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n-commuting maps on prime rings

By TSIU-KWEN LEE (Taipei), KUN-SHAN LIU (Taipei) and
WEN-KWEI SHIUE (Hualien)

Abstract. We prove a result concerning additive n-commuting maps on
prime rings and then apply it to n-commuting linear generalized differential poly-
nomials.

1. Results

Throughout, unless specially stated, R always denotes a prime ring
with center Z. We let U be the maximal ring of right quotients of R and
let Q stand for the symmetric Martindale quotient ring of R. The center
C of U (and Q) is called the extended centroid of R. See [3] for its details.
An additive map d : R → R is called a derivation if (xy)d = xdy + xyd

for all x, y ∈ R. A map f : R → U is called n-commuting on a subset S

of R, where n is a positive integer, if [f(x), xn] = 0 for all x ∈ S. The
map f is merely called commuting if it is 1-commuting. The study of
these mappings was initiated by Posner’s Theorem: The existence of a
nonzero derivation commuting on R implies the commutativity of R [21,
Theorem 2]. More related results have been obtained in [17]–[19], [4],
[5], [13]–[6]. Also, see [11], [1], [2] for n-commuting maps. Applying [2,
Theorem 1.1] and [1, Theorem 4.4] we have the result: Let R be a prime
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ring such that either charR = 0 or a prime p > n, or deg(R) > n. Then
every additive n-commuting map of R into U is commuting. The goal of
this paper is to prove a theorem related to the result above and then apply
it to some applications on n-commuting linear differential polynomials. We
now state the main result:

Theorem 1.1. Let R be a prime ring with center Z, its maximal ring

of right quotients U and n a fixed positive integer. Suppose that f : R → U

is an additive n-commuting map such that f is Z-linear if Z 6= 0. Then

there exist λ ∈ C and a map µ : R → C such that f(x) = λx + µ(x) for

all x ∈ R, unless R ∼= M2(GF(2)).

Here, GF(2) denotes the Galois field of two elements. The following
gives a counterexample for the case R = M2(GF(2)).

Example 1.2. Let R = M2(GF(2)) and let f : R → R be defined by

f

(
α β

γ δ

)
=

(
α + γ 0

0 β + δ

)
for

(
α β

γ δ

)
∈ R.

Then f is a GF(2)-linear map. A direct computation proves that

[f(x), x6] = 0 for all x ∈ R. However,
[
f

(
0 1
0 0

)
,

(
0 1
0 0

)]
=

(
0 1
0 0

)
.

Hence, f is a 6-commuting linear map but it is not commuting.

We now apply Theorem 1.1 to n-commuting linear generalized differ-
ential polynomials. To state these results precisely, let us recall some nota-
tion. We denote by Der(U) the set of all derivations of U . For d ∈ Der(U)
and x ∈ U , one usually writes xd for d(x) . Also, if β ∈ C, define xdβ = xdβ.
It follows that Der(U) forms a right C-module. Let D be the C-submodule
of Der(U) defined by

D = {δ ∈ Der(U) | Iδ ⊆ R for some nonzero ideal I,

depending on δ, of R}.

By a derivation word we mean an additive map ∆ from U into itself assum-
ing the form ∆ = δ1δ2 . . . δt, where δi ∈ D. If ∆ is empty, we define x∆ = x

for x ∈ U . A linear generalized differential polynomial means a linear gen-
eralized polynomial with coefficients in U and with an indeterminate X
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which are acted on by derivation words. Thus every linear generalized
differential polynomial can be written in the form

∑
i

∑
j aijX

∆ibij , where
aij , bij ∈ U and the ∆i’s are derivation words.

Theorem 1.3. Let R be a noncommutative prime ring,

R 6∼= M2(GF(2)), and n a fixed positive integer. Suppose that

[
ψ(x), xn

]
= 0

for all x ∈ R, where ψ(x) is a linear generalized differential polynomial.

Then ψ(x) = λx + µ(x) for all x ∈ R, where λ ∈ C and µ : R → C.

Proof. Applying the identities (1)–(5) given in [8, p. 155], we can
find finitely many distinct regular words ∆0, ∆1, · · · ,∆t with ∆0 = ∅ such
that

ψ(x) =
t∑

i=0

∑

j

aijx
∆ibij (1.1)

for all x ∈ R, where aij , bij ∈ U . By assumption,

[ t∑

i=0

∑

j

aijx
∆ibij , x

n

]
= 0 (1.2)

for all x ∈ R. Applying Kharchenko’s Theorem [9, Theorem 2] to (1.2)
yields [ t∑

i=1

∑

j

aijyibij +
∑

j

a0jxb0j , x
n

]
= 0 (1.3)

for all yi, x∈R. For i> 0 we see that [
∑

j aijybij , x
n] = 0 for all x, y ∈R

and so for all x, y ∈ U (see [3, Theorem 6.4.1] or [7, Theorem 2]). In
view of [12, Theorem], we have [

∑
j aijybij , x] = 0 for all x, y ∈ R. Thus∑

j aijybij ∈ C for all y ∈ U . In particular,
∑t

i=1

∑
j aijx

∆ibij ∈ C for all
x ∈ U . Thus (1.3) is reduced to [

∑
j a0jxb0j , x

n] = 0 for all x ∈ U . By
Theorem 1.1, there exist λ ∈ C and η : R → C such that

∑
j a0jxb0j =

λx + η(x) for all x ∈ U . We are now done by setting µ(x) = η(x) +∑t
i=1

∑
j aijx

∆ibij ∈ C for all x ∈ R. This proves the theorem. ¤
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A special case of Theorem 1.3 is the following

Theorem 1.4. Let R be a noncommutative prime ring,

R 6∼= M2(GF(2)), with a derivation δ, n ≥ 1. Suppose that [ψ(x), xn] = 0
for all x ∈ R, where ψ(x) =

∑t
i=0 aix

δi
with ai ∈ R. Then a0 ∈ Z and

ψ(x) = a0x for all x ∈ R.

We remark that Park and Jung studied the case: a derivation d on an
n!-torsion-free semiprime ring R such that d2 is n-commuting on R, where
n ≥ 2 [20, Theorem 3.1]. Applying the theory of orthogonal completion for
semiprime rings (see [3]), [20, Theorem 3.1] can be reduced to the prime
case and so can be solved as a special case of Theorem 1.4. To prove it we
first quote Chang’s Theorem [6, Theorem 3.2]:

Theorem 1.5 (Chang [6]). Let R be a noncommutative prime ring

with a derivation d. Suppose that
∑n

i=1 aix
di ∈ Z, where ai ∈ R. Then∑n

i=1 aix
di

= 0 for all x ∈ R.

Before giving the proof of Theorem 1.4 we need the following general-
ization of Theorem 1.5

Theorem 1.6. Let R be a noncommutative prime ring with a deriva-

tion d. Suppose that
∑n

i=0 aix
di ∈ Z, where ai ∈ R. Then a0 = 0 and∑n

i=0 aix
di

= 0 for all x ∈ R.

Proof. In view of Theorem 1.5, it is enough to show that a0 = 0.
Obviously we can assume that d 6= 0. We set φ(x) =

∑n
i=0 aix

di
for x ∈ U ,

and note that [φ(x), y] = 0 for all x, y ∈ R. According to [10, Theorem 2],
[φ(x), y] = 0 for all x, y ∈ U and so φ(x) ∈ C for all x ∈ U . In particular,
a0 = φ(1) ∈ C. Suppose that a0 6= 0. Replacing φ(x) with a−1

0 φ(x)
we reduce the proof to the case when a0 = 1. The aim is to derive a
contradiction.

Given x, y ∈ U , it follows directly from Leibniz’s rule that φ(yx) =∑n
i=1 bix

di
+ φ(y)x for some bi ∈ U , depending on y. Therefore

n∑

i=1

(bi − φ(y)ai)xdi
= φ(yx)− φ(y)φ(x) ∈ C

for all x, y ∈ U . Theorem 1.5 now yields that φ(yx) = φ(y)φ(x) for
all x, y ∈ U . Therefore φ : U → C is a ring homomorphism. Next,
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∑n
i=0 aix

di+1
= φ(xd) ∈ C and so Theorem 1.5 yields that xd ∈ ker(φ).

Since d 6= 0, ker(φ) 6= 0 as well. We see that ker(φ) is a nonzero ideal of U

and φ is a generalized differential polynomial identity on ker(φ). Therefore
[10, Theorem 2] implies that φ(x) = 0 for all x ∈ U . In particular, 1 =
φ(1) = 0, a contradiction. The proof is now complete. ¤

Proof of Theorem 1.4. In view of Theorem 1.3, ψ(x) = λx+µ(x)
for all x ∈ R, where λ ∈ C and µ : R → C. That is,

∑t
i=0 aix

δi − λx ∈ C

for all x ∈ R and so for all x ∈ U [10, Theorem 2]. In view of Theorem 1.6,∑t
i=0 aix

δi − λx = 0 for all x ∈ U . In particular, we set x = 1 to get
a0 = λ ∈ Z, and hence

∑t
i=1 aix

δi
= 0 for all x ∈ U . Thus ψ(x) = a0x for

all x ∈ R. This proves the theorem. ¤

2. Proof of Theorem 1.1

We begin with the following special case.

Lemma 2.1. Theorem 1.1 holds if R = Mm(C), the m × m matrix

ring over a field C, unless m = 2 and C = GF(2).

Proof. For n = 1 we are done by Brešar’s Theorem [4, Theorem A].
Therefore, we always assume n > 1. Let {eij | 1 ≤ i, j ≤ m} be the set
of usual matrix units of R. The aim is to prove that there exists λ ∈ C

such that f(eij) − λeij ∈ C for all 1 ≤ i, j ≤ m. Indeed, we then have
f(x)− λx ∈ C for all x ∈ R as f is C-linear. Hence, the lemma is proved
by setting µ(x) = f(x)− λx ∈ C for x ∈ R.

For m ≥ 3 we claim that

[f(u), e] = 0 if u2 = eu = ue = 0 and e = e2 for e, u ∈ R. (2.1)

Indeed, (e + u)n = e since n > 1. Thus, by assumption, 0 = [f(e + u),
(e + u)n] = [f(e) + f(u), e] = [f(u), e], as desired. We claim that there
exist λij ∈ C such that

f(eij)− λijeij ∈ C and so [f(eij), eij ] = 0 (2.2)

for i 6= j. Let 1 ≤ p ≤ m be distinct from i, j. Note that epp
2 = epp and

eij
2 = 0 = eppeij = eijepp. Thus, by (2.1), [f(eij), epp] = 0 follows. Write
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f(eij) =
∑

s,t αstest, where αst ∈ C. A direct computation proves that

f(eij) =
m∑

s=1

αssess + αijeij + αjieji. (2.3)

Since the idempotent eip+epp satisfies eij(eip+epp) = 0 = (eip+epp)eij , by
(2.1) we have [f(eij), eip + epp] = 0 and so [f(eij), eip] = 0. Applying (2.3)
we obtain that αiieip + αjiejp = αppeip. Hence, αji = 0 and αii = αpp. On
the other hand, the idempotent epj + epp satisfies eij(epj + epp) = (epj +
epp)eij = 0. By (2.1) again, [f(eij), epj + epp] = 0 and so [f(eij), epj ] = 0.
Applying (2.3) and αji = 0 we obtain that αppepj = αjjepj and so αpp =
αjj . This implies that f(eij)−αijeij ∈ C. Set λij = αij ∈ C. In particular,
[f(eij), eij ] = 0. This proves (2.2).

Next, we write f(eii) =
∑

s,t βistest, where βist ∈ C. By assump-
tion, we have [f(eii), eii] = 0. This implies f(eii)eii = eiif(eii) and so
eiif(eii)epp = 0 for all p 6= i. Hence βiip = 0. Using the fact that eii + eij

is an idempotent where j 6= i, we have that

0 = [f(eii + eij), eii + eij ] = [f(eii), eij ] + [f(eij), eii].

Note that f(eij)− λijeij ∈ C. This implies that

[f(eii), eij ] + [λijeij , eii] = 0. (2.4)

Right-multiplying by epp where p 6= j, we see that βijp = 0 and so f(eii) is
diagonal, that is, βist = 0 for s 6= t and so f(eii) =

∑m
t=1 βittett. Making use

of (2.4), we get [
∑m

t=1 βittett, eij ] + [λijeij , eii] = 0 and so βiii = βijj + λij .
Let 1 ≤ k ≤ m be such that k 6= i, j. By assumption,

0 =
[
f(eii + ekj + eji), (eii + ekj + eji)n

]

=

[
m∑

t=1

βittett + λkjekj + λjieji, eii + eki + eji

]

= (βikk − βiii + λkj)eki + (βijj − βiii + λji)eji,

since n > 1. This implies that (λkj − λik)eki + (λji − λij)eji = 0, since
βiii − βikk = λik. That is, λji = λij and λkj = λik = λki. So βiii =
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βijj + λij = βikk + λik. But λik = λjk = λkj = λij , this implies that
βijj = βikk and so

f(eii)− λijeii =
m∑

s=1

βissess − λijeii = βijj

m∑

s=1

ess ∈ C.

We let λ = λij ∈ C. Then f(est)− λest ∈ C for 1 ≤ s, t ≤ m.
We assume next that m = 2. By assumption, we have [f(e11), e11] = 0,

implying that f(e11) = αe11 +βe22 for some α, β ∈ C. Setting λ11 = α−β

we have f(e11) − λ11e11 ∈ C. Analogously, f(e22) − λ22e22 ∈ C for some
λ22 ∈ C. As |C| > 2, there exists α ∈ C with α 6= 0, 1. Note that e11 + e12

and e11 + αe12 are two idempotents. Thus
[
f(e11 + e12), e11 + e12

]
= 0

and
[
f(e11 + αe12), e11 + αe12

]
= 0. Since f is C-linear and α 6= 0, 1,

this implies [f(e12), e12] = 0. So f(e12) − λ12e12 ∈ C for some λ12 ∈ C.
Analogously, f(e21) − λ21e21 ∈ C for some λ21 ∈ C. On the other hand,
0 =

[
f(e11 + e12), e11 + e12

]
= [f(e11), e12] + [f(e12), e11] = [λ11e11, e12] +

[λ12e12, e11] = (λ11 − λ12)e12, implying that λ11 = λ12. It follows from an
analogous argument that λ12 = λ22 and λ11 = λ21. Set λ = λ11. We see
that f(eij)− λeij ∈ C for i, j = 1, 2. This proves the lemma. ¤

Lemma 2.2. Let R be a prime PI-ring with center Z. Then every

Z-linear map from R into RC is defined by a linear generalized polynomial

with coefficients in RC.

Proof. By Posner’s Theorem for prime PI-rings, RC is a finite-
dimensional central simple C-algebra. Moreover, Z 6= 0 [22, Theorem 2.10]
and C is the quotient field of Z. Suppose that f : R → RC is a Z-linear
map. Then it is obvious that f is uniquely extended to a C-linear map
from RC into RC. Note that RC ⊗C RCo ∼= EndC(RC) via a canonical
map φ, defined by φ(

∑
i ai ⊗ bi

o)(x) =
∑

i aixbi for x ∈ RC, where RCo

denotes the ring opposite to RC. Thus there exist ai, bi ∈ RC such that
f = φ(

∑
i ai ⊗ bi

o). That is, f(x) =
∑

i aixbi for all x ∈ R, proving the
lemma. ¤

Lemma 2.3. If xa− bx ∈ C for all x ∈ R, where a, b ∈ U , then either

R is commutative or a = b ∈ C.

Proof. Suppose that R is not commutative. Choose a dense right
ideal ρ of R such that bρ ⊆ R. Let y ∈ ρ. Then by ∈ R and so (by)a −
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b(by) ∈ C. That is, b(ya − by) ∈ C. Since ya − by ∈ C, either b ∈ C or
ya = by. If b ∈ C, then R(a − b) ⊆ C, implying that a = b since R is
not commutative. Suppose next that ya = by for all y ∈ ρ. In view of [7,
Theorem 2], ya = by for all y ∈ U . In particular, set y = 1. Then a = b

follows. So [a,R] ⊆ C, implying a ∈ C again. This proves the lemma. ¤

We are now ready to the proof of Theorem 1.1.

Proof of Theorem 1.1. Suppose that R 6∼= M2(GF(2)). By as-
sumption, we have [f(x), xn] = 0 for all x ∈ R. Suppose first that R

is not a PI-ring. Then deg(R) = ∞ in the sense of [1]. In view of [1,
Theorem 4.4], there exist a, b ∈ U and maps µ, ν : R → C such that
f(x) = xa + µ1(x) = bx + ν2(x) for all x ∈ R. Thus xa − bx ∈ C for
all x ∈ R. It follows from Lemma 2.3 that either R is commutative or
a = b ∈ C. Since R is not a PI-ring, R is not commutative. So a = b ∈ C.
We are done in this case by setting λ = a ∈ C.

Suppose next that R is a PI-ring. Then Z 6= 0 [22, Theorem 2.10].
By assumption, f is a Z-linear map. In view of Lemma 2.2, there exist
finitely many ai, bi ∈ RC such that f(x) =

∑
i aixbi for all x ∈ R. By

assumption, we see that
[∑

i

aixbi, x
n

]
= 0 (2.5)

for all x ∈ R and hence for all x ∈ RC ([3, Theorem 6.4.1] or [7, Theo-
rem 2]). Define F to be the algebraic closure of C if C is infinite. Oth-
erwise, let F = C. Then (2.5) holds for all x ∈ RC ⊗C F . Note that
x ∈ RC⊗C F ∼= Mm(F ) for some m ≥ 1. Define g : RC⊗C F → RC⊗C F

by g(x) =
∑

i aixbi for all x ∈ RC ⊗C F . Then, by Lemma 2.1, there
exist c ∈ F and ν : RC ⊗C F → F such that g(x) = cx + ν(x) for all
x ∈ RC⊗C F . Choose a basis {β1, β2, . . . } of F over C with β1 = 1. Write
c = λβ1 +

∑s
j=2 λjβj for some s ≥ 1 and λ, λj ∈ C. Set µ(x) = g(x)− λx

for x ∈ RC. Then µ(x) ∈ C for x ∈ RC. Note that f(x) = g(x) for all
x ∈ R. Thus we see that f(x) = λx + µ(x) for all x ∈ R, proving the
theorem. ¤
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