Title: Pell numbers, squares and cubes
Author(s): Paulo Ribenboim
We consider the sequence of Pell numbers $U_{n}(n \geq 0)$ and of associated Pell numbers $V_{n}(n \geq 0)$ and we determine the finitely many indices n such that $U_{2 n+1}=$ $x^{3} \pm 1, U_{2 n}=x^{3} \pm 2, V_{2 n+1}=x^{3} \pm 2$, or $V_{2 n}=x^{3} \pm 6$. We obtain results about the square classes in these sequences. We also show, among other facts, that for odd $n, U_{n} \neq \square \pm 1$ (except for $n=3$), $U_{n} \neq \square \pm 5, V_{n} \neq \square \pm 2$ (except for $n=3$), $V_{n} \neq \square \pm 14$. For even n, we show that $U_{n} \neq \square \pm 2, V_{n} \neq \square \pm 6$. Concerning cubes, we show for all n that $V_{n} \neq C \pm 2$ (except for $n=2$), for odd $n, U_{n} \neq C \pm 1$ and for n even, $U_{n} \neq C \pm 2, V_{n} \neq C \pm 1, V_{n} \neq C \pm 6$.

Address:

Paulo Ribenboim

Department of Mathematics and Statistics
Queen's University
Kingston, Ontario K7L 3N6

Canada

