Publ. Math. Debrecen 64/3-4 (2004), 473-479

A simple proof of a Paley–Wiener type theorem for the Chébli–Trimèche transform

By NILS BYRIAL ANDERSEN (Sydney)

Abstract. We give a simple proof of a Paley–Wiener type theorem for the Chébli–Trimèche transform, characterising the Schwartz functions with compactly supported image.

1. Introduction

Let \mathcal{F} denote the Chébli–Trimèche transform, let Δ denote the associated second order differential operator, $\rho \in \mathbb{R}$ a non-negative number to be defined later and $\mathcal{S}^p(\mathbb{R})^{\text{even}}$, $0 , the <math>L^p$ -Schwartz spaces. BETANCOR, BETANCOR and MÉNDEZ showed in [2] that the limit

$$\lim_{n \to \infty} \left\| (\Delta - \rho^2)^n f \right\|_r^{1/2n}$$

exists for all $f \in S^p(\mathbb{R})^{\text{even}}$, $0 , and all <math>1 \leq r \leq \infty$, and that it equals the radius of the support of $\mathcal{F}f$. This generalises [1, Theorem 1] for the classical Fourier transform.

In this paper, we use continuity of (the inverse of) \mathcal{F} on the Schwartz spaces and the convolution structure associated with \mathcal{F} to give a short and

Mathematics Subject Classification: 44A15.

 $Key\ words\ and\ phrases:$ Paley–Wiener theorem, Chébli–Trimèche transform, Schwartz spaces.

The author is supported by a research grant from the Australian Research Council (ARC).

simple proof of the above Paley–Wiener type theorem (also including the p = 2 case).

2. The Chébli–Trimèche transform

The material in this section is from [3], [4] and [5]. Consider the following second order differential operator on \mathbb{R}_+ :

$$\Delta := -\frac{1}{A(x)} \frac{d}{dx} \left(A(x) \frac{d}{dx} \right) = -\frac{d^2}{dx^2} - \frac{A'(x)}{A(x)} \frac{d}{dx}$$

where the (Chébli–Trimèche) function A is continuous on $[0, \infty)$, twice continuously differentiable on $(0, \infty)$ and satisfies the conditions:

- (i) A(0) = 0 and A(x) > 0 for x > 0,
- (ii) A is increasing and unbounded,
- (iii) $\frac{A'(x)}{A(x)} = \frac{2\alpha+1}{x} + B(x)$ on a neighbourhood of 0, where $\alpha > -\frac{1}{2}$ and B is an odd function on \mathbb{R} ,
- (iv) $\frac{A'(x)}{A(x)}$ is a decreasing smooth function on $(0, \infty)$ and hence $\rho := \frac{1}{2} \lim_{x \to \infty} \frac{A'(x)}{A(x)} \ge 0$ exists.

Assume furthermore that there exists a $\delta > 0$ such that, for all $x \in [x_o, \infty)$:

$$\frac{A'(x)}{A(x)} = \begin{cases} 2\rho + e^{-\delta x} D(x) & \text{if } \rho > 0\\ \frac{2\alpha + 1}{x} + e^{-\delta x} D(x) & \text{if } \rho = 0 \end{cases}$$

where ${\cal D}$ is a smooth function whose derivatives of any order are bounded.

Let $\varphi_{\lambda}, \lambda \in \mathbb{C}$, denote the solutions of the differential equation:

$$\Delta \varphi_{\lambda} = (\lambda^2 + \rho^2) \varphi_{\lambda}, \qquad \varphi_{\lambda}(0) = 1, \qquad \varphi_{\lambda}'(0) = 0.$$
(1)

We notice that $|\varphi_{\lambda}(x)| \leq \varphi_0(x) \leq 1$, and also that $e^{-\rho x} \leq \varphi_0(x) \leq C(1 + |x|)e^{-\rho x}$, for all $\lambda, x \in \mathbb{R}$, where C is a positive constant, see [3, Lemma 3.4].

We define, for $f \in C_c^{\infty}(\mathbb{R})^{\text{even}}$, the Chébli–Trimèche transform \mathcal{F} as:

$$\mathcal{F}f(\lambda) := \int_{\mathbb{R}_+} f(x)\varphi_{\lambda}(x)A(x)dx.$$

The (classical) Paley–Wiener theorem for the Chébli–Trimèche transform, see [4], states that \mathcal{F} is a bijection from $C_c^{\infty}(\mathbb{R})^{\text{even}}$ onto $\mathcal{H}(\mathbb{C})^{\text{even}}$, the space of even entire rapidly decreasing functions of exponential type. More precisely; for R > 0, it maps $C_R^{\infty}(\mathbb{R})^{\text{even}} := \{f \in C_c^{\infty}(\mathbb{R})^{\text{even}} \mid \text{supp } f \subset [-R, R]\}$, bijectively onto $\mathcal{H}_R(\mathbb{C})^{\text{even}}$, the space of even entire functions satisfying:

$$\sup_{\lambda \in \mathbb{C}} (1+|\lambda|)^k e^{-R|\Im\lambda|} g(\lambda) < \infty,$$

for all $k \in \mathbb{N} \cup \{0\}$. The inverse transform \mathcal{F}^{-1} is given by

$$\mathcal{F}^{-1}g(x) = \int_{\mathbb{R}_+} g(\lambda)\varphi_{\lambda}(x)|c(\lambda)|^{-2}d\lambda, \qquad (x \in \mathbb{R}),$$
(2)

for $g \in \mathcal{H}(\mathbb{C})^{\text{even}}$, where $|c(\lambda)|^{-2}$ is continuous on $[0,\infty)$.

The Chébli–Trimèche transform reduces to the Hankel transform when $A(x) = x^{2\alpha+1}$, $\alpha > -\frac{1}{2}$; and to the Jacobi transform when $A(x) = \cosh^{2\alpha+1}(x) \sinh^{2\beta+1}(x)$, $\alpha \ge \beta \ge -\frac{1}{2}$ and $\alpha \ne -\frac{1}{2}$.

3. Schwartz spaces

The material is this section is taken from [3]. Let $L^p(\mathbb{R}, A(x)dx)^{\text{even}}$, $1 \leq p \leq \infty$, denote the space of even measurable functions f such that

$$\|f\|_p := \left(\int_{\mathbb{R}_+} |f(x)|^p A(x) dx\right)^{1/p} < \infty, \ 1 \le p < \infty, \qquad \text{and}$$
$$\|f\|_{\infty} := \operatorname{ess} \sup_{x \in \mathbb{R}} |f(x)| < \infty.$$

Let $0 . The <math>L^p$ -Schwartz space $\mathcal{S}^p(\mathbb{R})^{\text{even}}$ is defined as the space of all functions $f \in C^{\infty}(\mathbb{R})^{\text{even}}$ such that:

$$\mu_{k,l}^{p}(f) := \sup_{x \in \mathbb{R}} e^{\frac{2}{p}\rho|x|} (1+|x|)^{k} \left| \frac{d^{l}}{dx^{l}} f(x) \right| < \infty,$$

for all $k, l \in \mathbb{N} \cup \{0\}$. We equip $\mathcal{S}^p(\mathbb{R})^{\text{even}}$ with the topology defined by the seminorms $\mu_{k,l}^p$. We note that our definition is equivalent to the definition

Nils Byrial Andersen

of generalised Schwartz spaces in [3] by the estimates on $\varphi_{\lambda}(x)$. We also note that

$$A(x) \le C(1+x)^{\beta} e^{2\rho x}, \qquad x \ge 0, \tag{3}$$

where C and β are positive constants, see [3, (3.5)].

Let $0 \leq \varepsilon < \infty$. Let $\mathbb{R}_{\varepsilon} := \{\lambda \in \mathbb{C} : |\Im\lambda| \leq \varepsilon\rho\}$, and let $\mathbb{R}_{\varepsilon}^{o}$ denote the interiour of \mathbb{R}_{ε} when $\varepsilon\rho > 0$. We define the extended Schwartz space $\mathcal{S}(\mathbb{R}_{\varepsilon})^{\text{even}}$ as the space of all even analytic functions g in $\mathbb{R}_{\varepsilon}^{o}$, such that all the derivatives of g extend continuously to \mathbb{R}_{ε} , and such that

$$\tau_{k,l}^{\varepsilon}(g) = \sup_{\lambda \in \mathbb{R}_{\varepsilon}} (1 + |\lambda|)^k \left| \frac{d^l}{d\lambda^l} g(\lambda) \right| < \infty,$$

for all $k, l \in \mathbb{N} \cup \{0\}$. We equip $\mathcal{S}(\mathbb{R}_{\varepsilon})^{\text{even}}$ with the topology defined by the seminorms $\tau_{k,l}^{\varepsilon}$.

Theorem 3.1. Let $0 and <math>\varepsilon = \frac{2}{p} - 1$. The Chébli–Trimèche transform \mathcal{F} is a topological isomorphism from $\mathcal{S}^p(\mathbb{R})^{\text{even}}$ onto $\mathcal{S}(\mathbb{R}_{\varepsilon})^{\text{even}}$. The inverse transform \mathcal{F}^{-1} is again given by (2).

PROOF. See [3, Theorem 4.27].

Remark 3.2. Let $\rho = 0$. Then $\mathcal{S}^p(\mathbb{R})^{\text{even}}$ and $\mathcal{S}(\mathbb{R}_{\varepsilon})^{\text{even}}$ are identical to the classical Schwartz space $\mathcal{S}(\mathbb{R})^{\text{even}}$ of even functions. Let now $\rho > 0$. Then $\mathcal{S}^p(\mathbb{R})^{\text{even}} \subset L^q(\mathbb{R}, A(x)dx)^{\text{even}}$ for all $0 , but <math>\mathcal{S}^p(\mathbb{R})^{\text{even}} \not\subset L^q(\mathbb{R}, A(x)dx)^{\text{even}}$ for $0 < q < p \le 2$.

Remark 3.3. Let $\rho > 0$ and let $0 \neq f \in S^p(\mathbb{R})^{\text{even}}$, with 0 . $Then <math>\mathcal{F}f$ is analytic in $\mathbb{R}^o_{\varepsilon}$, with $\varepsilon = \frac{2}{p} - 1$, and hence cannot have compact support.

Continuity of \mathcal{F}^{-1} implies in particular that, for any $m \in \mathbb{N}$ and $g \in C_c^{\infty}(\mathbb{R})^{\text{even}}$:

$$\sup_{x \in \mathbb{R}_+} e^{\frac{2}{p}\rho x} (1+x)^m |\mathcal{F}^{-1}g(x)| \le C \sup_{\lambda \in \mathbb{R}_+} \sum_{1 \le k,l \le M} (1+\lambda)^k \left| \frac{d^l}{d\lambda^l} g(\lambda) \right|, \quad (4)$$

for a positive constant C and a positive integer M.

We finally see that, for all $f \in \mathcal{S}^p(\mathbb{R})$, $0 , and all <math>n \in \mathbb{N} \cup \{0\}$,

$$\mathcal{F}(\Delta - \rho^2)^n f(\lambda) = \int_{\mathbb{R}_+} (\Delta - \rho^2)^n f(x)\varphi_\lambda(x)A(x)dx$$

A Paley–Wiener type theorem

$$= \int_{\mathbb{R}_{+}} f(x)(\Delta - \rho^{2})^{n} \varphi_{\lambda}(x) A(x) dx$$
$$= \int_{\mathbb{R}_{+}} f(x) \lambda^{2n} \varphi_{\lambda}(x) A(x) dx = \lambda^{2n} \mathcal{F}f(\lambda), \qquad (\lambda \in \mathbb{R}),$$

using symmetry of Δ and (1). This yields the following identities:

$$(\Delta - \rho^2)^n f = \mathcal{F}^{-1} \mathcal{F} (\Delta - \rho^2)^n f = \mathcal{F}^{-1} (\lambda^{2n} \mathcal{F} f),$$
(5)

for all $n \in \mathbb{N} \cup \{0\}$.

4. A Paley–Wiener type theorem

This section contains our short and simple proof of [2, Proposition 2.2]. Let $f \in S^p(\mathbb{R})$, then the radius of the support of $\mathcal{F}f$ is given by: $R_f := \sup\{|\lambda| : \lambda \in \operatorname{supp} \mathcal{F}f\}.$

Theorem 4.1. Let $0 , <math>1 \le r \le \infty$, if $\rho = 0$ and $0 , if <math>\rho > 0$. Then

$$\lim_{n \to \infty} \left\| (\Delta - \rho^2)^n f \right\|_r^{1/2n} = R_f,$$

for any $f \in \mathcal{S}^p(\mathbb{R})^{\text{even}}$.

PROOF. Let $f \in S^p(\mathbb{R})^{\text{even}}$ and assume that $\mathcal{F}f$ has compact support. Write $(\Delta - \rho^2)^n f(x) = (1+x)^{-2}(1+x)^2(\Delta - \rho^2)^n f(x)$, for $x \in \mathbb{R}_+$. The estimate (3) on A(x), the identities (5) and continuity of \mathcal{F}^{-1} (4) yield:

$$\begin{split} \left\| (\Delta - \rho^2)^n f \right\|_r \\ &\leq C \left(\int_{\mathbb{R}_+} \left| (1+x)^{-2} (1+x)^2 (\Delta - \rho^2)^n f(x) \right|^r e^{2\rho x} (1+x)^\beta dx \right)^{1/r} \\ &\leq C \sup_{x \in \mathbb{R}_+} e^{\frac{2}{r} \rho x} (1+x)^{\frac{\beta}{r}+2} |(\Delta - \rho^2)^n f(x)| \\ &\leq C \sup_{x \in \mathbb{R}_+} e^{\frac{2}{p} \rho x} (1+x)^m |\mathcal{F}^{-1} (\lambda^{2n} \mathcal{F} f)(x)| \\ &\leq C \sup_{\lambda \in \mathbb{R}_+} \sum_{1 \leq k, l \leq M} (1+\lambda)^k \left| \frac{d^l}{d\lambda^l} (\lambda^{2n} \mathcal{F} f(\lambda)) \right|, \end{split}$$

Nils Byrial Andersen

for positive constants C and integers m, M, independent of n. Leibniz's rule yields

$$\frac{d^l}{d\lambda^l}(\lambda^{2n}\mathcal{F}f(\lambda)) = \sum_{j=0}^l \binom{l}{j} \frac{(2n)!}{(2n-j)!} \lambda^{2n-j} \frac{d^{l-j}}{d\lambda^{l-j}} \mathcal{F}f(\lambda).$$

Using the estimates $\sum_{j=0}^{l} {l \choose j} \frac{(2n)!}{(2n-j)!} \leq MM! (2n)^M$ and $R_f^{2n-j} \leq (1+1/R_f)^M R_f^{2n}$, we get:

$$\left\| (\Delta - \rho^2)^n f \right\|_r \le C(2n)^M M M! (1 + R_f + 1/R_f)^M R_f^{2n},$$

for a positive constant C, independent of n. We thus see that

$$\limsup_{n \to \infty} \left\| (\Delta - \rho^2)^n f \right\|_r^{1/2n} \le R_f \lim_{n \to \infty} n^{M/2n} = R_f$$

There is a generalised convolution structure * associated with the Chébli–Trimèche transform, see [5] and [6] for details. We need the following properties, for $f_1, f_2 \in S^p(\mathbb{R})^{\text{even}}$:

- (a) $f_1 * f_2 \in \mathcal{S}^2(\mathbb{R})^{\text{even}}$.
- (b) $\mathcal{F}(f_1 * f_2) = \mathcal{F}(f_1)\mathcal{F}(f_2).$
- (c) $||f_1 * f_2||_{\infty} \le ||f_1||_r ||f_2||_{r'}$, if $f_1 \in L^r(\mathbb{R}, A(x)dx)^{\text{even}}$, $f_2 \in L^{r'}(\mathbb{R}, A(x)dx)^{\text{even}}$, with 1/r + 1/r' = 1.

Consider a general function $0 \neq f \in S^p(\mathbb{R})^{\text{even}}$. Let R > 0 such that $R < R_f \leq \infty$. Then

$$\begin{split} \left\| (\Delta - \rho^2)^n f \right\|_r \left\| \bar{f} \right\|_{r'} &\geq \left\| (\Delta - \rho^2)^n f * \bar{f} \right\|_{\infty} \\ &= \left\| \mathcal{F}^{-1} \mathcal{F} ((\Delta - \rho^2)^n f * \bar{f}) \right\|_{\infty} = \left\| \mathcal{F}^{-1} (\lambda^{2n} |\mathcal{F}f|^2) \right\|_{\infty} \\ &= \sup_{x \in \mathbb{R}} \left| \int_{\mathbb{R}_+} \lambda^{2n} |\mathcal{F}f(\lambda)|^2 \varphi_{\lambda}(x) |c(\lambda)|^{-2} d\lambda \right| \\ &= \int_{\mathbb{R}_+} \lambda^{2n} |\mathcal{F}f(\lambda)|^2 |c(\lambda)|^{-2} d\lambda \geq \int_R^\infty \lambda^{2n} |\mathcal{F}f(\lambda)|^2 |c(\lambda)|^{-2} d\lambda \\ &\geq R^{2n} \int_R^\infty |\mathcal{F}f(\lambda)|^2 |c(\lambda)|^{-2} d\lambda, \end{split}$$

since $|\varphi_{\lambda}(x)| \leq \varphi_{\lambda}(0) = 1$, and thus,

$$\liminf_{n \to \infty} \left\| (\Delta - \rho^2)^n f \right\|_r^{1/2n} = R_f,$$

considering $R = R_f - \epsilon$, for any $\epsilon > 0$, if $R_f < \infty$, and $R \to \infty$ otherwise.

References

- H. H. BANG, A property of infinitely differentiable functions, Proc. Amer. Math. Soc. 108 (1990), 73–76.
- [2] J. J. BETANCOR, J. D. BETANCOR and J. M. R. MÉNDEZ, Paley-Wiener type theorems for Chébli-Trimèche transforms, Publ. Math. Debrecen. 60 (2002), 347–358.
- [3] W. R. BLOOM and Z. XU, Fourier transforms of Schwartz functions on Chébli–Trimèche hypergroups, *Monatsh. Math.* 125 (1998), 89–109.
- [4] H. CHÉBLI, Sur un théorème de Paley–Wiener associé à la décomposition spectrale d'un opérateur de Sturm–Liouville sur]0,∞[, J. Funct. Anal. 17 (1974), 447–461.
- [5] K. TRIMÈCHE, Transformation intégrale de Weyl et théorème de Paley–Wiener associés à un opérateur différentiel singulier sur (0,∞), J. Math. Pures Appl. (9) 60 (1981), 51–98.
- [6] K. TRIMÈCHE, Inversion of the Lions transmutation operators using generalized wavelets, Appl. Comput. Harmon. Anal. 4 (1997), 97–112.

NILS BYRIAL ANDERSEN SCHOOL OF MATHEMATICS UNIVERSITY OF NEW SOUTH WALES SYDNEY NSW 2052 AUSTRALIA

E-mail: byrial@maths.unsw.edu.au

(Received April 8, 2003; revised August 8, 2003)