(y)) = d(G(z),G(y))
for x,y € I. Therefore for every = € (0,a) we have
Lim d(g(x), g(y)) = lim d(G(2), G(y)) = 0.
Thus ¢ is continuous in (0, a) and it is an additive function. Consequently
there is an equivalence pair [A, B| for which
g(z) =z[A,B], ze€l.
This equality can be rewritten in the following form

[G(x),G(0)] = [zA,zB], z¢€l,

b

whence by the definition of the relation ”~” we have

G(x)+x2B=G(0)+zA, ze€l.
Adding a(z) to both sides of the above equality we obtain
F(z)+2zB=F(0)+zA+a(z), xz€l

and the proof is complete.
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Remark 1. Professor K. NIKODEM pointed out that the above theorem
can be extended to set-valued functions defined in arbitrary intervals [a, b).

Remark 2. Theorem 1 generalizes FIFER’s result (see Theorem 1 in
[2]). In fact, let Y be a Banach space and let I = [0,00). Then

F(z)+ 2B =F(0)+zA+ a(x),
where A, B € cc(Y) and a : R — Y is an additive function, hence
F(2") +2"B = F(0) + 2"A + 2"a(1), n€N.
Thus
1 n 1

Now we observe that the sequence of sets with terms Q%F (2"), neN
fulfils the Cauchy condition. Indeed,

i GeF@), goren) =d (G ren v B goren +B) =

=d (%F(o) +A+a(1), 2im (0) +A+a(1)) -
—d (2%17(0), QLmF(O)) -

for n,m € N, where || A|| = sup{||z|| : = € A}. Consequently this sequence
converges to a set C' € cc(Y) (see [1]).
By (2) we get

1 1
— — | IlF(0
- Qm\n of

C+B=A+a(l)

and F(z)+ 2B = F(0) + z[C + B — a(1)] + a(z).

Using Radstrém’s Lemma 1 we have

F(x) = F(0) 4+ a(x) + 2(C — a(1)).

2. The Pexider functional equation

In the paper [6] K. NIKODEM characterized set-valued solutions of the
Pexider functional equation

(3) Fx+y)=G(x)+ H(y)

with three unknown functions F, G and H. In this section we shall establish
a form of a local set-valued solution of equation (3).
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Theorem 2. If Y is a normed space, then set-valued functions F,
G, H : I — cc(Y) fulfil equation (3) for z,y € I such that x +y € I if
and only if there exist sets A, B,K,L € cc(Y') and an additive function
a:R —Y such that

Fx)+2B=K+ L+ xA+ a(z),
G(z)+ 2B =K +zA + a(x),
H(x)+xzB =L+ xA+ a(x)

forx € 1.

Proor. The sufficiency is easily seen. To prove necessity take z,y € I.
We have

o P(552) - e5) o ()
> P(552) e @) ()

o (5) oG ro(t)ru(y) ()

Putting y = x in (4) and x = y in (5) we get

(7) F(z) + F(y) :G(g) +G<%) +H(g) +H<%>

The comparison of equalities (6) and (7) gives

i (a;—;y) _ %[F(x) + F(y)]

for x,y € I. In virtue of Theorem 1 there are sets A, B € cc(Y') and an
additive function a : R — Y such that

F(z)+2x2B=F(0)+zA+a(z), ze€l.

Putting = + y instead of z in the above equality and applying equation (3)
we obtain

Gx)+ H(y)+ (x+y)B=G(0)+ H(0) + zA + yA+ a(x) + a(y)
for all x,y € I for which x +y € I. Hence for y = 0 we have
G(x)+2B=G(0)+zA+a(zx), zel.

Similarly
H(y)+yB=H(0)+yA+aly), yel.

Putting K := G(0), L := H(0) and applying the equality F'(0) = G(0) +
H(0) we get the assertion of the theorem.
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3. Application

Let (X,]|-]), (Y,]-]) be normed spaces and let U C X be a convex set
with zero. Denote by lip(U, I) the set of all functions ¢ : U — I such that
Sup M < OO,

otz | T
where supremum is taken over all , T € U. In the set lip(U, I) we introduce
the metric defined by the formula

D(¢1,¢2) := |¢1(0) — ¢2(0)] + sup |61(2) — d2(2) — d1(T) + d2(T)]

Let Lip(U,Y’) denote the set
¢:U—>cc(Y):supw<oo :
THT |z — |
In this set the metric may be defined by

p(¢1,$2) == d (61(0), p2(0)) + sup d(¢1(z) + $2(T), p1(T) + qﬁQ(x)).

©4T |z — |

Every set-valued function h : U x R — cc(Y) generates the Nemytskii
operator N

(8) N(9)(z) = h(z,¢(z)), z€U
mapping the space of all functions ¢ : U — R with values in the space of
all functions ¢ : U — cc(Y).

In the paper [8] it has been proved that the Nemytskii operator N

mapping the space lip(U, C) into Lip(U, Z), where C' is a convex cone with
zero in Y and Z is a normed space, and globally Lipschitzian must be of

the form
N(¢)(z) = A(z, ¢()) + B(z),

where A :=U x C — cc(Z), A(x,-) is an additive set-valued function and
B € Lip(U, Z). In this part of the paper we are going to give the following
analogue of MATKOWSKI’s theorem (cf. [3]) for set-valued functions:

Theorem 3. Let (X,|-|), (Y,|-|) be normed spaces and U C X be
a convex set such that 0 € U. Assume that h : U x I — cc(Y) and the
Nemytskii operator N' generated by h satisfies the two conditions
(i) N :lip(U,I) — Lip(U,Y);
(ii) there is ¢ > 0 such that

p[N(gbl)?N(ng)] S CD(¢17¢2)7 ¢17¢2 € hp(U7 I)7
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then there exist set-valued functions A, B : U — cc(Y') for which
h(z,y) + yB(z) = yA(z) + h(z,0), zeU, yel.
Moreover there exists a constant | > 0 such that
(9)  d[A(x1) + B(z2), A(z2) + B(x1)] <l|lxy — z2|, z1,22 € U.
Proor. Fix y € [0,a). The constant function ¢(z) =y, x € U
belongs to lip(U, I). It follows by (i) that
h(-,y) € Lip(U,Y), ye€l.

In particular the function h is continuous with respect to the first variable
for every fixed y belongig to I.
Using the definition of p and (ii) we have

d[h(tv ¢1 (t)) + h(fv ¢2 (z))7 h(fv le(z)) + h(ta ¢2 (t))]
|t — ]

(10) < cD(¢1, ¢2)

for all ¢1, ¢ € Lip(U,Y), t,t € U, t #
Let us take x € U, z # 0 and

91792@17?2 € I and define

t.
T € U such that |Z| < |z|. Fix

(11) Gi(t) = { LT (lt] — ) + 7 [ < [t < ||
Yis t] = ||

for t € U and i = 1,2. Tt is evident that ¢; € lip(U, I). Moreover

_ ly1 — y2 — Uy + Ts
D(¢1, ¢2) = [, — Y| + 22,

Putting in (10) ¢; and ¢ as given by (11), t =z, t = T we get
d[h(x7 yl) + h(fﬂ y2)7 h(fv yl) + h(ZL‘, y2)]

<
(12) |z — 7| -
_ Y1 — Y2 — Ty + 7o
SC ‘yl_y2‘+ ]:c|—]f1| 2
Obviously % > 1. Now for T = Ax, where 0 < A < 1, we have
-7 |z — Az 1

ol = [z o[ = Azl
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whence lim inf % = 1. Taking the liminf as T — z in (12) and using
r—x

the continuity of h(-,y) we obtain

(13) d(h(x,yl) + h($>y2)7 h(x,yl) + h’(xay2)) < c’yl — Y2 — yl +y2|

for all x # 0, z € U and y1,¥2,7;,Yy € I. The inequality (13) holds
also for x = 0 on account of the continuity of A(-,y). Putting in (13)

Y1 =Ty = y’LT“’, Y2 =y, Y, = w, where y,w € I, we get

d <2h (a:, w%) Jh(z,y) + h(x, w)) =0,
whence

(14) h (x, Y —g w) = % [h(z,y) + h(z,w)]

for all x € U, y,w € I. In virtue of Theorem 1 there exist two set-valued
functions A : U x [0,4+00) — cc(Y), B : U — cc(Y) such that

(15) h(z,y) +yB(x) = h(z,0) + A(z,y), €U, yel
and A(x,-) is additive. Putting 3, =7, = 0 in (13) we have

(16) d(h(z,y1), h(z,y2)) = d(h(z,y1) + h(z,0), h(x,y2) + h(z,0)) <
< clyr — 2|

for all x € U and y1,y2 € [0,a). The inequality (16) implies the continuity
of h(z,-), x € U and by (15) the continuity of A(x,-). Thus there exists
A(x) € ce(Y) for which A(x,y) = yA(z), x € U, y € [0,+00). The first
part of our theorem is proved. Now for x1,25 € U and y € I we get
d(yB(z1) + yA(z2), yB(x2) + yA(z1)) =
= d(yB(x1) + h(z1,y) + yA(z2) + h(z2,y), yB(x2) + h(z2,y)+
+yA(zr) + h(z1,y)) =
= d(yA(z1) + h(z1,0) + yA(z2) + h(z2,9), yA(z2) + h(z2,0)+
+yA(zy) + h(z1,9)) =
= d(h(21,0) + h(22,y), h(x2,0) + h(21,y)) <
< d(h(l’l,O), h(l’g,O)) + d<h(x27y)7 h(’rhy))
Since h(-,y) € Lip(U,Y) for y € I we can find a constant {(y) > 0 such

that

AB(e0) + Alz), Blaz) + Alw) < Loy — ).
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Taking [ := inf {% cy€el } we get the inequality (9) which ends the

proof.
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