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Local set-valued solutions of the Jensen
and Pexider functional equations

By WILHELMINA SMAJDOR (Katowice)

Abstract. Local solutions of the Jensen and Pexider functional equations for set-
valued functions are given. The obtained results are applied to find a form of the locally
Lipschitzian Nemytskii operator.

1. The Jensen functional equation

Z. Fifer in [2] (cf. also [5]) has proved that every set-valued Jensen
function f defined in the interval [0,∞) with compact non-empty values in
a normed space Y is of the form
(1) f(x) = A(x) + B, x ∈ [0,∞),

where A is an additive set-valued function in [0,∞) with compact convex
non-empty values in Y and B is a compact convex non-empty subset of
Y . The main purpose of this paper is to give a local version of this result.

Example. The set-valued Jensen function given by the formula
f(x) = [0, 1− x] for x ∈ [0, 1]

cannot be represented in the form (1).
Let (Y, ‖ · ‖) be a normed space. We denote by c(Y ) the family of all

compact non-empty subsets of Y and cc(Y ) the family of all convex sets
from c(Y ). The symbol R stands for the set of all reals, and N for the set
of positive integers.

Let I = [0, a) ⊂ R be an interval. A set-valued function F : I → 2Y

is said to be a Jensen function if

F

(
x + y

2

)
=

1
2

[F (x) + F (y)]
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for x, y ∈ I.
It is easily seen that the values of a Jensen function F : I → c(Y )

belong to cc(Y ).
We shall apply the following

Lemma 1. (cf. [7]). Let A, B and C 6= 0 be subsets of a topological
Hausdorff vector space such that A+C ⊂ B+C. If B is convex and closed
and C is bounded, then A ⊂ B.

The Hausdorff metric in the set of all closed bounded and non-empty
subsets of a normed space Y will be denoted by d. The following lemma
collects the main properties of d:

Lemma 2. (cf. [7]).
(a) d(A + C, B + C) = d(A,B);
(b) d(λA, λB) = |λ|d(A,B);
(c) d(A + C, B + D) ≤ d(A, B) + d(C, D)

for A, B,C, D from cc(Y ) and for any real number λ.

The main result of this paper is the following

Theorem 1. If Y is a normed space and F (0) is convex, then F : I →
c(Y ) is a Jensen function if and only if there exist sets A,B ∈ cc(Y ) and
an additive function a : R→ Y such that

F (x) + xB = F (0) + xA + a(x) for all x ∈ I.

Proof. The sufficiency is easily verifiable.
Necessity. Let F : I → c(Y ) be a Jensen set-valued function. There

exist an additive function a : R→ Y and a convex continuous (with respect
to the Hausdorff metric d in cc(Y )) set-valued function G : (0, a) → cc(Y )
such that

F (x) = a(x) + G(x) for all x ∈ (0, a)

(cf. K. Nikodem [4]). Put G(0) := F (0). We notice that G is the Jensen
function in I.

Let ”≈” denote R̊adström’s equivalence relation in cc(Y ) defined by

(A,B) ≈ (C, D) if and only if A + D = B + C

(cf. [7]). For any pair (A, B) denote by [A,B] the equivalence class con-
taining this pair. Define the addition of two equivalence classes by

[A,B] + [C,D] = [A + C, B + D]

and multiplication with a λ ≥ 0 by

λ[A,B] = [λA, λB].
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The metric δ on the space of all equivalence classes is given by

δ([A,B], [C,D]) = d(A + D, B + C).

The formula
g(x) = [G(x), G(0)]

introduces a function of the type g : I → (cc(Y ) × cc(Y ))/≈. We shall
show that g is additive. Since

2g
(x

2

)
=

[
2G

(x

2

)
, 2G(0)

]
=

= [G(x) + G(0), G(0) + G(0)] = [G(x), G(0)] = g(x)

for all x ∈ I, thus we get

g(x + y)=2g

(
x + y

2

)
= 2

[
G

(
x + y

2

)
, G(0)

]
=2

[
G(x) + G(y)

2
, G(0)

]
=

= [G(x) + G(y), 2G(0)] = [G(x), G(0)] + [G(y), G(0)] = g(x) + g(y)

for all x, y ∈ I such that x + y ∈ I. Moreover

δ(g(x), g(y)) = δ([G(x), G(0)], [G(y), G(0)]) =

= d(G(x) + G(0), G(0) + G(y)) = d(G(x), G(y))

for x, y ∈ I. Therefore for every x ∈ (0, a) we have

lim
y→x

δ(g(x), g(y)) = lim
y→x

d(G(x), G(y)) = 0.

Thus g is continuous in (0, a) and it is an additive function. Consequently
there is an equivalence pair [A,B] for which

g(x) = x[A,B], x ∈ I.

This equality can be rewritten in the following form

[G(x), G(0)] = [xA, xB], x ∈ I,

whence by the definition of the relation ”≈” we have

G(x) + xB = G(0) + xA, x ∈ I.

Adding a(x) to both sides of the above equality we obtain

F (x) + xB = F (0) + xA + a(x), x ∈ I

and the proof is complete.
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Remark 1. Professor K. Nikodem pointed out that the above theorem
can be extended to set-valued functions defined in arbitrary intervals [a, b).

Remark 2. Theorem 1 generalizes Fifer’s result (see Theorem 1 in
[2]). In fact, let Y be a Banach space and let I = [0,∞). Then

F (x) + xB = F (0) + xA + a(x),

where A,B ∈ cc(Y ) and a : R→ Y is an additive function, hence

F (2n) + 2nB = F (0) + 2nA + 2na(1), n ∈ N.

Thus

(2)
1
2n

F (2n) + B =
1
2n

F (0) + A + a(1), n ∈ N.

Now we observe that the sequence of sets with terms 1
2n F (2n), n ∈ N

fulfils the Cauchy condition. Indeed,

d

(
1
2n

F (2n),
1

2m
F (2m)

)
= d

(
1
2n

F (2n) + B,
1

2m
F (2m) + B

)
=

= d

(
1
2n

F (0) + A + a(1),
1

2m
F (0) + A + a(1)

)
=

= d

(
1
2n

F (0),
1

2m
F (0)

)
=

∣∣∣∣
1
2n
− 1

2m

∣∣∣∣ ‖F (0)‖

for n,m ∈ N, where ‖A‖ = sup{‖x‖ : x ∈ A}. Consequently this sequence
converges to a set C ∈ cc(Y ) (see [1]).
By (2) we get

C + B = A + a(1)

and
F (x) + xB = F (0) + x[C + B − a(1)] + a(x).

Using R̊adström’s Lemma 1 we have

F (x) = F (0) + a(x) + x(C − a(1)).

2. The Pexider functional equation

In the paper [6] K. Nikodem characterized set-valued solutions of the
Pexider functional equation

(3) F (x + y) = G(x) + H(y)

with three unknown functions F, G and H. In this section we shall establish
a form of a local set-valued solution of equation (3).
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Theorem 2. If Y is a normed space, then set-valued functions F ,
G, H : I → cc(Y ) fulfil equation (3) for x, y ∈ I such that x + y ∈ I if
and only if there exist sets A,B, K, L ∈ cc(Y ) and an additive function
a : R→ Y such that

F (x) + xB = K + L + xA + a(x),

G(x) + xB = K + xA + a(x),

H(x) + xB = L + xA + a(x)

for x ∈ I.

Proof. The sufficiency is easily seen. To prove necessity take x, y ∈ I.
We have

(4) F

(
x + y

2

)
= G

(x

2

)
+ H

(y

2

)

and

(5) F

(
x + y

2

)
= G

(y

2

)
+ H

(x

2

)
.

Hence

(6) 2F

(
x + y

2

)
= G

(x

2

)
+ G

(y

2

)
+ H

(x

2

)
+ H

(y

2

)
.

Putting y = x in (4) and x = y in (5) we get

(7) F (x) + F (y) = G
(x

2

)
+ G

(y

2

)
+ H

(x

2

)
+ H

(y

2

)
.

The comparison of equalities (6) and (7) gives

F

(
x + y

2

)
=

1
2

[F (x) + F (y)]

for x, y ∈ I. In virtue of Theorem 1 there are sets A,B ∈ cc(Y ) and an
additive function a : R→ Y such that

F (x) + xB = F (0) + xA + a(x), x ∈ I.

Putting x+ y instead of x in the above equality and applying equation (3)
we obtain

G(x) + H(y) + (x + y)B = G(0) + H(0) + xA + yA + a(x) + a(y)
for all x, y ∈ I for which x + y ∈ I. Hence for y = 0 we have

G(x) + xB = G(0) + xA + a(x), x ∈ I.

Similarly
H(y) + yB = H(0) + yA + a(y), y ∈ I.

Putting K := G(0), L := H(0) and applying the equality F (0) = G(0) +
H(0) we get the assertion of the theorem.
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3. Application

Let (X, | · |), (Y, | · |) be normed spaces and let U ⊂ X be a convex set
with zero. Denote by lip(U, I) the set of all functions φ : U → I such that

sup
x 6=x

|φ(x)− φ(x)|
|x− x| < ∞,

where supremum is taken over all x, x ∈ U . In the set lip(U, I) we introduce
the metric defined by the formula

D(φ1, φ2) := |φ1(0)− φ2(0)|+ sup
x 6=x

|φ1(x)− φ2(x)− φ1(x) + φ2(x)|
|x− x| .

Let Lip(U, Y ) denote the set
{

φ : U → cc(Y ) : sup
x6=x

d(φ(x), φ(x))
|x− x| < ∞

}
.

In this set the metric may be defined by

ρ(φ1, φ2) := d (φ1(0), φ2(0)) + sup
x6=x

d(φ1(x) + φ2(x), φ1(x) + φ2(x))
|x− x| .

Every set-valued function h : U × R → cc(Y ) generates the Nemytskii
operator N
(8) N (φ)(x) := h(x, φ(x)), x ∈ U

mapping the space of all functions φ : U → R with values in the space of
all functions φ : U → cc(Y ).

In the paper [8] it has been proved that the Nemytskii operator N
mapping the space lip(U,C) into Lip(U,Z), where C is a convex cone with
zero in Y and Z is a normed space, and globally Lipschitzian must be of
the form

N (φ)(x) = A(x, φ(x)) + B(x),

where A := U ×C → cc(Z), A(x, ·) is an additive set-valued function and
B ∈ Lip(U,Z). In this part of the paper we are going to give the following
analogue of Matkowski’s theorem (cf. [3]) for set-valued functions:

Theorem 3. Let (X, | · |), (Y, | · |) be normed spaces and U ⊂ X be
a convex set such that 0 ∈ U . Assume that h : U × I → cc(Y ) and the
Nemytskii operator N generated by h satisfies the two conditions
(i) N : lip(U, I) → Lip(U, Y );
(ii) there is c ≥ 0 such that

ρ [N (φ1),N (φ2)] ≤ cD(φ1, φ2), φ1, φ2 ∈ lip(U, I),
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then there exist set-valued functions A,B : U → cc(Y ) for which

h(x, y) + yB(x) = yA(x) + h(x, 0), x ∈ U, y ∈ I.

Moreover there exists a constant l ≥ 0 such that

(9) d[A(x1) + B(x2), A(x2) + B(x1)] ≤ l|x1 − x2|, x1, x2 ∈ U.

Proof. Fix y ∈ [0, a). The constant function φ(x) = y, x ∈ U
belongs to lip(U, I). It follows by (i) that

h(·, y) ∈ Lip(U, Y ), y ∈ I.

In particular the function h is continuous with respect to the first variable
for every fixed y belongig to I.

Using the definition of ρ and (ii) we have

(10)
d[h(t, φ1(t)) + h(t, φ2(t)), h(t, φ1(t)) + h(t, φ2(t))]

|t− t| ≤ cD(φ1, φ2)

for all φ1, φ2 ∈ Lip(U, Y ), t, t ∈ U , t 6= t.
Let us take x ∈ U , x 6= 0 and x ∈ U such that |x| < |x|. Fix

y1, y2, y1, y2 ∈ I and define

(11) φi(t) =





yi, |t| ≤ |x|
yi−yi

|x|−|x| (|t| − |x|) + yi, |x| ≤ |t| ≤ |x|
yi, |t| ≥ |x|

for t ∈ U and i = 1, 2. It is evident that φi ∈ lip(U, I). Moreover

D(φ1, φ2) = |y1 − y2|+
|y1 − y2 − y1 + y2|

|x| − |x| .

Putting in (10) φ1 and φ2 as given by (11), t = x, t = x we get

(12)

d[h(x, y1) + h(x, y2), h(x, y1) + h(x, y2)]
|x− x| ≤

≤ c

[
|y1 − y2|+

|y1 − y2 − y1 + y2|
|x| − |x|

]
.

Obviously |x−x|
|x|−|x| ≥ 1. Now for x = λx, where 0 < λ < 1, we have

|x− x|
|x| − |x| =

|x− λx|
|x| − λ|x| = 1,
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whence lim inf
x→x

|x−x|
|x|−|x| = 1. Taking the lim inf as x → x in (12) and using

the continuity of h(·, y) we obtain

(13) d (h(x, y1) + h(x, y2), h(x, y1) + h(x, y2)) ≤ c|y1 − y2 − y1 + y2|
for all x 6= 0, x ∈ U and y1, y2, y1, y2 ∈ I. The inequality (13) holds
also for x = 0 on account of the continuity of h(·, y). Putting in (13)
y1 = y2 = y+w

2 , y2 = y, y1 = w, where y, w ∈ I, we get

d

(
2h

(
x,

y + w

2

)
, h(x, y) + h(x,w)

)
= 0,

whence

(14) h

(
x,

y + w

2

)
=

1
2

[h(x, y) + h(x,w)]

for all x ∈ U, y, w ∈ I. In virtue of Theorem 1 there exist two set-valued
functions A : U × [0, +∞) → cc(Y ), B : U → cc(Y ) such that

(15) h(x, y) + yB(x) = h(x, 0) + A(x, y), x ∈ U, y ∈ I

and A(x, ·) is additive. Putting y1 = y2 = 0 in (13) we have

d(h(x, y1), h(x, y2)) = d(h(x, y1) + h(x, 0), h(x, y2) + h(x, 0)) ≤(16)

≤ c|y1 − y2|
for all x ∈ U and y1, y2 ∈ [0, a). The inequality (16) implies the continuity
of h(x, ·), x ∈ U and by (15) the continuity of A(x, ·). Thus there exists
A(x) ∈ cc(Y ) for which A(x, y) = yA(x), x ∈ U , y ∈ [0, +∞). The first
part of our theorem is proved. Now for x1, x2 ∈ U and y ∈ I we get

d(yB(x1) + yA(x2), yB(x2) + yA(x1)) =

= d(yB(x1) + h(x1, y) + yA(x2) + h(x2, y), yB(x2) + h(x2, y)+

+yA(x1) + h(x1, y)) =

= d(yA(x1) + h(x1, 0) + yA(x2) + h(x2, y), yA(x2) + h(x2, 0)+

+yA(x1) + h(x1, y)) =

= d(h(x1, 0) + h(x2, y), h(x2, 0) + h(x1, y)) ≤
≤ d(h(x1, 0), h(x2, 0)) + d(h(x2, y), h(x1, y)).

Since h(·, y) ∈ Lip(U, Y ) for y ∈ I we can find a constant l(y) ≥ 0 such
that

d(B(x1) + A(x2), B(x2) + A(x1)) ≤ l(y)
y
|x1 − x2|.
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Taking l := inf
{

l(y)
y : y ∈ I

}
we get the inequality (9) which ends the

proof.
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