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Berry–Esséen-type inequalities
for ultraspherical expansions

By MICHAEL VOIT (Tübingen)

Abstract. This paper contains several variants of Berry–Esséen-type inequal-
ities for ultraspherical expansions of probability measures on [0, π]. Similar to the
classical results on R, proofs will be based in some cases on ultraspherical analogues
of Fejér-kernels. The inequalities in this paper in particular lead to relations between
the spherical-cap-distance of probability measures on unit spheres Sd ⊂ Rd+1 and the
norms of associated L2-convolution operators. Moreover, the inequalities will be used
to derive the order of convergence for some central limit theorems on [0, π] and on
Sd; the limit distributions there are analogues of Gaussian measures and the uniform
distribution.

1. Introduction

The classical Berry–Esséen-inequality relates the ‖.‖∞–distance of
distribution functions on R with their Fourier transforms. There ex-
ist well-known extensions of this inequality to Rd for d ≥ 2, the torus
T := {z ∈ C : |z| = 1} and T d; see [2], [7], [8], [13]. On the other hand,
little seems to be done for similar estimations for other classical orthogonal
expansions of distribution functions. For instance, one can ask for such
estimates on [0,∞[ in terms of Hankel transforms and their applications to
radial probability measures on Rd. Or, one can study expansions of mea-
sures on [−1, 1] with respect to ultraspherical or Jacobi polynomials. This
has applications to probability theory on spheres and projective spaces.
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Key words and phrases: Berry–Esséen-inequality, ultraspherical polynomials, random
walks on spheres, central limit theorem, uniform distribution on spheres, spherical cap
distance.
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Similarly, one can study Jacobi transforms of measures on [0,∞[ with ap-
plications to radial distributions on hyperbolic spaces. The purpose of this
paper is to encourage the study of Berry–Esséen-type estimates for such
transforms and their applications. We however here restrict our attention
to ultraspherical expansions.

We next describe the main results of this paper. Consider the ultra-
spherical polynomials (R(α)

n )n≥0 on [−1, 1] of index α ≥ −1/2 normalized
by R

(α)
n (1) = 1 (this is the best normalization in probability theory and

harmonic analysis). The ultraspherical coefficients of a probability mea-
sure µ on [0, π] (of index α) then are defined by

µ̂(n) :=
∫ π

0

R(α)
n (cos t)dµ(t) (n ≥ 0).

The main result of this paper will be the following Berry–Esséen-type
inequality for the distribution functions Fµ, Fν of probability measures
µ, ν on [0, π] respectively:

1.1. Theorem. For α ≥ −1/2 there is a universal constant Mα > 0
as follows: If Fν satisfies the Lipschitz condition

|Fν(x)− Fν(x + h)| ≤ mh max
z∈[x,x+h]

sin2α+1 z for x, h ≥ 0 with x + h ≤ π

with some constant m > 0, then for all N ≥ 1,

‖Fµ − Fν‖∞ ≤ Mα ·
(

m

N
+

N∑
n=1

nα−1/2 · |µ̂(n)− ν̂(n)|
)

.

Several variants of this result will be also discussed. We mention
that the proof of Theorem 1.1 will be based on a smoothing procedure
using ultraspherical analogues of Fejér kernels introduced by Lasser and
Obermaier [11]. The second half of this paper will be devoted to ap-
plications of Theorem 1.1. The first two applications in Sections 5 and
6 concern the rate of convergence of two central limit theorems for cer-
tain random walks on [0, π]. In the first case, the limits are ultraspherical
analogues of Gaussian distributions. In the second case, the limit is given
by dωα(t) := cα · sin2α+1 t dt on [0, π] with a suitable constant cα > 0.
This measure is the orthogonality measure of the trigonometric ultras-
pherical polynomials R

(α)
n (cos t) and forms the ultraspherical analogue of
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the uniform distribution (which appears for α = −1/2). The random
walks mentioned above are homogeneous Markov chains on [0, π] whose
transition probabilities are defined in terms of the so-called ultraspherical
convolution of measures on [0, π]. This convolution is discussed in [3], [18],
[19]; for general random walks on hypergroups we refer to [4].

For α = d/2 − 1 with d ∈ N, d ≥ 2, the ultraspherical random
walks on [0, π] mentioned above and their associated limit theorems admit
an interpretation as projections of rotationally symmetric (or “isotropic”)
random walks on the unit sphere Sd ⊂ Rd+1. In this way, the results of
Sections 5 and 6 below lead to the following theorem:

1.2. Theorem. Let r ∈ [0, 1/2], and let µ be a probability measure

on [0, π] with µ 6= δ0. For k ∈ N define the contracted probability measure

µk,r ∈ M1([0, π]) with

µk,r(A) := µ(krA) for A ⊂ [0, π] a Borel set.

For each k, consider the isotropic random walk (Xk,r
n )n≥0 on Sd start-

ing in some fixed North Pole x0 of Sd such that in each step of time an

angular jump with distribution µk,r appears, i.e., the random variables

∠(Xk,r
n , Xk,r

n+1) are independent and µk,r-distributed. Then, after k steps

of time, the random variable ∠(Xk,r
k , x0) (i.e., the angular distance of

Xk,r
k from the North pole) has some distribution µ

(k)
k,r. The distribution

functions of these distributions on [0, π] have the following properties for

k →∞:

(1) If r = 1/2, then ‖F
µ

(k)
k,r

−Fν‖∞ = O(1/k) for some specific ultraspher-

ical Gaussian distribution ν on [0, π] (ν is the angular part of some

Gaussian measure on Sd centered at x0).

(2) If r ∈ [0, 1/2[, then ‖F
µ

(k)
k,r

− Fωd/2−1‖∞ = O(e−ck1−2r

) with some

(known) constant c > 0 (notice that ωd/2−1 is the angular part of the

uniform distribution on Sd).

The final application of Theorem 1.1 in Section 7 concerns the spheri-
cal cap distance on Sd which is frequently used to measure how well points
are distributed on Sd; see [5], [12], [15]. Theorem 1.1 relates this dis-
tance with the norm distance of convolution operators on L2-spaces which
can be usually handled much better. For the sphere S2, we in particular
recover results which are already contained in Lubotzky, Phillips, and
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Sarnack [12]. These results were used there to study the order of conver-
gence (with respect to the spherical cap distance) of a recursive algorithm
of distributing points on S2 uniformly.

This paper is organized as follows: In Section 2 we establish basic
notations and facts on ultraspherical expansions; in Section 3 we collect
some smoothing inequalities. The central Section 4 then contains several
Berry–Esséen-type estimations. Sections 5–7 finally are devoted to the
applications mentioned above.

Acknowledgement. Parts of this paper were written while the author
was a visiting lecturer at the University of Virginia in Charlottesville. He
would like to thank the Department of Mathematics there for its hospital-
ity. Moreover, it is a pleasure to thank G. Pap and M. Rösler for some
discussions, and K.-J. Förster for his hint to reference [9].

2. Ultraspherical expansions

The purpose of this section is to introduce some notations and facts
about ultraspherical polynomials and expansions. Most results are more
or less well-known.

2.1. Ultraspherical expansions. Consider the ultraspherical polynomi-
als

(2.1) R(α)
n (x) := 2F1(−n, n + 2α + 1; α + 1; (1− x)/2) (x ∈ R, n ≥ 0)

of index α ≥ −1/2 which are normalized by R
(α)
n (1) = 1 and orthogonal on

[−1, 1] with respect to the measure (1− x2)αdx. The trigonometric poly-
nomials p

(α)
n (t) := R

(α)
n (cos t) form an orthogonal basis of L2([0, π], ωα)

with respect to the probability measure

(2.2) dωα(t) := cα sin2α+1 t dt with cα :=
Γ(2α + 2)

Γ(α + 1)222α+1
.

Denote the Banach space of all Borel measures on [0, π] by Mb([0, π]).
Then, the ultraspherical expansion coefficients of f ∈ L1([0, π], ωα) and
µ ∈ Mb([0, π]) are given by

(2.3) f̂(n) :=
∫ π

0

R(α)
n (cos t)f(t)dωα(t) and µ̂(n) :=

∫ π

0

R(α)
n (cos t)dµ(t)
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for n ∈ Z+ := {0, 1, 2, . . . }. We next define the ultraspherical Plancherel
weights

(2.4)
h(α)

n :=
(∫ π

0

R(α)
n (cos t)2dωα(t)

)−1

=
(2n + 2α + 1) · (2α + 1)n

(2α + 1) · n!

(n ∈ Z+)

and introduce the associated weighted spaces lp(Z+, h). For g ∈ l1(Z+, h),
its inverse ultraspherical transform ǧ ∈ Cb([0, π]) is given by

(2.5) ǧ(x) :=
∞∑

k=0

h
(α)
k g(k)R(α)

k (cosx) (x ∈ [0, π]).

The following facts are well-known (see [4] in setting of commutative hy-
pergroups):

2.2. Facts.

(1) If f ∈ L1([0, π], ωα) and µ ∈ Mb([0, π]), and if ‖µ‖ denotes the total
variation norm of µ, then ‖f̂‖∞ ≤ ‖f‖1 and ‖µ̂‖∞ ≤ ‖µ‖.

(2) Inversion formula: If f ∈ L1([0, π], ωα) with f̂ ∈ l1(Z+, h), then
(f̂)∨ = f and ‖f‖∞ = ‖(f̂)∨‖∞ ≤ ‖f̂‖1.

(3) Plancherel formula: If f ∈ L2([0, π], ωα) ⊂ L1([0, π], ωα), then f̂ ∈
l2(Z+, h) with ‖f‖2 = ‖f̂‖2.

We next give a collection of useful uniform estimations for ultraspher-
ical polynomials.

2.3. Lemma. Let α ≥ −1/2, n ∈ Z+, and θ ∈ [0, π]. Then:

(1) |R(α)
n (cos θ)| ≤ 1;

(2) | sin θ ·R(α+1)
n (cos θ)| ≤ 2(α + 1)√

(n + 1)(n + 2α + 2)
.

(3) M1
α := sup

ϕ∈[0,π],n≥1

nα+3/2
∣∣∣sinα+3/2 ϕ ·R(α+1)

n−1 (cos ϕ)
∣∣∣

≤
(

α + 2
2

)α+1/2

· (2α + 2)Γ(2α + 3)
Γ(α + 3/2)

.
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(4) M2
α := sup

ϕ∈[0,π],n≥1

nα+3/2
∣∣∣sin2α+2 ϕ ·R(α+1)

n−1 (cos ϕ)
∣∣∣

≤
(

α + 2
2

)α+1/2

· Γ(2α + 3)
Γ(α + 3/2)

.

Proof. For Part (1) we refer to Section 7.32 of Szegö [16].
(2) We proceed as in Theorem 7.32.1 of [16]. In fact, the case n = 0 is

clear. For n ≥ 1, consider

fn(x) := R(α)
n (x)2 +

1− x2

n(n + 2α + 1)

( d

dx
R(α)

n (x)
)2

.

The differential equation for Jacobi polynomials (Equation (4.2.1)
of Szegö [16]) yields that

f ′n(x) =
2(2α + 1)x

n(n + 2α + 1)

( d

dx
R(α)

n (x)
)2

.

Hence, the nonnegative fn attains its maximum on [−1, 1] at the
boundary. As

(2.6)
d

dx
R(α)

n (x) =
n(n + 2α + 1)

2(α + 1)
R

(α+1)
n−1 (x)

(see (4.7.14) of Szegö [16]) and fn(±1) = 1, Part (2) follows.
(3) Corollary 1.8 of Förster [9] yields that for ϕ ∈ [0, π], n ≥ 0,

(2.7)

∣∣sinα+3/2 ϕ ·R(α+1)
n (cos ϕ)|

≤ (2α + 2)
Γ(n/2 + α + 3/2)

Γ(α + 3/2)Γ(n/2 + 1)

(
n + 2α + 2

n

)−1

.

As ab ≤ Γ(a + b)/Γ(a) ≤ (a + b)b for a, b ≥ 0, Part (3) now follows
readily.

(4) This follows from Eq. (19) of Durand [6]. ¤
2.4. Ultraspherical convolution of measures on [0,π]. By Gegenbauer’s

product formula, the ultraspherical polynomials of index α > −1/2 satisfy

(2.8)
R

(α)
k (cos s) ·R(α)

k (cos t)

= cα−1/2

∫ π

0

R
(α)
k (cos s cos t + sin s sin t cos z)(sin z)2αdz
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for s, t ∈ [0, π] with cα−1/2 being given according to Eq. (2.2); see Eq. (2.23)
of Askey [1]. For the limit case α = −1/2, this formula degenerates into

(2.9)
R

(−1/2)
k (cos s) ·R(−1/2)

k (cos t)

=
1
2

(
R

(−1/2)
k (cos |s− t|) + R

(−1/2)
k (cos(π − |π − s− t|))

)
.

For all α ≥ −1/2 and s, t ∈ [0, π] we hence find unique probability mea-
sures, say δs ∗α δt (or, for short, δs ∗ δt) on [0, π] with

(2.10)
R

(α)
k (cos s) ·R(α)

k (cos t) =
∫ π

0

R
(α)
k (cos u)d(δs ∗ δt)(u)

for all k ≥ 0.

This ultraspherical convolution δs ∗ δt of point measures can be extended
uniquely to a bilinear, weakly continuous, and probability preserving con-
volution ∗ on the Banach space Mb([0, π]) of all (complex) Borel measures
on [0, π]. In particular, (Mb([0, π]), ∗) is a commutative Banach algebra,
and the convolution establishes a hypergroup structure on [0, π]. For de-
tails see [3], [4], [18], [19]. The product formulas (2.8) and (2.9) imply that
the ultraspherical coefficients of the convolution product of µ, ν ∈ Mb([0, π]
satisfy

(2.11) (µ ∗ ν)∧(n) = µ̂(n) · ν̂(n) for all n ≥ 0.

3. Smoothing inequalities and Fejér kernels

The proof of the Berry–Esséen-type inequality 1.1 depends on a smooth-
ing procedure using ultraspherical analogues of Fejér kernels. These kernels
and their applications to smoothing will be discussed in this section. We
always assume that α ≥ −1/2 holds.

3.1. Notations.
(1) The space of all (Borel) probability measures on [0, π] is denoted by

M1([0, π]).

(2) The characteristic function of a set A ⊂ R is denoted by 1A, and the
support of a function f or a measure µ by supp f or supp µ respec-
tively.
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(3) The distribution function Fµ of a probability measure µ ∈ M1([0, π])
is defined by

Fµ(θ) := µ([0, θ]) for θ ∈ R.

We mention explicitly that this notation will be also used for θ /∈ [0, π].

(4) We say that a distribution function Fµ satisfies the Lipschitz condition
Lα(m) with some constant m > 0 if

|Fµ(x)− Fµ(x + h)| ≤ mh max
z∈[x,x+h]

sin2α+1 z

for x, h ≥ 0 with x + h ≤ π.

3.2. Remark. The Lipschitz condition 3.1(4) is an indispensible tool
for the smoothing inequalities below. In our applications of Berry–Esséen-
type inequalities below, this Lipschitz condition is always satisfied. In
fact, if µ ∈ M1([0, π]) has a continuous ωα-density f , then the Lipschitz
condition holds with m = cα‖f‖∞. In particular, for µ = ωα one has
m = cα.

We next turn to some estimations for the ultraspherical convolution
on M1([0, π]).

3.3. Lemma. Let µ, ν, % ∈ M1([0, π]), t, x ∈ [0, π], and T ≥ 0. Then,

(1) supp % ⊂ [0, T ] implies µ ∗ %([0, t − T ]) ≤ µ([0, t]) ≤ µ ∗ %([0, t + T ]),
and

(2) | ∫ π

0
(δz ∗ δx)(1[0,t])d(µ− ν)(z)| ≤ 2‖Fµ − Fν‖∞.

Proof.

(1) As supp(δx ∗ δy) ⊂ [|x− y|, min(x+ y, 2π−x− y)] for x, y ∈ [0, π], the
function

% ∗ 1[0,t+T ](x) :=
∫ T

0

(δx ∗ δy)(1[0,t+T ])d%(y) (x ∈ [0, π])

satisfies 0 ≤ % ∗ 1[0,t+T ] ≤ 1 on [0, π] with % ∗ 1[0,t+T ](x) = 1 for
x ∈ [0, t]. Hence,

µ ∗ %([0, t + T ]) =
∫ π

0

∫ T

0

(δx ∗ δy)(1[0,t+T ])d%(y)dµ(x) ≥ µ([0, t]).

The second inequality can be checked in the same way.
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(2) Assume first that α > −1/2. Section 2.4 and Fubini’s Theorem yield
that

∣∣∣
∫ π

0

(δz ∗ δx)(1[0,t])d(µ− ν)(z)
∣∣∣(3.1)

≤ cα−1/2

∫ π

0

∣∣∣
∫ π

0

1[cos t,1](cos z cosx + sin z sin x cosw)d(µ− ν)(z)
∣∣∣

· sin2α wdw

As the function z 7→ cos z cosx+sin z sinx cosw has at most one local
extremum in ]0, π[ for all x,w ∈ [0, π], it follows that

∣∣∣
∫ π

0

1[cos t,1](cos z cos x + sin z sinx cosw)d(µ− ν)(z)
∣∣∣ ≤ 2‖Fµ−Fν‖∞

for x, z ∈ [0, π]. Part (2) now follows from (3.1) and the observation
that

∫ π

0
sin2α wdw = c−1

α−1/2. The limit case α = −1/2 can be checked
similarly. ¤

Lemma 3.3 leads to the following smoothing inequality which is mo-
tivated by [12].

3.4. Lemma. Let T > 0, and µ, ν, % ∈ M1([0, π]) with supp % ⊂ [0, T ]
such that Fν has the Lipschitz property Lα(m) for some m > 0. Then, for

all θ ∈ [0, π],

|Fµ(θ)− Fν(θ)| ≤ 2mT · max
z∈[θ−2T,θ+2T ]∩[0,π]

sin2α+1 z

+ max
i∈{±1}

∣∣Fµ∗%(θ + iT )− Fν∗%(θ + iT )
∣∣.

Proof. For abbreviation, we put R := max
z∈[θ−2T,θ+2T ]∩[0,π]

sin2α+1 z.

The Lipschitz condition Lα(m) and Lemma 3.3(1) imply that for 0 ≤ θ ≤
π − 2T ,

ν([0, θ]) ≥ ν([0, θ + 2T ])− 2mTR ≥ ν ∗ %([0, θ + T ])− 2mTR.

It is also clear from the Lipschitz condition Lα(m) that for θ ∈ [π−2T, π],

ν([0, θ]) ≥ 1− 2mTR ≥ ν ∗ %([0, θ + T ])− 2mTR.
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In summary, applying Lemma 3.3(1) also to µ, we see that for all θ ∈ [0, π],

(µ− ν)([0, θ]) ≤ (µ ∗ %− ν ∗ %)([0, θ + T ]) + 2mTR.

In the same way, (µ− ν)([0, θ]) ≥ (µ ∗ %− ν ∗ %)([0, θ− T ])− 2mTR. This
completes the proof. ¤

We next turn to a smoothing inequality which involves ultraspherical
Fejér kernels.

3.5. Ultraspherical Fejér kernels. Let (R(α,β)
n )n≥0 be the Jacobi poly-

nomials with indices α, β ≥ −1/2 and normalization R
(α,β)
n (1) = 1. Fol-

lowing Lasser and Obermaier [11], we introduce the ultraspherical Fejér
kernels as follows: Using Eq. (4.5.3) of [16] together with the normalization
of the Jacobi polynomials above, we first observe that

(3.2)
n∑

k=0

h
(α)
k R

(α)
k =

(
n∑

k=0

h
(α)
k

)
R(α+1,α)

n = d(α)
n R(α+1,α)

n

with

(3.3) d(α)
n =

Γ(n + 2α + 2) · (n + α + 1)
Γ(2α + 2) · (α + 1) · n!

=
n∑

k=0

h
(α)
k .

Hence,

∫ π

0

R(α+1,α)
n (cos t)2dωα(t) =

1

d
(α)
n

2

n∑

k=0

(h(α)
k )2

∫ π

0

R
(α)
k (cos t)2dωα(t)

=
1

d
(α)
n

2

n∑

k=0

h
(α)
k = 1/d(α)

n .(3.4)

Therefore, for n ≥ 0, the ultraspherical Fejér kernels

(3.5) F (α)
n (t) := d(α)

n (R(α+1,α)
n (cos t))2 ≥ 0 (n ≥ 0, t ∈ [0, π])

are the densities of the probability measures %
(α)
n := F

(α)
n ωα on [0, π] with

%̂
(α)
n (k) = 0 for k > 2n (for the latter we refer to [11]). It is also known

that the probability measures %
(α)
n tend weakly to the point measure δ0 for

n → ∞ (this follows from results in [11] together with Lévy’s continuity
theorem for ultraspherical expansions; cf. Section 4.2 of [4]). We here need
the following quantitative result for the smoothing inequality 3.7 below:
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3.6. Lemma. There is a constant Mα > 0 such that for all ε ∈ ]0, π/2]
and n ≥ 1,

%(α)
n ([ε, π]) ≤ Mα/εn.

Proof. In the following, M1, M2, . . . denote constants depending on
α only. Eq. (7.32.6) of Szegö [16] and our normalization of the Jacobi
polynomials imply that

|R(α+1,α)
n (cos θ)| · θα+3/2 ≤ M1/nα+3/2 for θ ∈ [0, π/2], n ≥ 1.

As d
(α)
n = O(n2α+2), it follows that

(3.6) %(α)
n ([ε, π/2]) ≤ M2

n

∫ π/2

ε

sin2α+1 θ

θ2α+3
dθ ≤ M3

nε
.

Moreover, (7.32.6) and (4.1.3) of Szegö [16] imply that for θ ∈ [π/2, π]
and n ≥ 1,

|R(α+1,α)
n (cos θ)| · (π − θ)α+1/2 ≤ M4/nα+3/2.

Hence,

(3.7) %(α)
n ([π/2, π]) ≤ M5

n

∫ π

π/2

sin2α+1 θ

(π − θ)2α+1
dθ ≤ M6

n
.

The lemma is now a consequence of (3.6) and (3.7). ¤

3.7. Proposition. For all α ≥ −1/2 there is a constant Rα > 0 such

that the Fejér measures %
(α)
n ∈ M1([0, π]) (n ≥ 1) have the following

property: If µ, ν ∈ M1([0, π]) with Fν satisfying the Lipschitz condition

Lα(m) for m > 0, then

‖Fµ − Fν‖∞ ≤ 2‖F
µ∗%(α)

n
− F

ν∗%(α)
n
‖∞ + Rαm/n.

Proof. Fix n ∈ N, and put A := ‖Fµ − Fν‖∞ and An := ‖F
µ∗%(α)

n
−

F
ν∗%(α)

n
‖∞. For each ε > 0 we find x0 ∈ [0, π] with |Fµ(x0)−Fν(x0)| ≥ A−ε.

Assume now that Fµ(x0)−Fν(x0) ≥ A−ε holds (the case with the converse
sign can be handled in the same way). Define h := A/(4m) and t := x0+h.
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Then for x ∈ [0, h], we have t − x = x0 + h − x ≥ x0 ≥ 0. Hence, with
Lemma 3.3(1),

(3.8)

∫ π

0

(δz ∗ δx)(1[0,t])d(µ− ν)(z) ≥ Fµ(t− x)− Fν(t + x)

≥ Fµ(x0)− Fν(x0)− (x + h)m

≥ A− ε− 2hm ≥ A/2− ε.

It follows from Lemma 3.6 and Lemma 3.3(2) that

((µ− ν) ∗ %(α)
n )([0, t]) =

∫ h

0

∫ π

0

(δz ∗ δx)(1[0,t])d(µ− ν)(z)d%(α)
n (x)

+
∫ π

h

∫ π

0

(δz ∗ δx)(1[0,t])d(µ− ν)(z)d%(α)
n (x)

≥ (A/2− ε)− Mα

hn
· max

x∈[0,π]

∣∣∣
∫ π

0

(δz ∗ δx)(1[0,t])d(µ− ν)(z)
∣∣∣

≥ (A/2− ε)− 2MαA

hn
= (A/2− ε)− 8Mαm

n

With ε → 0, it follows that A/2 ≤ An + 8Mαm/n as claimed. ¤

4. Berry–Esséen-type inequalities

In this section we collect several versions of Berry–Esséen-type in-
equalities. The following theorem lists several versions without smoothing.
Part (4) there seems to be the most natural and useful extension of the
classical setting. As usual, we assume α ≥ −1/2.

4.1. Theorem. Let θ ∈ [0, π] and µ, ν ∈ M1([0, π]) such that the

distribution function Fν of ν satisfies the Lipschitz condition Lα(m) for

some m > 0. Then, with the constants cα,M1
α,M2

α > 0 of Section 2, the

following estimations hold:

(1) |Fµ(θ)− Fν(θ)| ≤ sin2α+2 θ · cα

2(α + 1)

∞∑
n=1

h(α)
n · |µ̂(n)− ν̂(n)|;

(2) |Fµ(θ)− Fν(θ)| ≤ sin2α+1 θ · cα

∞∑
n=1

h
(α)
n√

n(n + 2α + 1)
· |µ̂(n)− ν̂(n)|;
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(3) |Fµ(θ)− Fν(θ)| ≤ sinα+1/2 θ · cα ·M1
α

2(α + 1)

∞∑
n=1

h
(α)
n

nα+3/2
· |µ̂(n)− ν̂(n)|;

(4) |Fµ(θ)− Fν(θ)| ≤ cα ·M2
α

2(α + 1)

∞∑
n=1

h
(α)
n

nα+3/2
· |µ̂(n)− ν̂(n)|.

Proof. Assume first that µ̂, ν̂ ∈ l1(Z+, h) holds (notice that this is
no essential restriction in Part (1)). In this case, the inversion formula in
Section 2.2 ensures that

fµ−ν(ϕ) :=
∞∑

n=1

h(α)
n R(α)

n (cos ϕ) · (µ̂(n)− ν̂(n))

is continuous on [0, π] with µ− ν = fµ−νωα. As

(4.1)
d

dθ

(
sin2α+2 θ ·R(α+1)

n−1 (cos θ)
)

= 2(α + 1) sin2α+1 θ ·R(α)
n (cos θ)

(see the Rodrigues formula (4.7.12) of [16]), it follows that

(4.2)

Fµ(θ)− Fν(θ) = µ([0, θ])− ν([0, θ]) = cα

∫ θ

0

fµ−ν(ϕ) sin2α+1 ϕdϕ

= cα

∫ θ

0

∞∑
n=1

h(α)
n R(α)

n (cos ϕ) · (µ̂(n)− ν̂(n)) sin2α+1 ϕdϕ

= cα

∞∑
n=1

(∫ θ

0

R(α)
n (cos ϕ) sin2α+1 ϕdϕ

)
h(α)

n · (µ̂(n)− ν̂(n))

=
cα

2(α + 1)

∞∑
n=1

sin2α+2 θ ·R(α+1)
n−1 (cos θ) · h(α)

n · (µ̂(n)− ν̂(n)).

The theorem under our additional assumption is now a consequence of
Lemma 2.3. We next turn to the general case in (2)–(4); we first prove
Part (2). For n ≥ 1, choose gN ∈ L1([0, π], ωα) with gN ≥ 0, supp gN ⊂
[0, 1/(2N)], and ‖gN‖1 = 1. Then

gN ∗ gN (θ) :=
∫ π

0

gN (ϕ) · (δϕ ∗ δθ)(gN )dωα(ϕ)
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defines a function gN∗gN ∈ L1([0, π], ωα) with gN∗gN ≥ 0, supp(gN∗gN ) ⊂
[0, 1/N ], ‖gN ∗ gN‖1 = 1, and (gN ∗ gN )∧ = ĝ2

N ∈ l1(Z+, h). Hence, if
%N := (gN ∗ gN )ωα ∈ M1([0, π]), we may apply (2)–(5) to %N ∗ µ and
%N ∗ ν. In particular, Part (2) in the special case above and Lemma 3.4
imply that for θ ∈ [0, π] and N ∈ N,

(µ− ν)([0, θ]) ≤ 2m/N+ max
i∈{±1}

(|F%N∗µ(θ + i/N)−F%N∗ν(θ + i/N)|)

≤ 2m/N + max
i∈{±1}

(sin2α+1(θ + i/N))(4.3)

× cα

∞∑
n=1

h
(α)
n√

n(n + 2α + 1)
· |ĝN (n)|2|µ̂(n)− ν̂(n)|

We may assume

R :=
∞∑

n=1

h
(α)
n√

n(n + 2α + 1)
|µ̂(n)− ν̂(n)| < ∞.

As |ĝN (n)| ≤ 1 and ĝN (n) → 1 for N →∞ by the construction of gN , the
dominated convergence theorem ensures that the right hand side of (4.3)
tends to sin2α+1(θ) · cα ·R which implies Part (2). Parts (3) and (4) follow
in the same way. ¤

4.2. Remarks.
(1) Up to the precise constant, Theorem 4.1(1) can be also derived as

follows: If ‖µ̂− ν̂‖1 < ∞ holds, then µ−ν admits an ωα-density fµ−ν

with ‖fµ−ν‖∞ ≤ ‖µ̂ − ν̂‖1. It follows for θ ∈ [0, π/2] that for some
constant Rα,

|Fµ(θ)− Fν(θ)| ≤
∫ θ

0

|fµ−ν |dωα ≤ ‖fµ−ν‖∞ · cα

∫ θ

0

sin2α+1 ϕdϕ

≤ Rα‖fµ−ν‖∞ sin2α+2 θ.

The same conclusion works also for θ ∈ [π/2, π] by taking
∫ π

θ
instead

of
∫ θ

0
.

(2) For the classical case α = −1/2 (corresponding to symmetric probabil-
ity measures on the torus), parts (2)–(4) of Theorem 4.1 are equivalent
up to the precise constant.
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Theorem 4.1(4) and the smoothing with the Fejér kernel lead to the
following result:

4.3. Theorem. Let µ, ν ∈ M1([0, π]) such that Fν has the Lipschitz

property Lα(m) for some m > 0. Then there is a universal constant

Mα > 0 such that

‖Fµ − Fν‖∞ ≤ Mα ·
(m

N
+

N∑
n=1

h
(α)
n

nα+3/2
· |µ̂(n)− ν̂(n)|

)
for all N ≥ 1.

Proof. Assume without loss of generality N ≥ 2. Put k := bN/2c.
By Proposition 3.7, the Fejér measures %

(α)
k satisfy

‖Fµ − Fν‖∞ ≤ 2‖F
µ∗%(α)

k

− F
ν∗%(α)

k

‖∞ + Rαm/k.

Now apply Theorem 4.1(4) to µ ∗ %
(α)
k and ν ∗ %

(α)
k (notice that ν ∗ %

(α)
k

satisfies the Lipschitz condition Lα(m) for some m > 0). As %̂
(α)
k (n) = 0

for n > 2k, and as

|(µ ∗ %
(α)
k )∧(n)− (ν ∗ %

(α)
k )∧(n)| = |µ̂(n)− ν̂(n)| · %̂(α)

k (n) ≤ |µ̂(n)− ν̂(n)|,

the theorem follows readily. ¤

4.4. Remark. Theorem 4.3 can be slightly improved by not estimating
the Fejér weights %̂

(α)
N (n) by 1. However it seems to be difficult to compute

%̂
(α)
N (n) sufficiently explicitly in order to obtain a considerable improvement

of Theorem 4.3.

We next turn to a application of Theorem 4.1(3) and the smoothing
in Lemma 3.4:

4.5. Theorem. Let µ, ν ∈ M1([0, π]) such that the distribution func-

tion Fν of ν satisfies the Lipschitz condition Lα(m) for some m > 0. Then

there is a universal constant Mα > 0 such that for all θ, T ∈ [0, π],

|Fµ(θ)− Fν(θ)| ≤ 2mT · w(θ, T )2α+1 + Mαw(θ, T )α+1/2

×
(b1/Tc∑

n=1

nα−1/2|µ̂(n)− ν̂(n)|+ T−(α+3/2)
∞∑

n=b1/Tc

|µ̂(n)− ν̂(n)|
n2

)
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with w(θ, T ) := max
z∈[θ−T,θ+T ]∩[0,π]

sin z.

Proof. Consider the probability measure %α
T := cT ·ωα|[0,T ] with the

constant

cT :=
(
cα

∫ T

0

sin2α+1 t dt
)−1

= O(T−(2α+2)).

Eq. (4.1) and Lemma 2.3(3) show that for n ≥ 0, T > 0 and suitable
M1,M2,M3 > 0,

|%̂α
T (n)| = cT

∣∣∣
∫ T

0

sin2α+1 tR(α)
n (cos t)dt

∣∣∣

≤ M1

T 2α+2
·
∣∣sin2α+2 T ·R(α+1)

n−1 (cosT )
∣∣

≤ M2

T 2α+2
· sinα+1/2 T

nα+3/2
≤ M3

Tα+3/2nα+3/2
.

Therefore, for n ≥ 1,

|(µ ∗ %α
T )∧(n)− (ν ∗ %α

T )∧(n)| ≤ M3|µ̂(n)− ν̂(n)| ·min
(
1, (Tn)−(α+3/2)

)
.

A combination of Theorem 4.1(3) and Lemma 3.4 now leads to the claim.
¤

4.6. Corollary. Let (µN )N≥1 be a sequence in M1([0, π]), and let

ν ∈ M1([0, π]) such that Fν satisfies the Lipschitz condition Lα(m) for

some m > 0. If

sup
n∈N

|µ̂N (n)− ν̂(n)| = O(N−A) for N →∞

holds for some A > 0, then for all constants B > 0 and r ∈ [0, A/(2α+2)],

sup
θ∈[0,BN−r]

|FµN (θ)− Fν(θ)| = O
( 1

N [A+r(2α+2)(α+1/2)]/(α+3/2)

)

for N →∞.

In particular, for r = 0 and r = A/(2α + 2) respectively:

(1) ‖FµN
− Fν‖∞ = O(N−A/(α+3/2)) for N →∞;
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(2) For each constant B > 0,

sup
θ∈[0,BN−A/(2α+2)]

|FµN
(θ)− Fν(θ)| = O(N−A) for N →∞.

Proof. This follows readily from Theorem 4.5. In fact, if
r ∈ [0, A/(2α + 2)], then

s := [A− (α + 1/2)r]/(α + 3/2) ≥ r

holds. Now take T = T (N) = N−s in Theorem 4.5 and observe that
w(θ, T (N)) = O(N−r) holds uniformly for θ ∈ [0, BN−r]. This leads to
the claim. ¤

5. Application to a central limit theorem

In this section we apply Theorem 4.3 to the rate of convergence in
a central limit theorem concerning ultraspherical convolutions. For an
interpretation of this convolution on M1([0, π]) of index α in terms of
radial random walks on the unit spheres Sn ⊂ Rn with α = n/2 − 1 we
refer to [3], [19] and references there. We need some preparations.

5.1. Gaussian measures. Let α ≥ −1/2 and define the function

(5.1)
q(n) := q(α)(n) := −

(
d

dθ

)2

R(α)
n (cos θ)

∣∣∣
θ=0

=
n(n + 2α + 1)

2(α + 1)

(n ≥ 0).

Then for σ2 > 0, the heat kernel

(5.2) h
(α)
σ2 (θ) :=

∞∑
n=0

h(α)
n e−σ2q(n)/2R(α)

n (cos θ) (θ, ϕ ∈ [0, π])

is a positive continuous function on [0, π]. The probability measure

(5.3) dνα
σ2(θ) := h

(α)
σ2 (θ) · dωα(θ)

on [0, π] is called the Gaussian measure with “variance” σ2.
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5.2. Central limit theorem. For µ ∈ M1([0, π]) define its “variance”

(5.4) σ2 :=
∫ π

0

x2dµ(x) ≥ 0

which is consistent with the notation in 5.1 for Gaussian measures. For

k ∈ N, consider the contracted probability measure µk ∈ M1([0, π]) with

(5.5) µk(A) := µ(
√

kA) for A ⊂ [0, π] a Borel set.

It is well-known (see Voit [17]) that for α ≥ −1/2 the ultraspherical
convolution powers

µ
(k)
k := µk ∗ µk ∗ . . . ∗ µk ∈ M1([0, π])

tend weakly to the Gaussian measure να
σ2 for k → ∞. Moreover, un-

der some additional conditions, the following strong convergence result is
known; see [19]:

5.3. Theorem. Let α > −1/2 and µ ∈ M1([0, π]). Assume there

exist constants c, p > 0 such that µ([0, ε]) ≤ c · εp for all ε ∈ [0, π] (which

means that “µ is not concentrated at 0 too much”). Then there exists

k0 = k0(α, µ) such that for each k ≥ k0, the measure µ
(k)
k has a continuous,

bounded ω(α)-density fk. Moreover,

‖fk − h
(α)
σ2 ( . , 0)‖∞ = O(1/k) and ‖µ(k)

k − να
σ2‖ = O(1/k) for k →∞.

We now show that the results of Section 4 lead to the weaker conver-
gence result ‖F

µ
(k)
k

− Fνα
σ2
‖∞ = O(1/k) where here the non-concentration

condition is not needed:

5.4. Theorem. For all α > −1/2 and µ ∈ M1([0, π]) with µ 6= δ0,

‖F
µ

(k)
k

− Fνα
σ2
‖∞ = O(1/k) for k →∞.

The proof of Theorem 5.4 relies on the following asymptotic estima-
tions (see also [19]):
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5.5. Lemma. The following results hold for k →∞:

(1) There exists a constant A = A(µ, α) > 0 such that

bA
√

kc∑
n=0

h(α)
n

∣∣∣(µ(k)
k )∧(n)− (να

σ2)∧(n)
∣∣∣ = O(1/k).

(2) For each A > 0 there exists a constant C1 = C1(µ, α) ∈ ]0, 1[ such

that ∞∑

n=bA
√

kc
h(α)

n |(να
σ2)∧(n)| = O(Ck

1 ).

(3) For all constants 0 < A < B, there is a constant C2 = C2(µ, α) ∈ ]0, 1[
with

bB
√

kc∑

n=bA
√

kc
h(α)

n |(µ(k)
k )∧(n)| = O(Ck

2 ).

(4) There exist constants B = B(µ, α) > A and C3 = C3(µ, α) ∈ ]0, 1[
with

k∑

n=bB
√

kc
h(α)

n |(µ(k)
k )∧(n)| = O(Ck

3 ).

Proof. For Part (1) we refer to Eq.(3.9) and Lemma 3.4 in Voit [19];
for Part (2) see Eq. (3.10) in [19]. Moreover, Part (3) is shown on p. 474
of [19]. Notice that for these results the non-concentration condition of
Theorem 5.3 is not needed there.

It remains to prove Part (4): As µ 6= δ0, there exists a > 0 with c :=
µ([0, a]) < 1. Using |P (α)

n (x)| ≤ 1 for n ≥ 0, x ∈ [−1, 1] and |P (α)
n (cos t)| =

O((tn)−(α+1/2)) for t ∈ [0, π/2], n ≥ 0 (see Section 7.32 of Szegö [16]),
we find a constant S > 0 such that for all n ≥ 1 and k sufficiently large,

(5.6)

|(µ(k)
k )∧(n)| =

∣∣∣
(∫ a

0

+
∫ π

a

)
P (α)

n (cos(t/
√

k))dµ(t)
∣∣∣
k

≤
(

c + (1− c)S ·
√

k
α+1/2

nα+1/2

)k

.
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Now choose B > A with c + (1− c)S/B =: T < 1. Then for all n ≥ B
√

k,
we obtain |(µ(k)

k )∧(n)| ≤ T k, and thus, for some C3 ∈ ]0, 1[,

(5.7)
k∑

n=bB
√

kc
h(α)

n |(µ(k)
k )∧(n)| = O

( k∑

n=bB
√

kc
n2α+1T k

)
≤ O(Ck

3 ).

¤

Proof of Theorem 5.4. Lemma 5.5 implies that for k →∞,

k∑
n=0

h(α)
n

∣∣∣(µ(k)
k )∧(n)− (να

σ2)∧(n)
∣∣∣ = O(1/k).

Theorem 5.4 is now an immediate consequence of Theorem 4.3 with
N := k. ¤

5.6. Remarks.
(1) Theorem 5.4 is not valid for α = −1/2. In this case one has the weaker

sharp order

‖F
µ

(k)
k

− Fνα
σ2
‖∞ = O(1/

√
k) for k →∞.

In fact, for any t ∈ ]0, π[, the convolution product δ
(k)
t has a mass of

order at least O(1/
√

k) at 0 (this follows easily from the corresponding
well-known result for centered Binomial distributions on R).

(2) Obviously, Theorem 5.4 implies Theorem 1.2(1). We also mention
that for α ≥ 0, the families (µ(n)

k )n≥0 ⊂ M1([0, π]) of convolution
powers admit interpretations as distributions of angular parts of cer-
tain random walks on the sphere S2 hving a “compass”; for details
see Bingham [3].

(3) By Pap and Voit [14], there exists a short Edgeworth expansion
associated with Theorem 5.3 under the assumptions there. A short
look into [14] and Lemma 5.5 yield that a short Edgeworth expansion
also exists in the setting of Theorem 5.4.
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6. Applications to the convergence
to the uniform distribution

In this section we prove an analogue of Theorem 5.4 where here, after
a different normalization, the limit distribution is the measure ωα.

6.1. A limit theorem with the uniform distribution as limit. Let α ≥
−1/2, r ∈ [0, 1/2[ and µ ∈ M1([0, π]) with µ 6= δ0. For k ∈ N, consider the
concentrated probability measure µk,r ∈ M1([0, π]) with

µk,r(A) := µ(krA) for A ⊂ [0, π] a Borel set.

By Voit [17], the ultraspherical convolution powers µ
(k)
k,r tend weakly to

the uniform distribution ωα for k → ∞. This generalizes the well-known
fact for r = 0 that µ(k) tends weakly to ωα. We now use Theorem 4.3 to
derive the following rate of convergence:

6.2. Theorem. Let α > −1/2, r ∈ ]0, 1/2[ and µ ∈ M1([0, π]) with
µ 6= δ0. Define σ2 :=

∫ π

0
x2dµ(x) > 0. Then for each ε > 0,

‖F
µ

(k)
k,r

− Fωα‖∞ = O
(
exp

(
−

( σ2

4(α + 1)
− ε

)
· k1−2r

))
for k →∞.

The proof of this result will be based on the following estimations:

6.3. Lemma. The following results hold for k → ∞ in the setting of
Theorem 6.2:

(1) There exists a constant A = A(µ, α, r) > 0 with

bAkrc∑
n=1

h(α)
n

∣∣(µ(k)
k,r)

∧(n)
∣∣ = O

(
exp

(
−

( σ2

4(α + 1)
− ε

)
· k1−2r

))
.

(2) For all constants 0 < A < B, there is a constant E ∈ ]0, 1[ with

bBkrc∑

n=bAkrc
h(α)

n |(µ(k)
k,r)

∧(n)| = O(Ek).

(3) There exist constants B = B(µ, α, r) > A and D = D(µ, α, r) > 1
with

bDkc∑

n=bBkrc
h(α)

n |(µ(k)
k,r)

∧(n)| = O(D−k).
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Proof. In the following, let C1, C2, . . . be constants depending on
α, r, µ only.
(1) Lemma 3.2 of [19] ensures that for n ≥ 0 and x ∈ [−1, 1],

∣∣∣R(α)
n (x)−

(
1− (1− x)

(n + 2α + 1)n
2(α + 1)

)∣∣∣ ≤ C1n
4(1− x2)

It follows readily (cf. the proof of Lemma 3.3 in [19]) that

|µ̂k,r(n)| =
∣∣∣
∫ π

0

R(α)
n (cos(t/kr))dµk,r(t)

∣∣∣ ≤
∣∣∣1− q(n)σ2

2k2r
+

C2n
4

k4r

∣∣∣

≤
∣∣∣1− n2σ2

4(α + 1)k2r
+

C2n
4

k4r

∣∣∣

for n ≤ C3k
r and C2, C3 suitable where q(n) is defined in (5.1). Now

choose A > 0 with A ≤ C3 and C2A ≤ ε/2. Then, for 1 ≤ n ≤ Akr,

|µ̂k,r(n)|k≤
∣∣∣1−

( σ2

4(α + 1)
− ε

2

)
· n2

k2r

∣∣∣
k

≤ exp
(
−

( σ2

4(α + 1)
− ε

2

)
k1−2r

)
.

As h
(α)
n = O(n2α+1), Part (1) follows readily.

(2) This can be shown in the same way as the corresponding result for
r = 1/2 on p. 474 of [19]. We omit the lenghty details here and
mention only that the proof uses Hilb’s formula for ultraspherical
polynomials (see Theorem 8.21.12 of Szegö [16]).

(3) Similar as in the proof of (5.6) above, we have

|(µ(k)
k,r)

∧(n)| ≤
(
c + (1− c)C4

kr(α+1/2)

nα+1/2

)k

for all n ≥ 1 and k sufficiently large with c ∈ ]0, 1[. The proof can
now be completed in the same way as in Lemma 5.5(4) for r = 1/2.
¤
Proof of Theorem 6.2. Lemma 6.3 implies that for k → ∞ and

suitable D > 1,

bDkc∑
n=1

h(α)
n |(µ(k)

k,r)
∧(n)| = O

(
exp

(
−

( σ2

4(α + 1)
− ε

)
· k1−2r

))
.

Theorem 6.2 is now a consequence of Theorem 4.3 by choosing N := bDkc
there. ¤
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6.4. Remarks.
(1) For r = 0 and α > −1/2, the methods above lead to a constant

C ∈ ]0, 1[ with

‖F
µ

(k)
k,r

− Fωα‖∞ = O(Ck) for k →∞.

(2) Similar to Theorem 5.3, Theorem 6.2 and the first part of this remark
are not valid for α = −1/2. In fact, in this case, one usually has the
order O(1/

√
k) only.

(3) In Voit [18], the order of convergence of the heat kernels h
(d)
t on the

spheres Sd to 1 is investigated when the time t and the dimension d
tend to ∞ in certain coupled ways. This is done in [18] with respect
to the ‖ . ‖∞- and the ‖ . ‖1-norm. It might be interesting to explore
whether the preceding results lead to similar convergence results with
respect to the uniform convergence of distribution functions.

7. The spherical cap distance
and distributing points on spheres

In this section we translate the Berry–Esséen-inequalities of Section 4
to the setting of probability measures on unit spheres. This leads to im-
portant applications.

7.1. The spherical cap distance. The spherical cap distance of prob-
ability measures µ, ν on the unit sphere Sd ⊂ Rn+1 for d ≥ 2 is given
by

(7.1) Dc(µ, ν) := sup
J
|µ(J)− ν(J)|

where J runs over all spherical caps D(x, s) := {y ∈ Sd : ∠(x, y) ≤ s} with
x ∈ Sd, s ∈ [0, π]. This spherical cap distance is related to the uniform
distance of distribution functions on [0, π] as follows: For x ∈ Sd consider
the associated projection

(7.2) px : Sd → [0, π], y 7→ ∠(x, y);

now extend px to a projection of measures on Sd which is again denoted
by px:

px : M1(Sd) 7−→ M1([0, π]) with px(µ)(A) := µ(p−1
x (A)) for A ⊂ [0, π].
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Then, we have

(7.3) Dc(µ, ν) = sup
x∈Sd

‖Fpx(µ) − Fpx(ν)‖∞.

There exists also a connection between L2-convolution operators of
measures on Sd and the ultraspherical coefficients (of index α = d/2− 1)
of their projections:

7.2. The norm of L2-convolution operators. For d ≥ 2, the group
SO(d + 1) acts on Sd in the natural way. The stabilizer Hx ⊂ SO(d + 1)
of a “North pole” x ∈ Sd is isomorphic with SO(d). Identify

Sd ' SO(d + 1)/Hx = {gHx : g ∈ SO(d + 1)}
and [0, π] ' SO(d+1)//Hx = {HxgHx : g ∈ SO(d+1)} in the natural way
such that the canonical projection px : SO(d + 1)/Hx → SO(d + 1)//Hx

corresponds to the projection defined in Eq. (7.2). Moreover, let qx be the
canonical projection from SO(d + 1) to Sd.

For any Borel measure µ ∈ Mb(SO(d + 1)), consider the convolution
operator

Tµf(z) :=
∫

SO(d+1)

f(g(z))dµ(g) on L2(Sd, hd)

where hd is the uniform distribution on Sd. If one identifies the space
of all Hx-invariant L2(Sd, hd)-functions with L2([0, π], ωd/2−1), then the
operators Tµ on L2(Sd, hd) correspond to convolution operators T̃px◦qx(µ)

on L2([0, π], ωd/2−1) given by

T̃%f(t) :=
∫ π

0

(δs ∗d/2−1 δt)(f)d%(s)

for % ∈ Mb([0, π]), f ∈ L2([0, π], ωd/2−1).

Hence, for all x ∈ Sd and µ ∈ Mb(SO(d + 1)),

(7.4) ‖T̃px◦qx(µ)‖L2([0,π],ωd/2−1) ≤ ‖Tµ‖L2(Sd,hd).

Moreover, spectral theory for the commutative Banach-∗-algebra
L1([0, π], ωd/2−1) (see, for instance, 2.2.4(v) of [4]) yields that

(7.5) ‖T̃px◦qx(%)‖L2([0,π],ωd/2−1) = sup
n≥0

|%̂(n)| for all % ∈ Mb([0, π])
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In summary, for all probability measures µ, ν ∈ M1(SO(d + 1)),

(7.6) sup
x∈Sd,n≥0

|(px ◦ qx(µ))∧(n)− (px ◦ qx(ν))∧(n)| ≤ ‖Tµ−ν‖L2(Sd,hd).

Now one can combine (7.3) and (7.6) with the inequalities of Section 4
to obtain corresponding results for spherical cap distances. For instance,
Corollary 4.6 leads to:

7.3. Corollary. Let (µN )N≥1 be a sequence in M1(SO(d + 1)), and

let ν ∈ M1(SO(d + 1)) such that for all x ∈ Sd, the distribution function

Fpx◦qx(ν) satisfies the Lipschitz condition Ld/2−1(m) for some m > 0. If

‖TµN − Tν‖ = O(N−A) for N →∞

and some A > 0, then for all constants B > 0 and r ∈ [0, A/(2α + 2)],

sup
θ∈[0,BN−r]

|µN (D(x, s))− ν(D(x, s))| = O
( 1

N [2A+rd(d−1)]/(d+1)

)

for N →∞.

In particular, for r = 0 and r = A/d respectively:

(1) Dc(µN , ν) = O(N−2A/(d+1));

(2) For all B > 0, sup
x∈Sd,s∈[0,BN−A/d]

|µN (D(x, s))−ν(D(x, s))| = O(N−A).

7.4. Remarks.
(1) For d = 2, A = 1/2, r = 0, and ν the uniform distribution on

SO(d + 1), Corollary 7.3(1) is already implicitly shown in the proof
of Theorem 2.5 of [12].

(2) If r = A/d is maximal, and ν is again the uniform distribution on
SO(d+1), then Corollary 7.3 is not satisfying, as then the error term
in 7.3(2) has the same order as

sup
x∈Sd,s∈[0,BN−A/d]

|ν(D(x, s))| = O(N−A).
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However, for intermediate constants r one obtains reasonable results:
For instance, for d = 2, A = 1/2, and r = 1/10, one obtains

(7.7) sup
x∈Sd, s∈[0,BN−1/10]

|µN (D(x, s))− ν(D(x, s))| = O(N−4/10).

Local inequalities like (7.7) may be seen as supplements to [12] on the
order of convergence of some recursive algorithm on distributing N

points on S2 uniformly.
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