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n-commuting maps on prime rings

By TSIU-KWEN LEE (Taipei), KUN-SHAN LIU (Taipei) and
WEN-KWEI SHIUE (Hualien)

Abstract. We prove a result concerning additive n-commuting maps on
prime rings and then apply it to n-commuting linear generalized differential poly-
nomials.

1. Results

Throughout, unless specially stated, R always denotes a prime ring
with center Z. We let U be the maximal ring of right quotients of R and
let @ stand for the symmetric Martindale quotient ring of R. The center
C of U (and Q) is called the extended centroid of R. See [3] for its details.
An additive map d : R — R is called a derivation if (zy)? = 2%y + zy?
for all z,y € R. A map f: R — U is called n-commuting on a subset S
of R, where n is a positive integer, if [f(x),2"] = 0 for all z € S. The
map f is merely called commuting if it is 1-commuting. The study of
these mappings was initiated by Posner’s Theorem: The existence of a
nonzero derivation commuting on R implies the commutativity of R [21,
Theorem 2]. More related results have been obtained in [17]-[19], [4],
[5], [13]-[6]. Also, see [11], [1], [2] for n-commuting maps. Applying [2,
Theorem 1.1] and [1, Theorem 4.4] we have the result: Let R be a prime
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ring such that either char R = 0 or a prime p > n, or deg(R) > n. Then
every additive n-commuting map of R into U is commuting. The goal of
this paper is to prove a theorem related to the result above and then apply
it to some applications on n-commuting linear differential polynomials. We
now state the main result:

Theorem 1.1. Let R be a prime ring with center Z, its maximal ring
of right quotients U and n a fixed positive integer. Suppose that f : R — U
is an additive n-commuting map such that f is Z-linear if Z # 0. Then
there exist A € C and a map p : R — C such that f(x) = Az + p(x) for
all x € R, unless R = My (GF(2)).

Here, GF(2) denotes the Galois field of two elements. The following
gives a counterexample for the case R = My(GF(2)).

Ezample 1.2. Let R = My(GF(2)) and let f : R — R be defined by

a B\ [(a+y O a
f<7 5>_< : mé) for <7 5) R
Then f is a GF(2)-linear map. A direct computation proves that
0 1 01 0 1
6] — _
[f(x),z°] = 0 for all x € R. However, [f <0 0> , <O 0)] = <0 0>_

Hence, f is a 6-commuting linear map but it is not commuting.

We now apply Theorem 1.1 to n-commuting linear generalized differ-
ential polynomials. To state these results precisely, let us recall some nota-
tion. We denote by Der(U) the set of all derivations of U. For d € Der(U)
and z € U, one usually writes 2¢ for d(x) . Also, if 3 € C, define 2% = 2.
It follows that Der(U) forms a right C-module. Let D be the C-submodule
of Der(U) defined by

D = {0 € Der(U) | I° C R for some nonzero ideal I,
depending on J, of R}.

By a derivation word we mean an additive map A from U into itself assum-
ing the form A = 6,65 ...d;, where §; € D. If A is empty, we define 22 =
for x € U. A linear generalized differential polynomial means a linear gen-
eralized polynomial with coefficients in U and with an indeterminate X
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which are acted on by derivation words. Thus every linear generalized
differential polynomial can be written in the form ), >~ ;@i X Ai bi;, where
a;j,bi; € U and the A;’s are derivation words.

Theorem 1.3. Let R be a noncommutative prime ring,
R 2 My (GF(2)), and n a fixed positive integer. Suppose that

[w(x),x"] =0

for all x € R, where 1(x) is a linear generalized differential polynomial.
Then 1p(x) = Az + p(z) for all x € R, where A € C and pu: R — C.

PROOF. Applying the identities (1)—(5) given in [8, p. 155], we can
find finitely many distinct regular words Ag, Ay, - -+, Ay with Ay = () such

that
t

)= Zaiijibij (1.1)

1=0

for all z € R, where a;;,b;; € U. By assumption,

[i ZazﬂAibz‘jw”] =0 (1.2)

i=0

for all x € R. Applying KHARCHENKO’S Theorem [9, Theorem 2] to (1.2)
yields

t
{Z Z a;;Yibij + Z ao;xboy, l’n] =0 (1.3)
1 g J

=

for all y;,z € R. For i >0 we see that [} a;;jybi;,2"] = 0 for all z,y € R
and so for all z,y € U (see [3, Theorem 6.4.1] or [7, Theorem 2]). In
view of [12, Theorem], we have [}, a;;yb;j,z] = 0 for all z,y € R. Thus
Zj a;jyb;; € C for all y € U. In particular, Zle Zj aiijibU € C for all
z € U. Thus (1.3) is reduced to [3_; agjzboj, z"] = 0 for all z € U. By
Theorem 1.1, there exist A € C and 5 : R — C such that Zj ag;xbo; =
Az + n(z) for all x € U. We are now done by setting p(r) = n(z) +
St > aijzPib;; € C for all z € R. This proves the theorem. O
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A special case of Theorem 1.3 is the following

Theorem 1.4. Let R be a noncommutative prime ring,
R % My(GF(2)), with a derivation §, n > 1. Suppose that [1)(x),z"] =0
for all € R, where ¢(x) = ZE:O a;x% with a; € R. Then ay € Z and
Y(x) = apzx for all x € R.

We remark that Park and Jung studied the case: a derivation d on an
n!-torsion-free semiprime ring R such that d? is n-commuting on R, where
n > 2 [20, Theorem 3.1]. Applying the theory of orthogonal completion for
semiprime rings (see [3]), [20, Theorem 3.1] can be reduced to the prime
case and so can be solved as a special case of Theorem 1.4. To prove it we
first quote CHANG’s Theorem [6, Theorem 3.2]:

Theorem 1.5 (CHANG [6]). Let R be a noncommutative prime ring
with a derivation d. Suppose that Y ;- a;z? € Z, where a; € R. Then
S az? =0 for allz € R.

Before giving the proof of Theorem 1.4 we need the following general-
ization of Theorem 1.5

Theorem 1.6. Let R be a noncommutative prime ring with a deriva-
tion d. Suppose that y ;" a;z? € Z, where a; € R. Then ag = 0 and
Y gaixd =0 for all z € R.

PRrROOF. In view of Theorem 1.5, it is enough to show that ag = 0.
Obviously we can assume that d # 0. We set ¢(z) = > 1" a;a for x € U,
and note that [¢(x),y] = 0 for all z,y € R. According to [10, Theorem 2],
[p(x),y] =0 for all z,y € U and so ¢(x) € C for all z € U. In particular,
ap = ¢(1) € C. Suppose that ag # 0. Replacing ¢(z) with ag'¢(x)
we reduce the proof to the case when ag = 1. The aim is to derive a
contradiction.

Given z,y € U, it follows directly from Leibniz’s rule that ¢(yxz) =
Dy biz? + ¢(y)z for some b; € U, depending on y. Therefore

n

> (b — ¢(y)ai)a® = d(yx) — $(y)p(z) € C

=1

for all z,y € U. Theorem 1.5 now yields that ¢(yx) = ¢(y)o(z) for
all z,y € U. Therefore ¢ : U — C is a ring homomorphism. Next,
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Yoo a;z?" = ¢(2?) € C and so Theorem 1.5 yields that z? € ker(¢).
Since d # 0, ker(¢) # 0 as well. We see that ker(¢) is a nonzero ideal of U
and ¢ is a generalized differential polynomial identity on ker(¢). Therefore
[10, Theorem 2| implies that ¢(x) = 0 for all z € U. In particular, 1 =
#(1) = 0, a contradiction. The proof is now complete. O

PROOF OF THEOREM 1.4. In view of Theorem 1.3, ¢)(x) = Az + p(x)
for all x € R, where A € C and p: R — C. That is, ZE:O a;z’ — \z e C
for all z € R and so for all z € U [10, Theorem 2|. In view of Theorem 1.6,
ZE:O aix(si — Xz = 0 for all x € U. In particular, we set z = 1 to get
ap =\ € Z, and hence >'_, a;z® =0 for all z € U. Thus ¢ (z) = agx for
all z € R. This proves the theorem. O

2. Proof of Theorem 1.1

We begin with the following special case.

Lemma 2.1. Theorem 1.1 holds if R = M,,(C), the m x m matrix
ring over a field C', unless m = 2 and C = GF(2).

PROOF. For n = 1 we are done by BRESAR’s Theorem [4, Theorem A].
Therefore, we always assume n > 1. Let {e;; | 1 <4, j < m} be the set
of usual matrix units of R. The aim is to prove that there exists A € C
such that f(e;;) — Aej; € C for all 1 <4, j < m. Indeed, we then have
f(x) = Az € C for all x € R as f is C-linear. Hence, the lemma is proved
by setting u(x) = f(x) — Az € C for x € R.

For m > 3 we claim that

2

[f(u),e] =0if > =eu=ue=0 and e=e* fore,uc R.  (2.1)

Indeed, (e + u)™ = e since n > 1. Thus, by assumption, 0 = [f(e + u),
(e +u)"] = [f(e) + f(u),e] = [f(u),e], as desired. We claim that there
exist A;; € C such that

f(eij) — )\ijeij € C and so [f(eij), eij] =0 (2.2)

for i # j. Let 1 < p < m be distinct from 4, j. Note that e,,* = e, and
eii2 = 0= eppeij = eijepp. Thus, by (2.1), [f(eij), epp] = 0 follows. Write
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fleij) = Zs,t astest, where ag; € C. A direct computation proves that

m
flei) = usess + ijei; + ajicjin (2.3)
s=1
Since the idempotent e;, + e, satisfies e;;(eip+epp) = 0 = (€ip+e€pp)€ij, by
(2.1) we have [f(e;j), eip + epp] = 0 and so [f(e;;), eip) = 0. Applying (2.3)
we obtain that age;p + ajiej, = appeip. Hence, aj; = 0 and ay; = . On
the other hand, the idempotent ep; + e, satisfies e;;(ep; + epp) = (€p; +
epp)eij = 0. By (2.1) again, [f(ei;), ep; + epp) =0 and so [f(eij), ep;] =0.
Applying (2.3) and aj; = 0 we obtain that a,pep; = ojjep; and so oy, =
ajj. This implies that f(e;;) —ayjei; € C. Set A\jj = «y; € C. In particular,
[f(eij), eij] = 0. This proves (2.2).

Next, we write f(e;) = Zs,t Bistest, where (B;¢ € C. By assump-
tion, we have [f(e;;),e;] = 0. This implies f(es)ei = ei;f(eq) and so
eiif(eii)epp =0 for all p 75 1. Hence ﬁiip = 0. Using the fact that e; + €ij
is an idempotent where j # i, we have that

0 = [f(eis + €ij), €ii + €] = [f(€ir), esj] + [f(esj), €l
Note that f(e;j) — Aijei; € C. This implies that
[f(eii), eij] + [)\ijeij, 6,’,’] = 0. (2.4)

Right-multiplying by e, where p # j, we see that 3;;, = 0 and so f(e;;) is
diagonal, that is, Bjs = 0 for s # t and so f(e;) = >~ Birrer. Making use
of (2.4), we get [Y 10, Birtent, €ij] + [Nijeij, eis] = 0 and so Biii = Bijj + Nij-
Let 1 < k < m be such that k # i, j. By assumption,

0= [flew + exj + €5i), (eii +exj +eji)"]
m
= Z Bitter + Axjer; + Aji€ji, €ii + €ri + €ji
=1
= (Bikk — Biii + Mj)eri + (Bigi — Bui + Nji)eji

since n > 1. This implies that (Ay; — Aix)ers + (Aji — Aij)eji = 0, since
Biii — Bikk = Mik- That is, Aj; = A and A\gj = i = Mg So By =
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ﬂijj + )\z’j = Bigk + Nik. But \jp = )\jk = )\kj = )\Z’j, this implies that
Bijj = Birk and so

m m
flei) — Nijesi = Z/Bissess — Nijei = Bijj Z ess € C.
s=1 s=1

We let A = \j; € C. Then f(es) — e € C for 1 < s,t < m.

We assume next that m = 2. By assumption, we have [f(e11),e11] =0,
implying that f(ej1) = aeqq + Begg for some «, f € C. Setting A\j; = a—
we have f(e11) — A1e11 € C. Analogously, f(e22) — Aagess € C' for some
Aoo € C. As |C| > 2, there exists a € C' with a # 0, 1. Note that e11 + e12
and ej; + aejo are two idempotents. Thus [f(en + e12),e11 + 612] =0
and [f(eu + aeqz),e11 + 04612] = 0. Since f is C-linear and o # 0,1,
this implies [f(e12),e12] = 0. So f(e12) — Ai12e12 € C for some Ao € C.
Analogously, f(e21) — Ag1e21 € C for some Ag; € C. On the other hand,
0= [f(enn + e12),e11 + ex2] = [f(enn), era] + [f(e12), e11] = [Mrenr, exa] +
[)\12612, 611] = ()\11 — )\12)612, implying that A1; = Ao. It follows from an
analogous argument that Ao = Ago and A1; = A91. Set A = A1, We see
that f(e;;) — Aejj € C for i,j = 1,2. This proves the lemma. O

Lemma 2.2. Let R be a prime Pl-ring with center Z. Then every
Z-linear map from R into RC' is defined by a linear generalized polynomial
with coefficients in RC'.

PRrROOF. By Posner’s Theorem for prime Pl-rings, RC is a finite-
dimensional central simple C-algebra. Moreover, Z # 0 [22, Theorem 2.10]
and C is the quotient field of Z. Suppose that f : R — RC is a Z-linear
map. Then it is obvious that f is uniquely extended to a C-linear map
from RC into RC. Note that RC ®@¢ RC° = End¢(RC) via a canonical
map ¢, defined by ¢(>, a; ® b;°)(x) = >, a;xb; for x € RC, where RC°
denotes the ring opposite to RC. Thus there exist a;,b; € RC such that
f=0¢(a;®b°). That is, f(x) = >, a;xb; for all x € R, proving the

lemma. O

Lemma 2.3. If za—bx € C for all x € R, where a,b € U, then either
R is commutative ora =b € C.

PROOF. Suppose that R is not commutative. Choose a dense right
ideal p of R such that bp C R. Let y € p. Then by € R and so (by)a —
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b(by) € C. That is, b(ya — by) € C. Since ya — by € C, either b € C or
ya = by. If b € C, then R(a —b) C C, implying that a = b since R is
not commutative. Suppose next that ya = by for all y € p. In view of [7,
Theorem 2], ya = by for all y € U. In particular, set y = 1. Then a = b
follows. So [a, R] C C, implying a € C again. This proves the lemma. O

We are now ready to the proof of Theorem 1.1.

PROOF OF THEOREM 1.1. Suppose that R % My(GF(2)). By as-
sumption, we have [f(z),2"] = 0 for all z € R. Suppose first that R
is not a Pl-ring. Then deg(R) = oo in the sense of [1]. In view of [,
Theorem 4.4], there exist a,b € U and maps u,v : R — C such that
f(z) = za + pi(x) = bx + vo(z) for all x € R. Thus za — bx € C for
all x € R. It follows from Lemma 2.3 that either R is commutative or
a=0b¢€ C. Since R is not a Pl-ring, R is not commutative. Soa =b € C.
We are done in this case by setting A = a € C.

Suppose next that R is a Pl-ring. Then Z # 0 [22, Theorem 2.10].
By assumption, f is a Z-linear map. In view of Lemma 2.2, there exist
finitely many a;,b; € RC such that f(z) = >, a;xb; for all x € R. By
assumption, we see that

[; a;xh;, m"] =0 (2.5)

for all z € R and hence for all x € RC ([3, Theorem 6.4.1] or [7, Theo-
rem 2]). Define F' to be the algebraic closure of C' if C' is infinite. Oth-
erwise, let F' = C. Then (2.5) holds for all x € RC ®¢ F. Note that
x € RC®c F = M,,(F) for some m > 1. Define g : RC®¢c F — RC®c F
by g(x) = >, a;xb; for all z € RC ®c F. Then, by Lemma 2.1, there
exist ¢ € F and v : RC ®c F — F such that g(z) = cx + v(x) for all
x € RC®c F. Choose a basis {1, 2, ...} of F'over C with 5 = 1. Write
c=AB1+ Y5 o Aj0; for some s > 1 and A\, \; € C. Set pu(z) = g(z) — Av
for x € RC. Then p(z) € C for x € RC. Note that f(z) = g(z) for all
x € R. Thus we see that f(x) = Az + u(x) for all z € R, proving the
theorem. g
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