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A result on distributions and the change of variable

By BRIAN FISHER (Leicester) and EMIN ÖZÇAḠ (Leicester)

Abstract. Let F be a distribution in D′ and let f be a differentiable function
such that f (p+1) is a locally summable function with f ′(x) > 0, (or < 0), for all x in
the interval (a, b). It is proved that if F is the p-th derivative of a continuous function

F (−p) on the interval (f(a), (f(b)), (or (f(b), f(a))), then

lim
n→∞

Z ∞

−∞
Fn(f(x))ϕ(x)dx = 〈G, ϕ〉

for all ϕ in D with support contained in the interval (a, b), where Fn(x) = (F ∗ δn)(x).
This defines the distribution F (f) = G on the interval (a, b). Some examples are given.

In the following, we let N be the neutrix, see van der Corput [1],
having domain N ′ = {1, 2, . . . , n, . . . } and range the real numbers, with
negligible functions finite linear sums of the functions

nλ lnr−1 n, lnr n : λ > 0, r = 1, 2, . . .

and all functions which converge to zero in the normal sense as n tends to
infinity.

We now let %(x) be any infinitely differentiable function having the
following properties:

(i) %(x) = 0 for |x| ≥ 1,
(ii) %(x) ≥ 0,
(iii) %(x) = %(−x),
(iv)

∫ 1

−1
%(x)dx = 1.

Putting δn(x) = n%(nx) for n = 1, 2, . . . , it follows that {δn(x)} is a regular
sequence of infinitely differentiable functions converging to the Dirac delta–
function δ(x).
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Now let D be the space of infinitely differentiable functions with com-
pact support and let D′ be the space of distributions defined on D. Then
if F is an arbitrary distribution in D′, we define

Fn(x) = (F ∗ δn)(x) = 〈F (t), δn(x− t)〉
for n = 1, 2, . . . . It follows that {Fn(x)} is a regular sequence of infinitely
differentiable functions converging to the distribution F (x).

The following definition for the change of variable in distributions was
given in [2].

Definition 1. Let F be a distribution in D′ and let f be a locally
summable function. We say that distribution F (f(x)) exists and is equal
to the distribution G on the interval (a, b) if

N − lim
n→∞

∫ ∞

−∞
Fn(f(x))ϕ(x)dx = 〈G,ϕ〉

for all test functions ϕ in D with support contained in the interval (a, b),
where

Fn(x) = (F ∗ δn)(x) .

We now prove an existence theorem for a distribution F (f(x)) which
in fact does not need a neutrix limit.

Theorem 1. Let F be a distribution in D′ and let f be a differentiable
function such that f (p+1) is a locally summable function with f ′(x) > 0,
(or < 0), for all x in the interval (a, b). If F is the p-th derivative of a
continuous function F (−p) on the interval (f(a), f(b)), (or (f(b), f(a))),
then the distribution F (f(x)) exists on the interval (a, b) and

〈F (f(x)), ϕ(x)〉 = (−1)psgn.g′
∫ ∞

−∞
F (−p)(x)

dp

dxp
[g′(x)ϕ(g(x))]dx(1)

= (−1)p

∫ ∞

−∞
F (−p)(f(x))|f ′(x)|

[
1

f ′(x)
d

dx

]p [
ϕ(x)
f ′(x)

]
dx(2)

for all ϕ in D with support contained in the interval (a, b), where g is the
inverse of f on the interval (a, b) and

sgn.g′ =

{
1, g′(x) > 0,

−1, g′(x) < 0.

Alternatively, if F (−p) is only a locally summable function but either
f (p+1) or F (−p) is a bounded, locally summable function on every bounded
subset of (a, b) and (f(a), f(b)), (or f(b), f(a))), respectively, then F (f(x))
again exists and equations (1) and (2) are satisfied.
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In particular, if f is infinitely differentiable, then F (f(x)) is a defined
for every distribution F .

Proof. Suppose first of all that f (p+1) is a locally summable function
and F (−p) is a continuous function. Letting ϕ be an arbitrary function in
D with support contained in the interval (a, b) and making the substitution
t = f(x), we have

〈Fn(f(x)), ϕ(x)〉 =
∫ ∞

−∞
Fn(f(x))ϕ(x)dx

= sgn.g′
∫ ∞

−∞
Fn(t)g′(t)ϕ(g(t))dt

Integrating by parts p times we get

〈Fn(f(x)), ϕ(x)〉 = (−1)psgn.g′
∫ ∞

−∞
F (−p)

n (t)
dp

dtp
[g′(t)ϕ(g(t))]dt

= (−1)p

∫ ∞

−∞
F (−p)

n (f(x))|f ′(x)|
[

1
f ′(x)

d

dx

]p [
ϕ(x)
f ′(x)

]
dx .

Now F
(−p)
n (t) and F

(−p)
n (f(x)) are continuous functions converging to

the continuous functions F (−p)(t) and F (−p)(f(x)) respectively as n tends
to infinity and

dp

dtp
[g′(t)ϕ(g(t))], |f ′(x)|

[
1

f ′(x)
d

dx

]p [
ϕ(x)
f ′(x)

]

are locally summable functions. It follows that

lim
n→∞

〈Fn(f(x)), ϕ(x)〉 = (−1)psgn.g′
∫ ∞

−∞
F (−p)(t)

dp

dtp
[g′(t)ϕ(g(t))]dt(3)

= (−1)p

∫ ∞

−∞
F (−p)(f(x))|f ′(x)|

[
1

f ′(x)
d

dx

]p [
ϕ(x)
f ′(x)

]
dx(4)

and equations (1) and (2) follow.
Now suppose that either f (p+1) or F (−p) are bounded functions on

bounded subsets. Then

F (−p)(t)
dp

dtp
[g′(t)ϕ(g(t))], F (−p)(f(x))|f ′(x)|

[
1

f ′(x)
d

dx

]p [
ϕ(x)
f ′(x)

]

will be locally summable functions, ensuring that equations (3) and (4)
still hold.
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In the corollary the product of δ(r) and an r times continuously dif-
ferentiable function f is defined by

(5) f(x)δ(r)(x) =
r∑

i=0

(−1)(r+i)

(
r

i

)
f (r−i)(0)δ(i)(x) .

Corollary. Let f be a continuously differentiable function having a
single simple root at the point x = α. Suppose that f (p+2) is a locally
summable function on a neighbourhood of the point x = α. Then

(6) δ(r)(f(x)) =
1

|f ′(α)|
[

1
f ′(x)

d

dx

]r

δ(x− α)

on the real line for r = 0, 1, 2, . . . , p.

Proof. We will suppose that α = 0 and the general result will then
follow by translation. Note that δ(p)(f(x)) is then equal to 0 on any interval
not containing the origin. We therefore only have to prove the result on
some neighbourhood of the origin. Since x = 0 is a simple root of f there
exists a neighbourhood (a, b) containing the origin on which f ′(x) > 0,
(or < 0). Now δ(r) is the (r + 1)-th derivative of the bounded, locally
summable function H(x), where H denotes Heaviside’s function, and so
the conditions of the theorem are satisfied for the distribution δ(r)(f(x)) on
the interval (a, b) for r = 0, 1, 2, . . . , p. The existence of δ(r)(f(x)) follows
by the theorem.

Now let ϕ is an arbitrary function in D with support contained in the
interval (a, b). Then since δ(r)(x) is the (r +2)-th derivative of the contin-
uous function x+ and supposing that f ′(x) > 0, we have from equation (2)

〈δ(r)(f(x)), ϕ(x)〉 = (−1)r+1

∫ ∞

0

f ′(x)
[

1
f ′(x)

d

dx

]r+1 [
ϕ(x)
f ′(x)

]
dx

= −(−1)r+1

∫ ∞

0

d

{[
1

f ′(x)
d

dx

]r [
ϕ(x)
f ′(x)

]}
(7)

=
(−1)r

f ′(0)
d

dx

{[
1

f ′(x)
d

dx

]r−1 [
ϕ(x)
f ′(x)

]}⌋

x=0

Further
〈

1
f ′(0)

[
1

f ′(x)
d

dx

]r

δ(x), ϕ(x)
〉

=

= − 1
f ′(0)

〈[
1

f ′(x)
d

dx

]r−1

δ(x),
d

dx

ϕ(x)
f ′(x)

〉
(8)
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=
(−1)r

f ′(0)

〈
δ(x),

d

dx

{[
1

f ′(x)
d

dx

]r−1 [
ϕ(x)
f ′(x)

]}〉
.

Comparing equations (7) and (8) we see that equation (6) is proved for the
case f ′(x) > 0 and r = 0, 1, 2, . . . , p. The case f ′(x) < 0 follows similarly.

Note that this corollary can be extended to a function f having any
number of simple roots at the points x = α1, α2, . . . . If then f (pi+2) is a
locally summable function on a neighbourhood of the point x = αi, we
have

δ(r)(f(x)) =
∑

i

1
|f ′(αi)|

[
1

f ′(x)
d

dx

]r

δ(x− αi)

on the real line for r = 1, 2, . . . , p, where p = min{pi : i = 1, 2, . . . }. This
is in agreement with Gel’fand and Shilov’s definition of δ(r)(f(x)), see [3],
but their definition was only given for infinitely differentiable f .

Example 1.

(9) (x + xp
+)−1 = x−1 − xp−2H(x)

1 + xp−1

on the real line for p = 2, 3, . . . .

Proof. The distribution x−1 is the first derivative of the locally sum-
mable function ln |x| and (x + xp

+)′′ = p(p − 1)xp−2
+ is bounded on every

bounded set. Using equation (2) we have

〈(x + xp
+)−1, ϕ(x)〉 = −

∫ ∞

−∞
ln |x + xp

+|
[

ϕ(x)
1 + pxp−1

+

]′
dx

= −
∫ 0

−∞
ln |x|ϕ′(x)dx−

∫ ∞

0

ln(x + xp)
[

ϕ(x)
1 + pxp−1

]′
dx

= −〈x−1
− , ϕ(x)〉 −

∫ 1

0

ln(x + xp)
[
ϕ(x)− ϕ(0)
1 + pxp−1

]′
dx+

−
∫ ∞

1

ln(x + xp−1)
[

ϕ(x)
1 + pxp−1

]′
dx+

−ϕ(0)
∫ 1

0

ln(x + xp)[(1 + pxp−1)−1]′dx .

Now
∫ 1

0

ln(x + xp)
[
ϕ(x)− ϕ(0)
1 + pxp−1

]′
dx = ln 2

ϕ(1)− ϕ(0)
1 + p

−
∫ 1

0

ϕ(x)− ϕ(0)
x + xp

dx
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= ln 2
ϕ(1)− ϕ(0)

1 + p
−

∫ 1

0

ϕ(x)− ϕ(0)
x

dx +
∫ 1

0

xp−2ϕ(x)
1 + xp−1

dx− ln 2
ϕ(0)
p− 1

,

∫ ∞

1

ln(x + xp)
[

ϕ(x)
1 + pxp−1

]′
dx = − ln 2

ϕ(1)
1 + p

−
∫ ∞

1

ϕ(x)
x + xp

dx

= ln 2
ϕ(1)
1 + p

−
∫ ∞

1

ϕ(x)
x

dx +
∫ ∞

1

xp−2ϕ(x)
1 + xp−1

dx ,

ϕ(0)
∫ 1

0

ln(x + xp)[(1 + pxp−1)−1]′dx =

= ϕ(0)
∫ 1

0

ln(x + xp)d[(1 + pxp−1)−1 − 1]

= − ln 2
pϕ(0)
1 + p

+ ϕ(0)
∫ 1

0

pxp−2

1 + xp−1
dx = − ln 2

pϕ(0)
1 + p

+ ln 2
pϕ(0)
p− 1

.

Thus

〈(x + xp
+)−1, ϕ(x)〉 = −〈x−1

− , ϕ(x)〉+
∫ ∞

0

x−1[ϕ(x)− ϕ(0)H(1− x)]dx+

−
∫ ∞

0

xp−2ϕ(x)
1 + xp−1

dx = 〈x−1, ϕ(x)〉 −
〈

xp−2H(x)
1 + xp−1

, ϕ(x)
〉

and equation (9) follows.

Example 2.

(10) δ(x + xp
+) = δ(x)

on the real line for p = 3, 4, . . . and

(11) δ′(x + xp
+) = δ′(x)− δ(x)

on the real line for p = 2, 3, . . . .

Proof. The distribution δ(x) is the first and the distribution δ′(x)
is the second derivative of the continuous function x+. Using equations
(5) and (6), equation (10) follows immediately for p = 2, 3, . . . .

Using equations (5) and (6) again have

δ′(x + xp
+) =

1
1 + pxp−1

+

δ(x) = δ′(x)− δ(x) ,

giving equation (11) for p = 3, 4, . . . .
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Example 3.

(12) δ(x + x2 + xp
+) = δ(x + 1) + δ(x)

on the real line for p = 2, 3, . . . and

(13) δ′(x + x2 + xp
+) = δ′(x + 1) + 2δ(x + 1) + δ′(x) + 2δ(x)

on the real line for p = 3, 4, . . . .

Proof. The function x + x2 + xp
+ has zeros at the points x = −1, 0.

Using equations (5) and (6) on neighbourhoods of these points, equation
(12) follows immediately for p = 2, 3, . . . .

Using equations (5) and (6) again neighbourhoods of these points we
have

δ′(x + x2 + xp
+) =

1
1 + 2x + pxp−1

+

δ′(x + 1) +
1

1 + 2x + pxp−1
+

δ′(x)

= δ′(x + 1) + 2δ(x + 1) + δ′(x) + 2δ(x) ,

giving equation (13) for p = 3, 4, . . . .

Example 4.

(14) (x + xp
+ + i0)−1 = (x + i0)−1 − xp−2H(x)

1 + xp−1

on the real line for p = 2, 3, . . . .

Proof. The distribution (x + i0)−1 is defined by

(x + i0)−1 = x−1 − iπδ(x) ,

see Gel’fand and Shilov [3]. Using equations (9) and (10) it follows that

(x + xp
+ + i0)−1 = (x + xp

+)−1 − iπδ(x + xp
+)

= x−1 − xp−2H(x)
1 + xp−1

− iπδ(x) = (x + i0)−1 − xp−2H(x)
1 + xp−1

,

giving equation (14) for p = 2, 3, . . . .
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