Year: 1999 | Vol.: 54 | Fasc.: 1-2

Title: Pell numbers, squares and cubes

Author(s): Paulo Ribenboim

We consider the sequence of Pell numbers U_n $(n \ge 0)$ and of associated Pell numbers V_n $(n \ge 0)$ and we determine the finitely many indices n such that $U_{2n+1} = x^3 \pm 1$, $U_{2n} = x^3 \pm 2$, $V_{2n+1} = x^3 \pm 2$, or $V_{2n} = x^3 \pm 6$. We obtain results about the square classes in these sequences. We also show, among other facts, that for odd n, $U_n \ne \Box \pm 1$ (except for n = 3), $U_n \ne \Box \pm 5$, $V_n \ne \Box \pm 2$ (except for n = 3), $V_n \ne \Box \pm 14$. For even n, we show that $U_n \ne \Box \pm 2$, $V_n \ne \Box \pm 6$. Concerning cubes, we show for all n that $V_n \ne C \pm 2$ (except for n = 2), for odd n, $U_n \ne C \pm 1$ and for n even, $U_n \ne C \pm 2$, $V_n \ne C \pm 6$.

Address:

Paulo Ribenboim Department of Mathematics and Statistics Queen's University Kingston, Ontario K7L 3N6 Canada