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Exact controllability and spectrum assignment
for infinite dimensional singular systems

By MOHAMED RABIE ABDALLAH MOUBARAK (El-Minia)

Abstract. In this paper we prove the equivalence of the two concepts of exact
controllability and spectrum assignment property for infinite dimensional singular sys-
tems where the state space and control space are Hilbert spaces.

1. Introduction

We begin with the two infinite dimensional Hilbert spaces H and U

as state space and control space, respectively. Let Y be a closed subspace
of H, then H can be written in the decomposition form:

(1) H = Y ⊕ Y ⊥

where Y ⊥ is the orthogonal complement of Y .
Let L(H) be the set of all bounded linear operators from H into H

and L(U,H) the set of all bounded linear operators from U into H. If
A ∈ L(H), then A can be represented in the matrix operator form:

(2) A =
(

A11 A12

A21 A22

)

where A11 : Y −→ Y , A12 : Y ⊥ −→ Y , A21 : Y −→ Y ⊥, A22 : Y ⊥ −→ Y ⊥,
see [3].
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Consider the continuous control system:

(3) Eẋ(t) = Ax(t) + Bu(t)

where x(t) ∈ H, u(t) ∈ U , the operators E, A ∈ L(H) and B ∈ L(U,H).
When E is the identity operator I, the system (3) is called a normal system.
In this work E is assumed to be singular and given in the form:

(4) E =
(

IY 0
0 0

)

where IY is the identity operator on Y .
In this work, we want to prove the equivalence between the two con-

cepts of exact controllability and spectrum assignment property of the
infinite dimensional singular system (3)

We have chosen this kind of work in order to establish a tie between
functional analysis and control theory. Also, the system (3) has been
chosen because the study of nonlinear systems has become more active
with an effort to overcome the analytical difficulties implied. Furthermore
the system (3) is more general than the normal system which appears as a
special case when E is the identity. Finally, the system (3) is important for
many fields such as electrical networks, economics, robotics and aircraft
dynamics.

In the case of a finite dimensional normal system Wonham [6] has
proved the equivalence between controllability and pole assignment.

Some work has been done to generalize Wonham’s result to infinite
dimensional normal systems such as [2] and [4]. In our work, the proofs
and the methods are completely different and independent of those used
in [2] and [4] because in this work we have a problem, namely the singular
operator E which disappears in the case of a normal system.

To make some developments easier, the system (3) will be transformed
to what we call a transformed singular system by using a transformation
which allows us to assume without loss of generality that A = I as follows:
Let α ∈ R be a real number such that (αE + A)−1 exists and let:

(5) x(t) = e−αty(t).

Differentiating both sides of (5) with respect to t yields

(6) ẋ(t) = e−αtẏ(t)− αe−αty(t).
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Substituting from (5) and (6) in (3), we get

(7) e−αtEẏ(t) = (αE + A)e−αty(t) + Bu(t).

Multiplying both sides of (7) by (αE + A)−leαt on the left yields

(8) E1ẏ(t) = y(t) + B1u1(t)

where E1 = (αE + A)−1E, B1 = (αE + A)−1B, u1(t) = eαtu(t).
Consider the feedback law

(9) u(t) = Fx(t) + v(t),

where v(t) is an external input and F ∈ L(H,U). Then the closed loop
system takes the form:

(10) Eẋ(t) = (A + BF )x(t) + Bv(t).

The systems (3), (8) and (10) will be denoted by (E,A, B), (E1, B1) and
(E, A + BF, B) respectively.

2. Exact controllability and spectrum assignment property

Definition 2.1. The system (E, A,B) is exactly controllable if and
only if:

range[sE −A,B] = H,(11)

for all s ∈ C and,

range[E,B] = H.(12)

Definition 2.2. The system (E1, B1) is exactly controllable if and only
if

range[(s + α)E1 − I, B1] = H,(13)

for all s ∈ C, α ∈ R and,

range[E1, B1] = H.(14)
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Theorem 2.1. The system (E, A,B) is exactly controllable if and only

if the system (E1, B1) is exactly controllable.

Proof.

(15)

[(s + α)E1 − I](H) + B1(U)

= (αE + A)−1{[(s + α)E − (αE + A)](H) + B(U)}
= (αE + A)−1[(sE −A)(H) + B(U)]

and

(16) E1(H) + B1(U) = (αE + A)−1[E(H) + B(U)].

Since (αE + A)−1 is invertible, it follows from (15), (16), Definitions 2.1
and 2.2 that the system (E, A,B) is exactly controllable if and only if the
system (E1, B1) is exactly controllable.

Theorem 2.2. The system (E, A,B) is exactly controllable if and only

if:

(17) range[E1 − λI,B1] = H

for every λ ∈ C.
For proof see [5].

Definition 2.3. The set

(18) σ(E, A) = {λ ∈ C : λE −A is singular}

is called the spectrum of (E,A) and σ(I,A) is specified as σ(A).

Definition 2.4. The system (E, A,B) has the spectrum assignment
property if and only if for any non empty compact subset Λ of C, there
exists F ∈ L(H,U) such that σ(E, A + BF ) = Λ.

Theorem 2.3. If the system (E,A, B) has the spectrum assignment

property, then it is exactly controllable.

Proof. Let the system (E, A,B) have the spectrum assignment prop-
erty, i.e. for any nonempty compact subset Λ of C, there exists F ∈ L(H,U)
such that σ(E,A + BF ) = Λ. Take Λ such that (E + BF )−l exists. Then,

(19) (E + BF )(H) = H.
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Multiplying both sides of (19) by (αE + A)−l on the left yields

(E1 + B1F )(H) = (αE + A)−1(H) = H,

which can be written as follows:

(E1 − λI + B1F )(H) = (I − λI)(H) = (1− λ)I(H) = H,

i.e.

H = (E1 − λI)(H) + (B1F )(H) ⊆ (E1 − λI)(H) + (B1)(U).

Since (E1 − λI)(H) + (B1)(U) ⊆ H, we get

(E1 − λI)(H) + (B1)(U) = H,

which means that the system (El, Bl) is exactly controllable by Theo-
rem 2.2. It follows from Theorem 2.1 that the system (E,A, B) is exactly
controllable which completes the proof of Theorem 2.3.

Theorem 2.4. The system (E, A,B) is exactly controllable if and only

if for each F ∈ L(H,U), the system (E, A+BF,B) is exactly controllable.

Theorem 2.5. The system (E, A,B) has the spectrum assignment

property if and only if for each F ∈ L(H,U), the system (E, A + BF, B)
has the spectrum assignment property.

Proof. Let the system (E, A,B) have the spectrum assignment prop-
erty, i.e. for any nonempty compact subset Λ of C, there exists F1 ∈
L(H, U) such that:

σ(E, A + BF1) = Λ

σ(E, A + BF1) = σ(E, A + BF1 + BF −BF )

= σ(E, A + BF + BF2)

where F2 = F1 − F . Then

σ(E,A + BF + BF2) = Λ,

which means that for given Λ there exists F2 ∈ L(H, U) such that:

σ(E,A + BF + BF2) = Λ,
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i.e. (E, A + BF, B) has the spectrum assignment property.
Conversely let (E, A+BF, B) have the spectrum assignment property,

i.e. for given nonempty compact subset Λ′ of C, there exists F3 ∈ L(H,U)
such that:

σ(E,A + BF + BF3) = Λ′

σ(E,A + BF + BF3) = σ(E, A + B(F + F3))
= (E, A + BF4),

where F4 = F3 − F . Then for given Λ′, there exists F4 ∈ L(H, U) such
that:

σ(E, A + BF4) = Λ′

i.e. (E, A,B) has the spectrum assignment property.

Theorem 2.6. If the system (E, A,B) is exactly controllable, then it
has the spectrum assignment property.

Proof. The system (3) can be written in the form:

(20)
(

IY 0
0 0

)
ẋ(t) =

(
A11 A12

A21 A22

)
(t) +

(
B1

B2

)
u(t).

Choosing F = [0F2] such that (A22 + B2F2)−1 exists and using (9), the
closed loop system takes the from:

(21)
(

IY 0
0 0

)
ẋ(t) =

(
A11 A12 + B1F2

A21 A22 + B2F2

)
x(t) +

(
B1

B2

)
v(t).

Define the two operators

S =
(

IY −(A12 + B1F2)(A22 + B2F2)−1

0 IY ⊥

)
(22)

and

T =
(

IY 0
−(A22 + B2F2)−1A21 (A22 + B2F2)−1

)
.(23)

It is clear that S, T are invertible operators. Setting x(t) = Tz(t), (21)
becomes:

(24)
(

IY 0
0 0

)
T ż(t) =

(
A11 A12 + B1F2

A21 A22 + B2F2

)
Tz(t) +

(
B1

B2

)
v(t).
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Multiplying both sides of (24) on the left by S yields

(25) S

(
IY 0
0 0

)
T ż(t) = S

(
A11 A12 + B1F2

A21 A22 + B2F2

)
Tz(t) + S

(
B1

B2

)
v(t).

Now,

S

(
IY 0
0 0

)
T =

(
IY 0
0 0

)
(26)

S

(
A11 A12 + B1F2

A21 A22 + B2F2

)
T(27)

=
(

A11 − (A12 + B1F2)(A22 + B2F2)−1A12 0
0 IY ⊥

)

S

(
B1

B2

)
=

(
B1 − (A12 + B1F2)(A22 + B2F2)−1B2

B2

)
(28)

i.e. (25) becomes
(

IY 0
0 0

)
ż =

(
A11 − (A12 + B1F2)(A22 + B2F2)−1A12 0

0 IY ⊥

)
z

+
(

B1 − (A12 + B1F2)(A22 + B2F2)−1B2

B2

)
v.(29)

Suppose that the system (E,A, B) is exactly controllable, then by The-
orem 2.4, for each F ∈ L(H, U) the system (E, A + BF, B) is exactly
controllable, i.e. the system in (24) is exactly controllable which implies
that the normal subsystem (G,D) is exactly controllable, where

G = A11 − (A12 + B1F2)(A22 + B2F2)−1,

D = B1 − (A12 + B1F2)(A22 + B2F2)−1B2.

It follows from [4] that this normal subsystem has the spectrum assignment
property, i.e. for any nonempty compact subset Λ of C, there exists an
operator K = [F10] such that σ(G+DK) = Λ. Put v(t) = [F10]z(t)+ω(t).
The overall feedback control is

u(t) = Fx(t) + ω(t),
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where F = F + KT−1 = [0F2] + [F10]T−1. Now for such F , we get:

σ(E, A + BF ) = σ(S(E, A + BF )T )

= σ(SET, S(A + BF )T )

= {s ∈ C : sSET − S(A + BF )T is singular}
= {s ∈ C : sSET − S(A + BF )T + SBK is singular}

= {s ∈ C :
(

sIY 0
0 0

)
−

(
G + DK 0

B2 IY ⊥

)
is singular}

= {s ∈ C :
(

sIY − (G + DK) 0
B2 IY ⊥

)
is singular}.

The matrix operator
(

sIY − (G + DK) 0
B2 IY ⊥

)
is singular if and only if

the operator sIY − (G + DK) is singular. Then

σ(E, A + BF ) = {s ∈ C : sIY − (G + DK) is singular}
= σ(IY , G + DK) = σ(G + DK) = Λ

which means that the system (E, A,B) has the spectrum assignment prop-
erty. This completes the proof.

Theorem 2.7. The set

(30) {(E, A,B) ∈ L(H)× L(H)× L(H,U) :

(E, A, B) is exactly controllable}

is open.

Proof. If (E,A, B) is exactly controllable, then the system (E1, B1)
is exactly controllable i.e.

(31) range[E1 − λI, B1] = H for every λ ∈ C

which means that the operator [E1 − λI,B1] is right invertible. Since the
set of all right invertible operators is open [1], the theorem is obvious.

If (E1, B1) satisfies (31), then for (E2, B2) in a neighbourhood of
(E1, B1), (31) holds.
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Theorem 2.8. The set

(32) {(E, A,B)L(H)× L(H)× L(H, U) :

(E,A, B) has the spectrum assignment property}

is open.

Proof. From Theorems 2.3 and 2.6 we have the equivalence between
exact controllability and spectrum assignment property. Then the ele-
ments of the set in (32) are exactly controllable, so by Theorem 2.7 we
have the result.
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