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On the compactification of generalized ordered spaces

By BERNARD BRUNET (Aubière)

Abstract. In this paper, we prove that every non empty generalized ordered
space X has an ordered compactification with the same dimension and we compare the
dimension of X with the dimensions of its other ordered compactifications.

In a previous paper (2), we proved that, for every ordered space (or-
dered set with its order topology) and more generaly, for every generalized
ordered space (ordered set with a topology finer than the order topology
and moreover generated by a set of left or right unlimited intervals and
noted as in (5) G.O. space), the different definitions of topological dimen-
sion – the small inductive dimension, the large inductive dimension, the
covering dimension, and the nonstandard definition or thickness (3) – coin-
cide. More precisely, we established that, for every non empty G.O. space
X, if τ(X) denotes the common value of these dimensions, we have:

(i) τ(X) = 0 if and only if X is totally disconnected,

(ii) τ(X) = 1 if and only if X is not totally disconnected.

In this paper, we prove that every non empty G.O. space X has an
ordered compactification X̂ with the same dimension and that, if X is a
not almost-compact (4), every ordered compactification of X is a quotient
of X̂. Lastly, we compare the dimension of X with the dimensions of its
other ordered compactifications.
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Preliminaries

Let X be an ordered set.
We will call on the one hand interval of X any non empty subset I of

X such that:

∀x ∈ I ∀y ∈ I ∀z ∈ X, x ≤ z ≤ y =⇒ z ∈ I.

We will call on the other hand meatus (méat in French) of X any pair (I, J)
of complementary intervals such that I < J (i.e. such that: ∀x ∈ I ∀y ∈ J ,
x < y).

Among the meatuses, we will distinguish:

– the improper meatuses: these are the meatuses (φ,X) and (X, φ),

– the proper meatuses and among these:

(a) the gaps: these are the meatuses (I, J) where I and J are not empty,
I having no last element and J no first element.

(b) the holes: these are the meatuses (I, J) where I has a last element
and J has a first element.

(c) the left faults: these are the meatuses (I, J) where I is not empty but
without last element and J has a first element.

(d) the right faults: these are the meatuses (I, J) where I has a last
element and J is not empty but without first element.

We will say that a meatus (I, J) of a G.O. space X is open if and
only if I and J are both open sets in the topology on X. Thus, improper
meatuses, gaps and holes are always open meatuses, but no fault is open
for the order topology.

Moreover, we recall (2) that:

(i) a G.O. space is connected if and only if its only open meatuses are its
improper meatuses,

(ii) a non empty ordered space is compact Hausdorff if and only if it has
a first and a last element and has no gaps.

In the sequel, we will call ordered compactification of a G.O. space X a
pair (Y, j) consisting of a compact Hausdorff ordered space Y (a compact
Hausdorff G.O. space is necessarily an ordered space) and an isomorphism,
for the topology and the order, j of X onto a dense subset of Y.
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1. First ordered compactification theorem

1.1. Theorem. Let X be a non empty G.O. space. There exists then

an ordered compactification X̂ of X such that τ(X) = τ(X̂).

Proof.

(1) Notations: Let N be the set of all open meatuses of X.
For every s = (I, J) of N , we will say that s− exists if and only if I

is not empty and without last element, and that s+ exists if and only
if J is not empty and without first element. If not, all what is said
about s− and s+ will be considered as of no account.
We put then N− = {s− : s ∈ N}, N+ = {s+ : s ∈ N}, X̂ =
X∪N−∪N+ and we denote by j the canonical injection of X into X̂.

(2) Definition of an order on X̂:
We define an order on X̂ putting the elements of X in their order in
X and deciding that:

(i) for every gap s = (I, J), we have I < s− < s+ < J ,

(ii) for every left fault (resp. right fault), we have I < s− < J (resp.
I < s+ < J),

(iii) for every open meatuses s = (I, J) and t = (U, V ) such that s ≤ t

(i.e. I ⊂ U or equivalently V ⊂ J), we have s− < s+ < t− < t+.

It follows from this definition that:

(a) If X has a first (resp. last) element, this first (resp. last) element
is also the first (resp. last) element of X̂.
If X has not a first (resp. last) element, then the element s+

(resp. t−) associated to meatus s = (φ, X) (resp. t = (X, φ)) is
the first (resp. last) element of X̂.

(b) for every open meatus s = (I, J), s− and s+ are such that:

s− = supbX I, s+ = infbX J,

I = ] →, s−[ ∩X = ] →, s−] ∩X = ] →, s+] ∩X

= ] →, s+[ ∩X,

J = [s−,→ [ ∩X = ]s−,→ [ ∩X = ]s+,→] ∩X

= [s+,→ [ ∩X.
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In the sequel, we will also denote by X̂ the ordered space obtained
in this way.

(3) It follows immediatly from (2) that j is a (strictly) increasing contin-
uous mapping of X into X̂ and that j(X) is a dense subset of X̂.

(4) X̂ is compact:
It suffices to prove that X̂ has no gaps. Let us suppose X̂ has a gap
s = (S, T ). Let us put U = S ∩ X and V = T ∩ X; U and V are
then two open complementary intervals such that U < V , so that
t = (U, V ) is an open meatus of X. For this meatus, t− and t+ do not
exist. Indeed, let us suppose t− exists (we reason in the same way if
t+ exists). Then t− would be the last element of U and consequently
s would not be a gap. It follows from this that t is neither a fault (on
the left or on the right), nor a gap. Consequently, t is an improper
meatus or a hole, which is impossible.

Indeed: If t = (φ,X) or t = (X, φ), we would have s = (φ, X̂) or
(X̂, φ), which it is not.
If t was a hole, we would have U = ] →, α] and V = [β,→ [ with
α < β and consequently α ∈ S, S ≤ α and β ∈ T , β ≤ T . The
meatus s = (S, T ) would be a hole, which it is not. Finally, X̂ has no
gaps.

(5) τ(X) = τ(X̂):
Since X is homeomorphic to a subspace of X̂, we have τ(X) ≤ τ(X̂).
Moreover, if X is not totally disconnected, X̂ is a fortiori not totally
disconnected, so that τ(X) = τ(X̂) = 1.
Let us prove lastly that, if X is totally disconnected, X̂ is also totally
disconnected, which will imply that τ(X) = τ(X̂) = 0.
Let I = [x, y] (with x < y) be an interval of X̂.
If I is finite, I is not connected.
If I is infinite, J = I ∩ X is an infinite interval of X. Consequently,
since X is totally disconnected, J is not a connected subset of X, so
that there exists an open meatus s = (U, V ) of X such that U ∩J 6= ∅
and V ∩ J 6= ∅. This meatus defines a hole in I. Indeed:

– if s is a hole in X, we have U = ] →, a] and V = [b,→ [ with
a < b and then (a, b) defines a hole in I.
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– if s is a left fault in X, we have V = [b,→ [ and then (s−, b)
defines a hole in I.

– if s is a right fault in X, we have U = ] →, a] and then (a, s+)
defines a hole in I.

– if s is a gap, (s−, s+) defines a hole in I.
It follows then that I is not connected.
The only connected intervals of X̂ are therefore the one-point sets,
whence the result.

1.2. Remarks. (1) If X is connected and without first and last ele-
ment, X̂ is the ordered space obtained by the addition of a first and a last
element.

(2) If X is almost-compact (see (4)), X̂ is the only compactification
of X, so that, in particular, X̂ = β(X).

1.3. Examples.
(1) Case where X is the rational G.O. space Q.

The meatuses of Q are on one hand the improper meatuses (φ,Q) and
(Q, φ), on the other hand the faults associated to each rational and
lastly the gaps associated to each irrational. Among these meatuses,
only are open the two improper meatuses and the gaps. Consequently,
from 1.1, Q̂ consists of a first and a last element and, for every irra-
tional x, of a pair (x−, x+) with x− < x+. Moreover, since Q is totally
disconnected, we have τ(Q) = τ(Q̂) = 0.

(2) Case where X is the real G.O. space R.
Since R is a connected space, we have, from 1.2 1), R̂ = R (= R ∪
{−∞,+∞}) and therefore τ(R) = τ(R̂) = 1.

(3) Case where X is the Sorgenfrey’s G.O. space.
Sorgenfrey’s G.O. space is the G.O. space, denoted by E, consisting of
the set R with the topology generated by all intervals ] ←, a[, ] ←, a]
and ]a,→ [. Let us note that E has no holes and no gaps and the
only open faults of E are the right faults. Consequently, from 1.1, Ê
consists of a first and a last element and, for every real number x, of
a pair (x, x+) with x < x+. Moreover, since E is totally disconnected
(see for example (6)), we have τ(E) = τ(Ê) = 0.

(4) Case where X is the subspace [0, 1[ ∪ {2} of the real G.O. space R.
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Since s = ([0, 1[, {2}) is an open left fault of X, we have, from 1.1, X̂ =
X ∪ {s−}. Let us note X̂ is homeomorphic to the compact subspace
[0, 1] ∪ {2} of R. Moreover, since X is not totally disconnected, we
have τ(X) = τ(X̂) = 1.

(5) Case where X is the subspace ( ]0, 1[∩Q)∪ ( ]2, +∞[ ) of the real G.O.
space R.
In this case, X̂ consists of a first and a last element and, for every
irrational x of ]0, 1[, of a pair (x−, x+) with x− < x+ and lastly of a
pair (s−, s+) corresponding to the gap s = ( ]0, 1[ ∩Q, ]2, +∞[ ).
Since X is not totally disconnected, we have τ(X) = τ(X̂) = 1.

(6) Case where X is the ordinal space Ω = [0, ω1[.
Ω is an almost-compact ordered space. Consequently, from 1.2 2), we
have

Ω̂ = β(Ω) = Ω ∪ {ω1}(= [0, ω1]).

Since X is totally disconnected, we have τ(Ω) = τ(Ω̂) = 0.

(7) Case where X is the long G.O. space L0 (connexification of Ω).
L0 is an almost-compact ordered space. Consequently, we have L̂0 =
β(L0) = L, where L denotes the connexification of Ω, called the long
segment.
Since L0 is a connected space, we have τ(L0) = τ(L) = 1.

2. Other ordered compactifications
of a non empty and non almost compact

2.1. The spaces (X̂, S).

(1) Notations: Let us denote by N the set of all open meatuses of X,L

the set of all gaps of X,S a subset of L and put D = N \ S, D− =
{s− : s ∈ D}, D+ = {s+ : s ∈ D} and (X̂, S) = X ∪ S ∪D− ∪D+.
Let us note that, if S = ∅, (X̂, φ) = X ∪ N− ∪ N+ is the space X̂

introduced in 1.1.

(2) Definition of an order on (X̂, S):
We define an order on (X̂, S) putting the elements of X in their order
in X and deciding that:

(i) for every s = (I, J) of S, we have I < s < J ,
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(ii) for every s = (I, J) of D, we have I < s− < s+ < J ,

(iii) for every open meatuses s = (I, J) and t = (U, V ) such that
s ≤ t (i.e. such that I ⊂ U or equivalently V ⊂ J), we have
s− < s+ < t− < t+.

(3) It follows from this definition that:

(a) for every open meatus s = (I, J), s− and s+, if they exist, are
such that s− = sup

(dX,S)
I and s+ = inf

(dX,S)
J .

(b) the canonical injection j of X into (X̂, S) is a (strictly) increasing
and continuous mapping such that j(X) = (X̂, S).

2.2. Theorem. Every ordered compactification of a non empty and

non almost compact G.O. space X is homeomorphic to a space (X̂, S).

Let us consider an ordered compactification Y of a non empty G.O.
space X and put, for every y ∈ Y \ X, Uy = {x ∈ X : x < y} and
Vy = {x ∈ X : x > y}. Thus, we define, for every y ∈ Y \ X, an open
meatus sy = (Uy, Vy). Let us note that y ∈ Uy ∪ V y (with A the closure
of A in Y ). Let us put then:

T1 = {y ∈ Y \X : y ∈ Uy ∩ V y}
T2 = {y ∈ Y \X : y ∈ Uy \ V y}
T3 = {y ∈ Y \X : y ∈ V y \ Uy}.

We define thus a partition of Y \ X. Let S = {sy : y ∈ T1} (note that
S ⊂ L), D = N \S and h the mapping of Y into (X̂, S) = X∪S∪D−∪D+

defined by:

h(y) =





y if y ∈ X

sy if y ∈ T1

s−y if y ∈ T2

s+
y if y ∈ T3.

This mapping h is, by construction and definition of the order on (X̂, S),
one to one and such that h(X) = X, h(T1) = S, h(T2) ⊂ D− and h(T3) ⊂
D+.

Moreover, since Y is compact Hausdorff, h is also onto.
Indeed, let s = (I, J) be an element of D such that s− exists (we rea-

son in the same way if s+ exists). Then s is an open meatus which does not
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belong to S and such that I is not empty and without last element. Since Y

is compact Hausdorff, the closure I of I is a non empty compact Hausdorff
interval of Y and therefore has a last element y /∈ I. Let sy = (Uy, Vy).
We have then sy = s and therefore, since s /∈ S, y /∈ T1. Moreover, since
y ∈ I \I = Uy \Uy, we have y ∈ T2 which implies h(y) = s−. The mapping
h is consequently a bijection of Y onto (X̂, S).

Moreover, since any increasing mapping f of a totally ordered space
T onto a totally ordered space Z is continuous (indeed the inverse image
by f of each open interval of Z is an open interval of Y ), the mapping h

is a homeomorphism of Y onto (X̂, S).

2.3. Theorem. Let X be a non empty and non almost compact G.O.

space and L be the set of all gaps of X. If S and T are two subsets of L

such that S ⊂ T , the space (X̂, T ) is canonically a quotient of the space

(X̂, S). In particular, every space (X̂, S) is canonically a quotient of the

space X̂.

Let f be the mapping of (X̂, S) into (X̂, T ) obtained by identification
of elements s− and s+ associated to gaps s belonging to T \ S and with-
out any other modification. By construction, this mapping is increasing
and onto and therefore continuous. Since (X̂, S) and (X̂, T ) are compact
Hausdorff, this mapping is also closed. Let then R(f) be the equivalence
relation defined on (X̂, S) by “(x, y) ∈ R(f) ⇐⇒ f(x) = f(y)”. The space
(X̂, T ) is then, from a classical result of topology ((1), I. 32) homeomorphic
to the quotient space (X̂, S)/R(f).

Remark. In a pictorial way, we can say that a space (X̂, S) is obtained
from the space X̂ by “suturing” the gaps of X belonging to S.

3. Characterization of the zero-dimensional spaces (X̂, S)

In the sequel, we consider a non empty and non almost compact G.O.
space X and we denote by L the set of all the gaps of X and by S a subset
of L.

Definition 3.1. We will say that a subset U of X is S-connected if and
only if U is an interval such that any open meatus s = (I, J) of X meeting
U (i.e. such that s|U = (I ∩ U, J ∩ U) is a proper meatus of U) belongs
to S.
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It follows from this definition that:
(a) a subset is φ-connected if and only if it is connected.
(b) if S ⊂ T ⊂ L, any S-connected subset of X is T -connected which

implies that any connected subset is S-connected.

Definition 3.2. We will call S-connected component of a point x of
X the largest S-connected subset containing x (such a subset exists, it is
the union of all S-connected subsets containing x) and we will say that
X is totally S-disconnected if and only if the S-connected components are
one-point sets.

It follows from this definition and the previous remark that, if S ⊂
T ⊂ L, any totally T -disconnected space is totally S-disconnected and
therefore in particular totally disconnected.

Proposition 3.3. τ(X̂, S)) = 0 if and only if X is totally S-discon-
nected.

(a) Let us suppose X is not totally S-disconnected. There exists then an
S-connected subset U of X which is not a one-point set. Since the
closure of U in (X̂, S) is then a connected subset which is not a one-
point set, the space (X̂, S) is not totally disconnected which implies
τ(X̂, S)) = 1.

(b) Let us suppose X be totally S-disconnected and prove then (X̂, S) is
totally disconnected which will imply τ((X̂, S)) = 0.
Let I = [x, y] (with x < y) be an interval of (X̂, S).
If I is finite, I is not connected.
If I is infinite, J = I ∩X is also an infinite interval.
Therefore, since X is totally S-disconnected, there exists an open
meatus s = (U, V ) of X which meets J and does not belong to S.
That meatus defines a hole in I. Indeed:
(i) if s is a hole in X, we have U = ] ←, a] and V = [b,→ [ with

a < b and then (a, b) defines a hole in I.
(ii) if s is a left fault, we have V = [b,→ [ and then (s−, b) defines a

hole in I.
(iii) if s is a right fault, we have U = ] ←, a] and then (a, s+) defines

a hole in I.
(iv) if s ∈ L \ S, (s−, s+) defines a hole in I.
It follows then from 1.1 that I is not connected.
The only connected intervals of (X̂, S) are therefore the one-point sets,

whence the result.
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Remark. In the special case where S = ∅, we find again the result
proved in 1.1.

4. Comparison between the dimensions of a G.O. space
and its compactifications

4.1. Theorem 4. Let X be a non empty and non almost compact G.O.

space and L be the set of all the gaps of X. Then, for any S ⊂ T ⊂ L, we

have:

0 ≤ τ(X) = τ(X̂) ≤ τ((X̂, S)) ≤ τ((X̂, T )) ≤ τ((X̂, L)) ≤ 1.

We already proved that, for every totally ordered compactification Y

of X, we have 0 ≤ τ(X) ≤ τ(Y ) ≤ 1 and that we have τ(X) = τ(X̂). It
suffices therefore to prove that τ((X̂, S)) ≤ τ((X̂, T )).

That is immediate if τ((X̂, S)) = 0 or τ((X̂, T )) = 1.
Let us suppose then that τ((X̂, T )) = 0. It follows, from 3.3, that X

is totally T -disconnected which implies, since S ⊂ T, that X is totally
S-disconnected and therefore such that τ((X̂, S)) = 0.

Conversely, if τ((X̂, S)) = 1, X is not totally D-disconnected are
therefore not totally T -disconnected which implies that τ((X̂, T )) = 1.

4.2. Remark. It might happen that the previous inequalities are strict.
Let us suppose, for example, that X = Q. On one hand, we have, from 1.3,
τ(Q) = τ(Q̂) = 0. On an other hand, (Q̂, L), space obtained by “suturing”
all the gaps of Q associated to each irrational, is homeomorphic to R, so
that τ((Q̂, L)) = 1.
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DE L’UNIVERSITÉ BLAISE PASCAL
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