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An explicit Boolean-valued model
for non-standard arithmetic

By ALBERT G. DRAGALIN (Debrecen)

Dedicated to Professor Lajos Tamássy on his 70th birthday

Abstract. We give an explicit construction of a Boolean-valued model for a cer-
tain version of the non standard arithmetic. The corresponding Boolean algebra is
complete. The constructive character of our exposition enables us to give a construc-
tive, algorithmic proof of the conservativity of the non-standard arithmetic over the
usual Peano arithmetic.

1. Let L be an arithmetical language with the equality =, the constant
0 (zero) and functional symbols S (successor, unit addition), P (predeces-
sor), +, · and (maybe) with some other additional functional symbols for
arithmetical functions.

Let Ar be a formal axiomatic theory in L, an extension of Robinson’s
well-known induction-free arithmetic. Among the nonlogical axioms of Ar
there are (the universal closures) of the following formulas:

(i) reflexivity, symmetry and transitivity of equality;
(ii) substitutional property with respect to functional symbols:

x = y ⊃ f(. . . x . . . ) = f(. . . y . . . );

(iii) defining properties of distinguished functional symbols:

1) Sx 6= 0; 5) x · 0 = 0;

2) Sx = Sy ⊃ x = y; 6) x · Sy = x · y + x;

3) x + 0 = x; 7) P0 = 0;

4) x + Sy = S(x + y); 8) x = 0 ∨ x = SPx;
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(iv) some additional elementary properties which could be deduced
with the help of formal induction:

9) x + y = y + x;
10) x + (y + z) = (x + y) + z;
11) x · y = y · x;
12) x · (y · z) = (x · y) · z;
13) x · (y + z) = x · y + x · z;

(v) some other closed formulas in L.
So the theory Ar might be very weak (without induction) or very

strong (an extension of Peano’s arithmetic, PA) and even inconsistent!
A numeral is a term of L of the form SS . . . S0 with n occurrences of

S, it will be denoted as n (or, abusingly, simply as n). The order relation
is defined as usual:

x ≤ y  ∃z (x + z = y),
x < y  Sx ≤ y.

Our axioms allow us to prove (without induction, see [6], chapter 4) some
elementary properties of this order, including the equivalence:

x ≤ n ≡ (x = 0 ∨ x = 1 ∨ · · · ∨ x = n)

for any number n.
Note that all our explicit nonlogical axioms (i) – (iv) are open formu-

las.
1.1. Now, Lc is an extension of L by one new constant c. Intuitively, c

is a very large, “non-feasible” natural number. Let us consider the theory
Arc in the language Lc which is an extension of Ar with an infinite number
of axioms:

(vi) n̄ < c for any numeral n.
It is trivial that Arc is conservative over Ar. If Arc ` A and A does

not contain c, then only a finite number of axioms of the group (vi) occurs
in the proof above:

n1 < c, . . . , nk < c.

Let us put n = max {ni + 1 | i = 1 . . . k}. Substituting c by n one gets a
proof of Ar ` A.

1.2. The language LF is a further extension of Lc by a new predicate
symbol: F (x) – “x is a feasible number”. The corresponding axiomatic
theory ArF is an extension of Arc by the following nonlogical axioms:

(vii) 1) F (0);
2) ¬F (c);
3) x = y ∧ F (x) ⊃ F (y);
4) y ≤ x ∧ F (x) ⊃ F (y);
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(viii) closure properties of F with respect to functional symbols of
L : F (x1) ∧ · · · ∧ F (xm) ⊃ F (f (x1, . . . , xm)) , for instance,

F (x) ⊃ F (Sx);

F (x) ∧ F (y) ⊃ F (x + y) etc.

(ix) a formal induction on feasible numbers:

A(0) ∧ ∀x(F (x) ∧A(x) ⊃ A(Sx)) ⊃ ∀x(F (x) ⊃ A(x))

for any formula A(x) in the language LF .

1.3. Let us reproduce now a short traditional reasoning concerning
conservativity ArF over Ar. A similar reasoning due to T. Skolem, K.
Gödel and L. Henkin might be found in (almost) any textbook on mathe-
matical logic (see, for instance, S.C. Kleene [1], chapter VI, §53, theorem
38, or A.N. Kolmogoroff, A.G. Dragalin [2], chapter III, §2, sect. 3.).

Assume ArF ` A but not Ar ` A, where A is a sentence (a closed
formula) of the language L. Then not Arc ` A (see 1.1.), so the theory
(Arc+¬A) is consistent. By the completeness theorem there exists a model
M for the theory Arc, such that M |= ¬A. It is easy to see that this model
M can be extended to a model MF for the theory ArF . Namely, we put
MF |= F (a) for an object a of the model M iff there exists a natural m
such that M |= (a = m).

All additional axioms (vii)–(ix) of ArF are fulfilled in MF . So MF |=
¬A and hence, not ArF ` A. Contradiction!

1.4. This elegant classic reasoning is, nevertheless, not quite satisfac-
tory from the constructive point of view. After all, we do not get any
concrete model for ArF and so we have no clear semantics for the arith-
metic with feasible numbers.

The indirect reasoning does not give any direct connection between
proofs in ArF and Ar. If one has a proof ArF ` A for the sentence A
(in L) how can one get a proof of Ar ` A? How can one estimate the
calculability of the function which gives a proof of Ar ` A when a proof of
ArF ` A is given? Is this function primitive recursive or, say, ε0-recursive?

One of the aims of this article is just to give a direct proof of the
conservativity result by the explicit construction of a model MF for the
theory ArF such that

MF |= A iff ArF ` A.

This is impossible if MF is a usual two-valued model but, nevertheless, we
reach this result by the substitution of usual classical models by Boolean–
valued ones and using constructive methods of [3] – [5].

This way we get a completely finitistic notion of truth. Some standard
metamathematical investigation of the applied method allows further to
give a constructive estimated connection between proofs in ArF and Ar.
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2. Some general algebraic constructions

The construction of our Boolean-valued model is quite general and
applicable to an arbitrary first-order axiomatic theory so it is worth-while
to make our exposition as general as possible.

2.1. We begin with some general algebraic considerations. Most of
the proofs can be found in [3], [4] but we give here full definitions and a
full list of all essential facts we shall need later on.

Elementary information about Boolean and Heyting algebras can be
found, for example, in [7] (note that Heyting algebras are called pseudo–
Boolean algebras in [7]).

Let us remind shortly, that a Heyting algebra is a structure of type

〈H,v,0,1,�,�, � ,�〉,
where v is a (partial) order on H (a so-called basic order), 0 is the least
element of H (zero), 1 is the largest element of H (unit),

�, � are the usual lattice operations of a distributive lattice;
� is a lattice implication, i.e. a � b is the maximal c such that

a�c v b;
� is correspondingly the lattice negation, �a = (a�0).
A complete Heyting algebra contains a meet and a join, �Q and

�Q for any subset Q ⊆ H. We consider a complete Heyting algebra as
an abstract structure:

〈
H,v,0,1,�,�, � ,�,�,�

〉

where the two latter operations are defined on the family of all subsets of
H.

A Heyting algebra is said to be a Boolean algebra if some additional
equality takes place; namely , for any p ∈ H

��p = p.

Note, that all operations in a Heyting algebra are definable uniquely
by the basic relation v, so we shall denote sometimes a Heyting algebra
shortly as (H,v).

Our definitions do not exclude the situation when 0 = 1 in a given
Heyting algebra. If 0 = 1 then H is a one-element set and the algebra H
is called a degenerate one. The question whether a given H is degenerate
is rather often quite complicate and non-elementary in our constructions.

2.2. Let (T,≤) be an arbitrary (partially) ordered set; this means, of
course, that the familiar properties: a) p ≤ p; b) p ≤ q, q ≤ r =⇒ p ≤ r;
c) p ≤ q, q ≤ p =⇒ p = q take place for any p, q, r ∈ T .

A set x ⊆ T is said to be (order) open (on T ) if: p ∈ x, q ≤ p =⇒
q ∈ x, for any p, q ∈ T . (Cf. [4], sect. 2.2., note that here we use the more
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convenient dual notations, i.e. we write here p ≤ q for q ≤ p in [3], [4]) The
family of all order open subsets of T we denote as O.

The minimal order open extending could be manufactured from an
arbitrary subset x ⊆ T . Namely:

i(x) = {p ∈ T | (∃q ∈ x)(p ≤ q)}.
2.2.1. Fact.

(i) x ⊆ i(x), i(x) ∈ O;
(ii) x ⊆ a, a ∈ O =⇒ i(x) ⊆ a;
(iii) x ∈ O ⇐⇒ i(x) = x.

If x, y ⊆ T , we define an open implication of x and y as follows:

(x ⊃◦ y) = {p ∈ T | (∀q ≤ p) (q ∈ x ⇒ q ∈ y)} .

It is evident that always (x ⊃◦ y) ∈ O. The most important property of
O is the following fact (see [4], sect. 2.2.):

2.2.2. Fact. The structure (O,⊆) is a complete Heyting algebra. Op-
erations in this algebra are calculated in the following way:

1 = T ; 0 = ∅; a�b = a ∩ b; a�b = a ∪ b;

(a� b) = (a ⊃◦ b); �a = (a ⊃◦ ∅).

If Q ⊆ O then �Q =
⋂Q = {p ∈ T | (∀a ∈ Q) (p ∈ a)} ,

�Q =
⋃Q = {p ∈ T | (∃a ∈ Q)(p ∈ a)}.

2.3. We need a slightly more complicated construction in the sequel.
A completion relation on (T,≤) is by definition a relation J(d, p),

where d ⊆ T and p ∈ T , such that

(∀q ∈ T )(J(d, p), q ∈ d =⇒ q ≤ p).

We shall say that d is a set of premises for p according to J , if J(d, p)
takes place.

A comletion structure (T,≤, J) allows to define the family E of com-
plete subsets of T . Namely, an x ⊆ T is said to be complete (symbolically,
x ∈ E) iff

(∀d ⊆ T )(∀p ∈ T )(J(d, p), d ⊆ x =⇒ p ∈ x).

Then we define an operation of completion in the following way:

Dx =
⋂{b ∈ E | x ⊆ b}

for any x ⊆ T .
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2.3.1. Fact. The operation D acts as a closure operation. Namely,

(i) x ⊆ Dx; Dx ∈ E ; .
(ii) x ⊆ b, b ∈ E =⇒ Dx ⊆ b;

(iii) DDx = Dx;

(iv) x ∈ E ⇐⇒ Dx = x;

(v) x ⊆ y =⇒ Dx ⊆ Dy.

2.3.2. Fact.
a ∈ O, x ⊆ T =⇒ a ∩Dx ⊆ D(a ∩ x).

Proof. Let us consider the set
c = {p ∈ T | p ∈ a =⇒ p ∈ D(a ∩ x)}

and check subsequently

c ∈ E , x ⊆ c, Dx ⊆ c, a ∩Dx ⊆ D(a ∩ x).

A completion structure (T,≤, J) is said to be ordered if the following
condition holds:

p ≤ q, J(d, q) =⇒ ∃e(J(e, p), e ⊆ i(d)).

If a completion structure is ordered then some further useful properties
take place (cf. [4], sect. 2.4.2.) .

2.3.3. Fact.

(i) a ∈ O =⇒ Da ∈ O;

(ii) a ∈ O, b ∈ E =⇒ (a ⊃◦ b) ∈ E ∩ O;

(iii) a, b ∈ O =⇒ Da ∩Db = D(a ∩ b);
(iv) a ∈ O, b ∈ E =⇒ (a ⊃◦ b) = (Da ⊃◦ b).

These properties provide the following important fact (see [4], sect.
2.5.).

2.3.4. Fact. Let (T,≤, J) be an ordered completion structure. Then
the structure (E ∩O,⊆) is a complete Heyting algebra. Operations in this
algebra are calculated in the following way:

1 = T ; 0 = D∅; a�b = a ∩ b; a�b = D(a ∪ b);

(a� b) = (a ⊃◦ b); �a = (a ⊃◦ D∅).
If Q ⊆ E ∩ O then �Q =

⋂Q, �Q = D(
⋃Q).

Now we deal with a standard double-negation construction manufac-
turing a Boolean algebra from a given Heyting one. In our situation this
construction looks as follows.
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Let (T,≤, J) be an ordered completion structure and v ∈ E ∩ O. Let
us consider the family of stable subsets of T :

N = {a ∈ O | a = ((a ⊃◦ v) ⊃◦ v)} .

2.3.5. Fact.

(i) v ∈ N ;

(ii) a ∈ O, b ∈ N =⇒ (a ⊃◦ b) ∈ N ;

(iii) a ∈ N =⇒ v ⊆ a;

(iv) a ∈ O =⇒ a ⊆ ((a ⊃◦ v) ⊃◦ v);
(v) a ∈ N =⇒ a ∈ E ∩ O.

2.3.6. Fact. (Cf. [3], sect. 1.9.). The structure (N ,⊆) is a complete
Boolean algebra. In this algebra

1 = T ; 0 = v; a�b = a ∩ b;

a�b = ((a ⊃◦ v) ∩ (b ⊃◦ v)) ⊃◦ v;

(a� b) = (a ⊃◦ b); �a = (a ⊃◦ v);

If Q ⊆ N , then

�Q =
⋂Q, �Q = (

⋂{(a ⊃◦ v) | a ∈ Q}) ⊃◦ v.

Note that N is a subset of E ∩ O but not a subalgebra of E ∩ O.

2.4. Let us consider the relation p ∈ Dx as a two argument predicate
of arguments p ∈ T and x ⊆ T . According to the definition

p ∈ Dx ⇐⇒ (∀b ⊆ T ) (x ⊆ b, b ∈ E =⇒ p ∈ b),

so we use in this definition an analytical quantifier (∀b ⊆ T ) on subsets
of T . From a general constructive point of view it would be much more
plausible to avoid this nonelementary quantifier. This is the only place
where we use a subset quantifier for the definitions of a set. All other set
definition of ours are strongly predicative: they use only quantifiers limited
by elements of earlier predicted sets. We show that in an important case
of the completion structure with finite premises this analytical universal
quantifier can be substituted by the much more elementary existential
quantifier on some finite objects. In fact, in this article we use completion
structures with finite premises exclusively. This circumstance is essential
in our metamathematical observations on the connection between proofs
in ArF and in Ar.

We say that a set X is finite if there exists a natural number m and
a function f : {0, 1, . . . , m − 1} → X such that: domf = {0, . . . ,m − 1},
rngf = X, and f is a bijection. The latter means

(∀i, j ∈ domf)(i = j ⇐⇒ f(i) = f(j)).
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If this definition seems unnecessary for somebody, please, remem-
ber that, from the constructive point of view, there are a few natural
nonequivalent definitions of finiteness and we are working in the frame of
constructive metamathematics. For example, for any finite X we have a
constructive disjuction

X = ∅ ∨ ∃x(x ∈ X)

and this statement is by no means true for an arbitrary set.
We say that a completion relation J on (T,≤) is a relation with finite

premises if it follows from J(d, p) that d is a finite set.

2.4.1. Now we consider a well known primitive recursive enumeration
ω∗ of finite sequences (corteges) of natural numbers by natural numbers.
So any natural number p could be considered as a cortege

p = 〈n0, . . . , nk−1〉,
where k = ∂p is the length of the cortege p and ni=[p]i for i = 0, . . . , k −
1 is the i–th member of p. We suppose that ∂p and [p]i are primitive
recursive functions of p (and i) as well as 〈n0, . . . , nk−1〉 for any fixed
k. Furthermore, there can be defined a primitive recursive concatenation
operation p∗q, such that if p = 〈u0, . . . , uk−1〉 and q = 〈v0, . . . , v`−1〉, then

p ∗ q = 〈u0, . . . , uk−1, v0, . . . , v`−1〉.
The main relation v on the cortege system ω∗ is defined by the state-

ment
q1 v q2 ⇐⇒ ∃p (q2 ∗ p = q1),

so a prolonged cortege is less in this notation. It is the tree–like partial
ordering with the empty cortege 〈 〉 as the largest element. We suppose
that v is a primitive recursive relation on ω.

The set of all corteges containing as members only 0 and 1 (the set of
all binary corteges) we denote by {0, 1}∗. It is a primitive recursive subset
of ω∗.

A subset a ⊆ ω∗ is called homogeneous if
p, q ∈ a, p v r v q =⇒ r ∈ a.

A set a is, by definition, standard if it is homogeneous and, moreover,

p ∗ 〈m + 1〉 ∈ a =⇒ p ∗ 〈m〉 ∈ a

for any natural p and m.
For example, {0, 1}∗ is standard. Further, the set of all binary corteges

containing at least one unit (i.e. not pure zero corteges) is also standard.
A p ∈ a is said to be a leaf of a if p is minimal in a

i. e. (∀q ∈ a)(q v p =⇒ q = p).

An element p ∈ a is said to be a root of a if p is the largest element of a,
i.e. (∀q ∈ a)(q v p).
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2.4.2. Let us consider now an arbitrary completion structure (T,≤, J).
A finite inference over (T,≤, J) is, by definition, a couple of functions

(π, τ), such that
(i) domπ is a finite standard subset of ω∗ with a root 〈 〉 (the empty

cortege) and rngπ ⊆ T ;
(ii) if m is not a leaf of domπ then

J({π(m ∗ 〈n〉) | m ∗ 〈n〉 ∈ domπ}, π(m));

(iii) domτ is the set of leaves of domπ and rngτ ⊆ {0, 1};
(iv) if τ(m) = 0 then J(∅, π(m)).
An inference (π, τ) is an inference for p ∈ T , if π(〈 〉) = p. Let x ⊆ T

be a subset of T . We say that (π, τ) is an inference from x if τ(m) = 1 =⇒
π(m) ∈ x.

Intuitively, a finite inference for p from x is some sort of finite proof
for the fact p ∈ Dx.

Now we are ready to fomulate the main fact of this section.

2.4.3. Fact. If (T,≤, J) is a completion structure with finite premises,
then p ∈ Dx iff there exists a finite inference (π, τ) from x for p.

Proof. Let us consider a set c such that p ∈ c iff there exists a finite
inference (π, τ) from x for p. Firstly, we check x ⊆ c and c ∈ E , so Dx ⊆ c
(2.3.1.(ii)). Conversely, if x ⊆ b, b ∈ E , then c ⊆ b. Indeed, the implication
(∀p ∈ c)(p ∈ b) could be proven by arithmetical induction on the number
of domπ in the finite inference (π, τ) for p ∈ c.

2.4.4. In the proof above

c =
⋂{b ∈ E | x ⊆ b} = Dx,

so one can define Dx as c.
The situation is particularly simple if T is a set of natural numbers

with recursive ≤. In this case a finite inference (π, τ) is a completely finite
object which can be coded by a natural number, so the predicate p ∈ Dx
turns out to be a

∑0
1 arithmetical predicate (the original definition gives

only a
∏1

1 analytical estimation for this predicate).

3. Let us construct now some concrete standard T ⊆ ω∗. We con-
struct T subsequently by induction on the length ∂p for elements p ∈ ω∗.
Simultaneously we construct a function h(p) with domh = T . For p ∈ T ,
the corresponding h(p) will be a queue of marked formulas, i.e. finite (not
empty) sequence ϕ1 . . . ϕm (m > 0) of marked formulas. A marked formula
is a construction of the kind `A (read “A is on the left” and it could be
thought of as “A is presumably true”) or rA (read “A is on the right side”
and in this case it could be thought of as “A is presumably false”). Here
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A is an arbitrary formula of our language (in our situation it is a formula
of Lc, but, as we have said already, our construction is applicable to an
arbitrary explicit first order theory).

A queue of marked formulas is a close analogon of a sequent in a usual
theory of cut-elimination. For example a queue

`A rD `B rA `C

represents a sequent A, B,C → D,A in a usual notation.

3.1. Let us arrange into a simple sequence

Form0, Form1, . . . , Formn, . . .

all formulas of our language (i.e. of the language Lc). Similarly,

Ax0, Ax1, . . . , Axn, . . .

is the sequence of all axioms of our theory (i.e. Arc) and

Term0, Term1, . . . , Termn, . . .

is the sequence of all terms.

3.1.1. As a basis (the first step) of the construction T and h(p) we
form the part T1 of T ; T1 ⊆ {0, 1}∗: T1 = {1, 01, 001, 0001, . . . }, and put
h(0n1) = rFormn; it is a one-element queue of marked formulas.

3.1.2. Let us suppose now that we have constructed already the part
Tk of the set T and the function h on the set Tk on some step k.

A point p ∈ Tk is inconsistent, if h(p) contains `A and rA for the same
formula A, or h(p) contains `⊥ (where ⊥ is the logical constant “false”).
All inconsistent p ∈ Tk are leaves of Tk. In the next step we shall prolong
all consistent leaves of Tk, so inconsistent leaves of Tk will be minimal in
Theither.

3.1.3. Let us represent the number k of the current step as k = 3m+i
with i = 0, 1, 2.

(i) If i = 0, we prolong every consistent point p ∈ Tk by two points
p ∗ 〈0〉, p ∗ 〈1〉 and put

h(p ∗ 〈0〉) = (h(p), `Formm),

h(p ∗ 〈1〉) = (h(p), rFormm),

so we prolong the current queue by the formula Formm with the two possi-
ble marks ` and r. The number m of this formula is defined by the number
k of the current step.

(ii) If i = 1 we prolong every consistent leaf p ∈ Tk by one cortege
p ∗ 〈0〉 with h(p ∗ 〈0〉) = (h(p), `Axm).
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(iii) Finally, if i = 2 then the prolongation of the consistent p ∈ Tk

depends on the first element of the queue h(p). Let h(p) = (ϕ,Q) where
ϕ is a marked formula, the first member of h(p).

1) ϕ is an atomic marked formula. Then we use a one prologation and
put ϕ at the end of the queue:

h(p ∗ 〈0〉) = (Q, ϕ).

2) ϕ = r(A ∧B). We use two prolongations:

h(p ∗ 〈0〉) = (Q, rA), h(p ∗ 〈1〉) = (Q, rB).

3) ϕ = `(A ∧B), use one prolongation

h(p ∗ 〈0〉) = (Q, `A, `B).

4) ϕ = r(A ∨B);

h(p ∗ 〈0〉) = (Q, rA, rB).

5) ϕ = `(A ∨B);

h(p ∗ 〈0〉) = (Q, `A), h(p ∗ 〈1〉) = (Q, `B).

6) ϕ = r(A ⊃ B);

h(p ∗ 〈0〉) = (Q, `A, rB).

7) ϕ = `(A ⊃ B);

h(p ∗ 〈0〉) = (Q, `B), h(p ∗ 〈1〉) = (Q, rA).

8) ϕ = r�A;
h(p ∗ 〈0〉) = (Q, `A).

9) ϕ = `�A;
h(p ∗ 〈0〉) = (Q, rA).

10) ϕ = r∀xA(x); we use a one prolongation of P . Let y be a the first
variable which does not occur in h(p). We put h(p ∗ 〈0〉) = (Q, rA(y)).

11) ϕ = `∀xA(x);

h(p ∗ 〈0〉) = (Q, `A(Term0), . . . , `A(Termm−1), `∀xA(x)),

so we use a one prolongation and put at the end of the current queue the
substitution of the first m terms. Note that the original marked formula
`∀xA(x) still remains at the end of the resulting queue for the further
using.

12) ϕ = r∃xA(x); this case is similar to 11):

h(p ∗ 〈0〉) = (Q, rA(Term0), . . . , rA(Termm−1), r∃xA(X)).

13) ϕ = `∃xA(x); we put h(p∗〈0〉) = (Q, `A(y)) for some new variable
y not occurring in h(p).
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3.1.4. Now we define T as
⋃
k

Tk and the function h on T as it follows

from 3.1.1–3.1.3. In fact, T is a primitive recursive set, h is a primitive
recursive function. Note T ⊆ {0, 1}∗, T is a standard subset of ω∗.

3.2. Let us notice now some simple facts concerning h. First we define
a formula h(p)f for any sequence h(p) in the following way (note that
this definition excellently harmonizes with the usual interpretation of a
sequent). Namely, let us put `f = � and rf is an empty expression. Let

h(p) = (ε1A1, . . . , εkAk)

where εi is either ` or r. We define

h(p)f = ∀
(
εf
1A1 ∨ εf

2A2 ∨ · · · ∨ εf
kAk

)
.

Here the quantifier ∀(. . . ) means the closure by universal quantifiers, so
h(p)f is a closed formula.

3.2.1. Fact.
(i) If p ∈ T is inconsistent then h(p)f is deducible (in the classical

predicate logic).

(ii) If p ∈ T , p ∗ 〈0〉 ∈ T , p ∗ 〈1〉 /∈ T then h(p)f is deducible from
h(p ∗ 〈0〉)f in our theory (in our case it is the theory Arc).

(iii) If p ∈ T , p ∗ 〈0〉 ∈ T , p ∗ 〈1〉 ∈ T then h(p)f is deducible in our
theory from h(p ∗ 〈0〉)f and h(p ∗ 〈1〉)f .

Proof. The proof is provided by a straightforward observation of the
construction of 3.1. Note the point 3.1.3. (ii) where axioms of our theory
are used.

3.2.2. Fact. If p is inconsistent, then p is a leaf of T .

Proof. Cf. 3.1.2.
3.2.3. Fact. For every closed formula A there exists p ∈ T , such that

h(p)f = A.

Proof. See 3.1.1.
3.3. We define the completion structure on the set T . The fact J(d, p)

depends on the h(p), namely
(i) if p is not a leaf in T then J(d, p) iff

d = T ∩ {p ∗ 〈0〉, p ∗ 〈1〉};
(ii) if p is a leaf in T (i.e. p is inconsistent) then J(d, p) iff d = ∅.
It is evident, J is a relation with finite premises. Moreover, the struc-

ture (T,v, J) (with the main relation v, 2.4.1.) is an ordered completion
structure, the set T is homogeneous.
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So we have the complete Heyting algebra (E ∩ O,⊆) (cf. 2.3.4.). Let
us define the set v ⊆ T as follows:

v = D{p ∈ T | p is inconsistent}.
3.3.1. Fact.
(i) v ∈ E ∩ O;
(ii) If p ∈ v then h(p)f is deducible in our therory.

Proof. Cf. 2.3.3., 3.2.2., 3.2.1.

So, accordind to 2.3.6. we have the complete Boolean algebra (N ,⊆).

3.4. Now we construct the formula distribution for (J, v). It is the
couple of functions (L,R), such that for any formula A of our language
(in Lc for our situation), L(A) and R(A) are subsets of T . Intuitively,
(L,R) could be viewed as a some “intermediate product” for the model.
L(A) is the place where A is “certainly true” and, correspondigly, R(A)
is the place where A is “certainly false”. The set v represent the zero
of the algebra, the place where all statement are true (and false). We
extend further this distribution to the real Boolean-valued model, so we
need to check some preliminary conditions on this distribution (cf. 3.4.2.
below) making possible the subsequent extension. For example, it has to
be L(A)∩R(A) ⊆ v (the place where A is “certainly” true and false is the
zero palce).

Definition. p ∈ L(A) iff either
(i) p is inconsistent or
(ii) p is consistent and there exists q ∈ T , p v q, such that `A occurs

in the sequence h(q).
Correpondingly, p ∈ R(A) iff either
(i) p is inconsistent or
(ii) p is consistent and there exists q ∈ T , p v q, such that rA occurs

in the sequence h(q).

Note that the set {q ∈ T | p v q} is finite. As is evident from the
definition, we have the

3.4.1. Fact. L(A), R(A) ∈ O for any A.

The following fact means that our distribution is a systematic one and
provides the subsequent extending to the Boolean-valued model.

3.4.2. Fact.

1) L(⊥) ⊆ v, L(A) ∩R(A) ⊆ v;

2) L(A ∧B) ⊆ D(L(A) ∩ L(B));

3) R(A ∧B) ⊆ D(R(A) ∪R(B));
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4) L(A ∨B) ⊆ D(L(A) ∪ L(B));

5) R(A ∨B) ⊆ D(R(A) ∩R(B));

6) L(A ⊃ B) ⊆ D(R(A) ∪ L(B));

7) R(A ⊃ B) ⊆ D(L(A) ∩R(B));

8) L(�A) ⊆ D(R(A));

9) R(�A) ⊆ D(L(A));

10) L(∀xA(x)) ⊆ D(L(A(t)))
for any term t of our langauge;

11) R(∀xA(x)) ⊆ D(
⋃

y∈Var

R(A(y))),

where Var is the set of all variables;

12) L(∃xA(x)) ⊆ D(
⋃

y∈Var

L(A(y)));

13) R(∃xA(x)) ⊆ D(R(A(t))).

Proof. 1) If p ∈ L(A)∩R(A) then p is inconsistent, hence (3.3.) p ∈
v. Cases 2)–13) are consequences of the definition 3.1.3. (iii). For instance,
let us consider 3). Let us suppose p ∈ R(A ∧B). If p is inconsistent, then
p ∈ R(A) (and p ∈ R(B)), so p ∈ R(A) ∪ R(B). If p is consistent then
r(A ∧ B) occurs in h(q), p v q; q is consistent and is not a leaf (3.1.2.,
3.1.3.), note that h(q) contains a nonatomic marked formula, namely r(A∧
B). So q should be prolonged. At each step of the prolongation according
to 3.1.3. (iii) we delete the first member of the current h (and maybe put
some new formulas at the end of the queue). So, at some step n of this
process we get a subtree Tn such that h(m) begins with r(A ∧B) for any
m, m v p, and m is a leaf of Tn. At the next step (n + 1) any such m will
be prolonged in a such a way that h(m ∗ 〈0〉) contains rA and h(m ∗ 〈1〉)
contains rB. So, for every leaf s of Tm+1, s v p, and h(s) contains either
rA or rB. Hence p ∈ D(R(A) ∪R(B)).

The following fact means that our formula distribution is a formula
complete one.

3.4.3. Fact. For every formula A of our language we have

D(R(A) ∪ L(A)) = T.

Proof. Cf. 3.1.2. (i)

3.4.4. Fact. If A is an axiom of our theory then

D(L(A)) = T.
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Proof. Cf. 3.1.2. (ii)

3.5. We use our systematic formula distribution in the more conve-
nient form of a semivaluation. Namely, for any formula we define

|A|− =(L(A) ⊃◦ v) ⊃◦ v;

|A|+ =(R(A) ⊃◦ v).

The main convenience of using semivaluations is that |A|−, |A|+ are the
members of the main algebra (N ,⊆) (2.3.5., 3.4.1., 3.3.1.). As a conse-
quence of 3.4.2. we have the following fact, that precisely means that |A|−,
|A|+ give a semivaluation in the sense of Takahashi.

3.5.1. Fact.

1) |⊥|− ⊆ v; |A|+ ⊆ |A|+;

2) |A ∧B|− ⊆ |A|−�|B|− ⊆ |A|+�|B|+ ⊆ |A ∧B|+;

3) |A| ∨B|− ⊆ |A|−�|B|− ⊆ |A|+�|B|+ ⊆ |A ∨B|+;

4) |A ⊃ B|− ⊆ |A|+ � |B|− ⊆ |A|− � |B|+ ⊆ |A ⊃ B|+;

5) |¬A|− ⊆ �|A|+ ⊆ �|A|− ⊆ |¬A|+;

6) |∀xA(x)|− ⊆ �
t∈Tm

|A(t)|− ⊆ �
y∈Var

|A(y)|+ ⊆ |∀xA(x)|+;

7) |∃xA(x)|− ⊆ �
y∈Var

|A(y)|− ⊆ �
t∈Tm

|A(t)|+ ⊆ |∃xA(x)|+.

where all operations are in the algebra (N ,⊆); Tm is the set of all terms
of our theory and Var is the set of all its variables.

Proof. This fact is a straightforward consequence of 3.4.2. Let us
consider, for instance, |A|− ⊆ |A|+. According to 3.4.2.1 L(A)∩R(A) ⊆ v,
so in the algebra (O,⊆) we have R(A) ⊆ (L(A) ⊃◦ v). On the other hand,
in O:

(L(A) ⊃◦ v) ∩ ((L(A) ⊃◦ v) ⊃◦ v) ⊆ v,

hence R(A) ∩ ((L(A) ⊃◦ v) ⊃◦ v) ⊆ v and acting in O:

((L(A) ⊃◦ v) ⊃◦ v) ⊆ (R(A) ⊃◦ v).

3.5.2. Fact. For every formula A we have

|A|− = |A|+.

Proof. In view of 3.5.1. we have |A|− ⊆ |A|+. Let us use now the
property 3.4.3. As D(L(A) ∪ R(A)) = T , we have in the algebra N :



384 Albert G. Dragalin

D(L(A) ∪R(A)) ⊇◦ v) = v, and hence by (2.3.3.(iv)): (L(A) ∪ T (A)⊇◦v)
= v. Now, acting in O:

(L(A) ⊃◦ v) ∩ (R(A) ⊃◦ v) = v

and, further,
(R(A) ⊃◦ v) ⊆ (L(A) ⊃◦ v) ⊃◦ v,

i.e. |A|+ ⊆ |A|−.

3.5.3. Fact. If A is an axiom of our theory, then |A|− = T .

Proof. If A is an axiom, then D(L(A)) = T (3.4.4.), so in the algebra
(N ,⊆) : (D(L(A)) ⊃◦ v) = v and by (2.3.3.(iv)): (L(A) ⊃◦ v) = v and
acting in O : T ⊆ (L(A) ⊃◦ v) ⊃◦ v, i.e. |A|− = T.

3.6. Now we are ready to define our designed model M for our theory
(i.e. for Arc).

The domain D of our theory will be the set of figures [t], where t is a
term of the theory.

As the Boolean algebra of truth values we use the algebra (N ,⊆).
Further, for a functional symbol f of our theory we define its values in M
as follows:

‖f ([t1] , . . . , [tm])‖ = [f (t1, . . . , tm)] .

And, finally, for a predicate symbol P of our theory we define:

‖P ([t1], . . . , [tm])‖ = |P (t1, . . . , tm)|+.

The definition of the model M is finished.

We remind that the truth values of evaluated formulas are calculated
in M according to the operations in the algebra (N ,⊆). For example,
‖A ⊃ B‖ = ‖A‖ � ‖B‖, ‖A ∨ B‖ = ‖A‖�‖B‖, ‖∀xA(x)‖ = �

a∈D
‖A(a)‖

etc.

3.6.1. Fact. (the substitution property) For any formula A(x, y) and
terms t(x, y) and r(x) such that all parameters in them, except those
explicitely mentioned, are evaluated in M , we have

‖t(a, r(a))‖ = ‖t(a, ‖r(a)‖)‖,
‖A(a, r(a))‖ = ‖A(a, ‖r(a)‖)‖.

Proof. By straightforward induction on the construction of A and t.

The fundamental fact concerning our model M can be expressed by
the following
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3.6.2. Fact. Let A(x1, . . . , xn) be an arbitrary formula with the pa-
rameters x1, . . . , xn and let t1, . . . , tn be arbitrary terms. Then
|A(t1, . . . , tn)|− ⊆ ‖A([t1], . . . , [tn])‖ ⊆ |A(t1, . . . , tn)|+.

Proof. The proof is by induction on the construction of A using
3.5.1. Let us denote A([t1]), . . . , [tn]) by A′ and A(t1, . . . , tn) by A∗. Now
let us consider, as an example, the case when A is an implication B ⊃ C.
By the inductive supposition we have |B∗|− ⊆ ‖B′‖ ⊆ |B∗|+ and |C∗|− ⊆
‖C ′‖ ⊆ |C∗|+. Hence in view of 3.5.1.4):

|(B ⊃ C)∗|− = |B∗ ⊃ C∗|− ⊆ |B∗|+ � |C∗|− ⊆ ‖B′‖� ‖C ′‖
= ‖(B ⊃ C)′‖ ⊆ |B∗|− � |C∗|+ ⊆ |(B ⊃ C)∗|+.

3.6.3. Theorem. Let A(x1, . . . , xn) be an arbitrary formula with the
parameters x1, . . . , xn. Let t1, . . . , tn be a list of terms. Then

|A(t1, . . . , tn)|− = ‖A([t1], . . . , [tn])‖ = |A(t1, . . . , tn)|+.

In particular, if A is a closed formula, then

|A|− = ‖A‖ = |A|+.

Proof. 3.6.2., 3.5.2

3.6.4. Fact. If A is an axiom of our theory, then ‖A‖ = T .

Proof. 3.6.3., 3.5.3.

3.6.5. Fact. If B is an arbitrary formula which is deducible in our the-
ory and B′ is an arbitrary evaluation of B in the model M , then ‖B′‖ = T .
In particular, if B is a deducible closed formula then ‖B‖ = T .

Proof. By induction on the construction of the inference of B in
our theory. Essentially this induction is trivial because (N ,⊆) is a com-
plete Boolean algebra, i.e. is in accordance with classical logic. A bit of
accuracy is needed in checking the quantifier axioms. Namely, we use the
substitution property 3.6.1.

The main feature of our model M is that we have also an inverse
statement.

3.6.6. Theorem. Let A(x1, . . . , xn) be an arbitrary formula with the
parameters x1, . . . , xn and t1, . . . , tn being terms. If ‖A([t1], . . . , [tn])‖ = T
then the formula A(t1, . . . , tn) is deducible is our theory. In particular, if
A is a closed formula and ‖A‖ = T then A is deducible.

Proof. Let ‖A([t1], . . . , [tn])‖=T . Then |(At1, . . . , tn)|+ = T (3.6.2),
i.e. (R(A(t1, . . . , tn)) ⊃◦ v) = T and hence R(A(t1, . . . , tn)) ⊆ v. Let us



386 Albert G. Dragalin

choose the point p ∈ T , such that h(p) = rA(t1, . . . , tn) (3.1.1.) Then p ∈
R(A(t1, . . . , tn)) and hence p ∈ v. So according to 3.3.1.(ii) A(t1, . . . , tn)
is deducible.

4.1. Thus we have constructed the designed model M for the theory
Arc and now we are ready to imitate the classical reasoning of 1.3. Let
us extend the model M by a new predicate symbol, putting: ‖F (a)‖ =
�

n∈ω
‖a = n‖, where a ∈ D and ω is the set of all natural numbers

0, 1, 2, . . . , n̄ is the term SS . . . SO representing the number n in our theory
and the disjunction � is taken in the algebra (N ,⊆). This way we get
some interpretation MF for the language LF . Note that it is important
here that (N ,⊆) is a complete Boolean algebra: we need the existence of
the disjunction in the definition of ‖F (a)‖. So the usual Lindenbaum–
Tarski algebra does not suit this situation.

We state that MF is a model for the theory ArF .
It is necessary to check the nonlogical axioms 1.2. (vii)–(ix). We begin

with some auxiliary facts.

4.1.1. Fact.

(i) ‖F (n)‖ = T for any n ∈ ω;

(ii) |F (c)‖ = 0.

Proof. By elementary checking. For instance, ‖n < c‖ = T (1.1.(vi))
and therefore ‖c = n‖ = 0 for any n ∈ ω. Hence,

‖F (c)‖ = �
n∈ω

‖c = n‖ = 0.

4.1.2. Fact.

(i) ‖a = b‖ ∩ ‖F (a)‖ ⊆ ‖F (b)‖;
(ii) ‖a = b‖ ⊆ ‖t(a) = t(b)‖;
(iii) ‖a = b‖ ∩ ‖A(a)‖ ⊆ ‖A(b)‖;

where a, b ∈ D, t(x) is an arbitrary term and A(x) is an arbitrary formula
of ArF all parameters of which, excepting x, are evaluated in MF .

Proof. (i) By elementary checking according to the definition of
‖F (a)‖; (ii) Because M is a model of Arc and the corresponding fact is
deducible in Arc; (iii) By a straightforward induction on the construction
of A(x) using (i) and (ii).

4.1.3. Fact. If A(x) is a formula of ArF with the parameters evalu-
ated in MF (excepting maybe x) then
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‖∀x(F (x) ⊃ A(x))‖ = �
n∈ω

‖A(n)‖;

‖∃x(F (x) ∧A(x))‖ = �
n∈ω

‖A(n)‖

Proof. By elementary calculations in (N ,⊆) using 4.1.2. For in-
stance, (4.1.2.(iii)): ‖A(n)‖�‖a = n‖ ⊆ ‖A(a)‖, hence ‖A(n)‖ ⊆ ‖a =
n‖� ‖A(a)‖ and further

�
n
‖A(n)‖ ⊆�

n
(‖a = n‖� ‖A(a)‖) =

((�
n
‖a = n‖)� ‖A(a)‖), i.e. �

n
‖A(n)‖ ⊆ (‖F (a)‖� ‖A(a)‖),

�
n∈ω

‖A(n)‖ ⊆ �
a∈D

(‖F (a)‖� ‖A(a)‖). ¤

4.2. Now the checking of 1.2. (vii)–(ix) can be reduced to some ele-
mentary calculations. For example, 1.2.(viii):

‖∀xy(F (x) ∧ F (y) ⊃ F (x + y))‖ =� ‖F (m + n)‖ =

�
m,n∈ω

�
k∈ω

‖k = m + n‖,

and the last expression has trivially the value T .
The induction principle 1.2.(ix) could be rewritten by (4.1.3.) as

‖A(0)‖� �
n∈ω

‖A(n) ⊂ A(Sn)‖ ⊆ �
n∈ω

‖A(n)‖.

We prove this with the help of

‖A(0)‖�� ‖A(n) ⊃ A(Sn)‖ ⊆ ‖A(n)‖
for any n ∈ ω. This last statement could be proven by metamathematical
induction on n ∈ ω.

4.3. Let us prove now the conservativity of ArF over Ar,
Let A be a closed formula in the language L and let us suppose

ArF`A. Then MF |= A (i.e. ‖A‖ = T in the model MF ). But A
does not contain the predicate F , so M |= A and, hence, Arc ` A (3.6.6.).
Finally, as A does not contain the constant c, we have Ar ` A, because
Arc is conservative over Ar (see 1.1.(vi)).

5.1. Finally let us discuss shortly the possible investigation of algo-
rithms giving the proof of Ar ` A for the given proof ArF ` A for a
formula A in L. Our explicit construction for models M and MF enables
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us to give a lot of algorithms for classes of input data, but here we give
only a rather rough estimation founded on a proof-theoretic technique.

For every concrete formula A(x1, . . . , xn) of the language LF the cor-
responding predicate p ∈ ‖A([t1], . . . , [tn])‖ of argumments p, t1, . . . , tn
could be expressed by an arithmetical formula of L. It could be viewed
by metamathematical induction on the construction of A in LF . In fact,
one can arrage the primitive recursive function giving the formula p ∈
‖A([t1], . . . , [tn])‖ with the variables p, t1, . . . , tn for the given input for-
mula A (to be a bit more pedantic, this function works not with the for-
mulas but with their Gödel numbers, of course).

The constructive character of our metamathematics provides a con-
structive proof for the implication

ArF ` A =⇒ (∀p ∈ T )(p ∈ ‖A‖)
for any (metamathematically given) formula A in LF . This proof could
be executed in the constructive system of arithmetic, say, in HA (see, for
instance, [8], par 2, sect 2) formalizing the reasoning of 4.1.

Further, we reproduce in HA the proof of the implication

(∀p ∈ T )(p ∈ ‖A‖) =⇒ Arc ` A

for any A in Lc (3.6.6.), and, finally, the proof

Arc ` A =⇒ Ar ` A

for A ∈ L (1.1.(vi)).
So we can prove in HA

ArF ` A =⇒ Ar ` A

for any, metamathematically given, closed formula A in the language L.
This last statement could be reformulated in the ∀∃ form:

∀x∃y(( Proof x for A in ArF ) =⇒ ( Proof y for A in Ar))

which is provable in HA.
By the finite type realizability technique (see, for example, [9]) for

HA, one can exclude from the last proof the ε0-recursive function y = G(x)
which gives the proof y for A in Ar for the input proof x for A in ArF .
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