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The structure of the univoque set in the small case

By GÁBOR KALLÓS (Győr)

Abstract. In this paper we generalize the results obtained in [1] and [2] for the
determination of the Hausdorff dimension of the univoque set. We break down the
general problem into two subcases, and accomplish the investigation completely in the
simplest case. Finally we illustrate the theoretical results with an interesting example.

1. Introduction

The specification of the univoque numbers is one of the newest fields
in the research of generalized number systems. In [1] and [2] Z. Daróczy

and I. Kátai have specified the univoque sequences and have presented a
method for the computation of the Hausdorff dimension of the univoque
set in the cases 1 < β ≤ 2, where β is the base of the number system. In
this paper we continue this investigation in the general case.

Let β > 1 be the base number of a number system, Θ = 1
β and

A = {0, 1, . . . , [β]} the set of the usable digits. The set of the fractions is

F =
{

x | x =
∞∑

n=1

an

βn
=

∞∑
n=1

anΘn
}

,

where a = (a1, a2, . . . ) ∈ {0, 1, . . . , [β]}N . In the sequel we work only on
the set of the fractions. The largest number in F is

L = [β]Θ + [β]Θ2 + · · · = [β]Θ
1−Θ

.
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For ε = (ε1, ε2, . . . ) ∈ {0, 1, . . . , [β]}N let

〈ε, Θ〉 :=
∞∑

n=1

εn

βn
=

∞∑
n=1

εnΘn.

A sequence ε is said to be univoque (with respect to Θ), if 〈ε, Θ〉 = 〈δ,Θ〉
(for δ ∈ {0, 1, . . . , [β]}N) is only true if ε = δ, i.e. εn = δn, for n ∈ N. In
this case the number 〈ε, Θ〉 is said to be univoque, too.

We denote the set of the univoque sequences by

U(Θ) := {ε | ε ∈ {0, 1, . . . , [β]}N, ε is univoque with respect to Θ}.
The sequences

0 := (0, 0, . . . ), [β] := ([β], [β], . . . )

are univoque, because every other expansion is clearly larger or smaller
than these ones, respectively.

For ε ∈ {0, 1, . . . , [β]}N let ε = [β] − ε = ([β] − ε1, [β] − ε2, . . . ),
which we will call the complementary sequence. From this it follows that
ε ∈ {0, 1, . . . , [β]}N, and if 〈ε, Θ〉 = x, then 〈ε, Θ〉 = ([β] − ε1)Θ + ([β] −
ε2)Θ2 + · · · = L− x.

Later we will make comparisons between two sequences using lexico-
graphic ordering.

The regular expansion. Let us define the following sequence εn(x) for
x ∈ [0, L], by induction on n: εn(x) = j, if

n−1∑

i=1

εi(x)Θi + jΘn ≤ x,

where j ∈ A, but
n−1∑

i=1

εi(x)Θi + (j + 1)Θn > x

or j + 1 > [β], i.e. we would use a non-usable digit for the expansion.
The equality x = 〈ε(x),Θ〉 is called the regular expansion of x, where
ε(x) = (ε1(x), ε2(x), . . . ). We denote the sets of regular sequences by

R(Θ) := {ε(x) | x ∈ [0, L], ε(x) is regular}, and

R1(Θ) := {ε(x) | x ∈ [0, 1), ε(x) is regular}.
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In the course of the regular expansion of an x ∈ [0, L] we get the
remainders xi as follows:

x = ε1Θ + Θx1, where ε1 ∈ {0, 1, . . . , [β]} and ε1 is maximum,

. . .

xn−1 = εnΘ + Θxn, where εn ∈ {0, 1, . . . , [β]} and εn is maximum.

. . .

Proposition 1. If all of the remainders xi ≥ 1 (i = 1, . . . , n), then
εi = [β].

Proof. Let us assume that εn ≤ [β]− 1. Then we would be able to
write the remainder xn−1 in the form xn−1 = (εn + 1)Θ + Θ(xn − 1). But
in this case in the expression xn−1 = εnΘ + Θxn (which we get by the
application of the definition) the coefficient εn would not be maximal.

Proposition 2. For all x ∈ [0, 1] the remainders resulting from the
regular expansion fall into the interval [0, 1], i.e. if – during the expansion
of an arbitrary x – once the remainder is from the interval [0, 1], then it
remains there.

Proof. The coefficient ε1(x) in the expansion would be maximal if
we choose it as [βx]. Thus for x ∈ [0, 1]

(i) x = [βx]Θ + Θx1,

and 0 ≤ x1. Using that [βx] ≥ βx− 1 we get from (i)

x ≥ (βx− 1)Θ + Θx1 = βΘx−Θ + Θx1, i.e.

0 ≥ Θ(x1 − 1) ⇐⇒ x1 ≤ 1.

By using the regular expansions we are able to decide whether a se-
quence is univoque or not. As a generalization of Theorem 2.1 in [1] we
get

Lemma 1. ε ∈ {0, 1, . . . , [β]}N is univoque with respect to Θ ⇐⇒ ε,
[β]− ε ∈ R(Θ).

Proof. =⇒ Like that in [1], but with 1 replaced by [β].
⇐= The course of the proof is the same as in [1]. We use [β] instead

of 1. In examining the Nth digits εN > δN , we can thus choose δN = k,
εN = k + j, where k, k + j ∈ A and j ≥ 1.
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The quasiregular expansion. Let us define by induction on n the fol-
lowing sequence δn(x) for x ∈ (0, L]: δn(x) = j, if

n−1∑

i=1

δi(x)Θi + jΘn < x

where j ∈ A, but

n−1∑

i=1

δi(x)Θi + (j + 1)Θn ≥ x

or j + 1 > [β], i.e. we would use a non-usable digit for the expansion.
The equality x = 〈δ(x),Θ〉 is called the quasiregular expansion of x, where
δ(x) = (δ1(x), δ2(x), . . . ).

The quasiregular expansion is always infinite, and if the regular ex-
pansion is infinite too, then the two expansions are the same.

Since [β] ≤ β < [β] + 1, i.e. [β]Θ ≤ 1 < ([β] + 1)Θ, both in the
regular and the quasiregular expansion of 1 surely ε1 = [β] (and δ1 = [β]
if [β] < β).

If 1 has finite regular expansion of the form 〈ε(1),Θ〉 = r1Θ + r2Θ2 +
· · ·+ rkΘk, where rk ≥ 1, then the sequence δ(1) is periodic with a period
of length k:

δ(1) = (r1, r2, . . . , rk−1, rk − 1, r1, r2, . . . , rk−1, rk − 1, . . . ).

We shall use the notation ` = `(Θ) = (`1, `2, . . . ) ∈ {0, 1, . . . , [β]}N for
the quasiregular expansion of 1.

By Lemma 1, in order to decide whether a sequence is univoque or
not we need the regular expansion of the sequence and that of the comple-
menterary sequence. To establish that an expansion producing a number
less than 1 is regular, we use the result of W. Parry [3]. Reformulating
his Theorem 3 according to our notations we get the following

Parry condition. A finite or infinite sequence b = (b1, b2, . . . ), which
contains non-negative integers and produces a number x less than 1 (where
x = 〈b,Θ〉) is regular if and only if for all n ≥ 1 the subsequence
(bn, bn+1, . . . ) is less than the quasiregular expansion of 1, i.e.

b = (b1, b2, . . . ) ∈ R1(Θ) ⇐⇒ (bn, bn+1, . . . ) < (`1, `2, . . . ) ∀n ≥ 1,

where 0 ≤ x = b1Θ + b2Θ2 + · · · < 1.
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Remark. Using only the Parry condition we are not able to decide the
univoque or regular property of a sequence representing a number in the
interval [1, L]. To accomplish this we shall use Propositions 1 and 2.

2. The set of the univoque numbers

Let

H = {〈ε, Θ〉 | 〈ε, Θ〉 ∈ [0, L] and ε univoque with respect to Θ}

be the set of the univoque numbers of the interval [0, L], and similarly
H∗ and H1 the set of the univoque numbers of the intervals [Θ, 1), [0, 1)
respectively.

Proposition 3. We have

H1 = {0} ∪
∞⋃

n=0

ΘnH∗.

Proof. We prove this equality in three steps.

a) First we prove that multiplying the elements of H∗ with Θn (n =
0, 1, 2, . . . ) we again get univoque numbers.

Let 〈ε, Θ〉 = ε1Θ + ε2Θ2 + . . . be a univoque number in H∗. If the
number 〈ε, Θ〉 · Θ = 0 + ε1Θ2 + ε2Θ3 + . . . is not univoque, then we can
choose a sequence δ, which produces the same number: 〈δ,Θ〉 = 〈ε, Θ〉 ·Θ.

If δ1 = 0, then
〈
δ,Θ〉/Θ = 〈ε, Θ〉, but this is a contradiction, since ε

is univoque.
If δ1 6= 0, then

∑∞
i=1 δiΘi ≥ δ1Θ1 ≥ Θ. Since 1 >

∑∞
i=1 εiΘi ≥ Θ,

multiplying by Θ we get Θ >
∑∞

i=1 εiΘi+1 ≥ Θ2. Using the first and the
last inequality Θ ≤ 〈δ,Θ〉 = 〈ε, Θ〉 · Θ < Θ, but this means that such a δ

does not exist.
Thus we have proved that multiplying a univoque sequence in H∗ by Θ

we again get a univoque sequence. Similarly, repeating the multiplication
the univoque property remains true.

b) In this part we prove that thus we get all univoque numbers in (0, 1).
Let us assume that the number 〈ε, Θ〉 · Θ is univoque. In this case

the number 〈ε, Θ〉 is univoque too, since if there is a sequence δ for which
〈δ,Θ〉 = 〈ε, Θ〉, then multiplying by Θ we would get 〈δ,Θ〉 ·Θ = 〈ε, Θ〉 ·Θ,
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which is a contradiction. This – together with the result of part a) – means
that

〈ε, Θ〉 is univoque ⇐⇒ 〈ε, Θ〉 ·Θ is univoque.

Thus, multiplying the univoque numbers of the interval [Θ, 1) by Θ, we get
exactly the univoque numbers of the interval [Θ2, Θ), and similarly – by
repeated multiplication – the univoque numbers of the interval [Θj+1, Θj)
using multiplication by Θj . Since the interval (0, 1) can be represented in
the form (0, 1) = [Θ, 1) ∪ [Θ2, Θ) ∪ [Θ3,Θ2) ∪ . . . , by this method we get
all the univoque numbers in (0, 1).

c) 0 is a univoque number, since the sequence 0 is univoque. The
assertion of the proposition follows now from a) and b). ¤

By Lemma 1, the location of the univoque numbers in the interval
[0, L] is symmetrical, since a sequence ε ∈ {0, 1, . . . , [β]}N is univoque
with respect to Θ if and only if the sequences ε and [β] − ε are regular.
This is equivalent however to the fact, that the sequence [β]−ε is univoque.
Thus if L < 2, then from the univoque numbers of the interval [0, 1) by
reflection we can get the univoque numbers in [1, L], and so eventually the
univoque numbers of the whole interval [0, L].

L = [β]Θ
1−Θ < 1

1−Θ , and the fraction on the right side is less than 2
if 1 − Θ ≥ 1

2 , i.e. if β ≥ 2. This will be assumed in the sequel, since
the properties of the univoque set in the cases 1 < β ≤ 2 are already
well-known ([1], [2]).

Thus we can specify all univoque numbers (the set H) if we know the
univoque numbers in the interval [Θ, 1), i.e. the set H∗.

Breaking down the problem into two cases. Let us assume now that

1
K + 1

< Θ ≤ 1
K

, i.e. K = [β].

Clearly, in this interval there exists a ΘK for which KΘK +ΘK
2 = 1,

since for all Θ in this interval KΘ ≤ 1 but (K + 1)Θ > 1. The value of
this number is

ΘK =
−K +

√
K2 + 4

2
,
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and if we use the notation βK = 1
ΘK

, then βK = K + ΘK . The ΘK and
βK values for K = 1, . . . , 5 are the following:

Form of 1 Θ + Θ2 2Θ + Θ2 3Θ + Θ2 4Θ + Θ2 5Θ + Θ2

βK

√
5 + 1
2

√
2 + 1

√
13 + 3

2
√

5 + 2
√

29 + 5
2

ΘK

√
5− 1
2

√
2− 1

√
13− 3

2
√

5− 2
√

29− 5
2

The case K+1 > β > K+ΘK will be called from now on the “big case”
(when the fraction part is larger than ΘK), and the case K ≤ β ≤ K +ΘK

the “small case” (when the fraction part is smaller than ΘK). Below we
examine the small case (this is the simpler one), to the big case we will
revert in a subsequent paper.

3. Specification of the univoque sequences

In this case

1
1 + K

< ΘK ≤ Θ ≤ 1
K

, i.e. K ≤ β ≤ βK < K + 1.

Let 1 = t1Θ + t2Θ2 + . . . be the quasiregular expansion for all Θ-s in this
interval. Then t1 = K because KΘ ≤ 1, and t2 = 0 since KΘ + Θ2 ≥ 1,
and with the quasiregular expansion we cannot reach equality. Thus t =
t1t2t3 . . . ≤ K0∞. Let

Z = {z = ε1Θ + ε2Θ2 + ε3Θ3 + · · · | 1 ≤ εi ≤ K − 1}.

Theorem 1. All elements of Z are univoque numbers.

Proof. We prove that for a sequence ε corresponding to an arbitrary
z ∈ Z the sequence itself and the complementary sequence are regular, and
represent a number less than 1, i.e. ε and [β]− ε ∈ R1(Θ).

a) Choosing an arbitrary z ∈ Z the inequality εiεi+1 . . . < t1t2 . . . is
always true, since t1 = K and εi ≤ K − 1. Thus ε ∈ R1(Θ).

b) By the definition of the set Z clearly L − Z = Z, therefore (K −
εi)(K − εi+1) . . . < t1t2 . . . is satisfied too. Thus ε ∈ R1(Θ).
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Briefly, using the shift operator σi(ε) = ε1+iε2+i . . . for a sequence ε

corresponding to an arbitrary z ∈ Z, the inequalities

t1t2 . . . < σi(ε) < t1t2 . . .

are true for all i = 0, 1, . . . .
However there are also other univoque sequences. By Lemma 1, a

sequence a = a1a2 . . . is univoque ⇐⇒ the sequences a and [β] − a

are regular. By Propositions 1, 2 and the Parry condition a sequence
a = a1a2 . . . is regular in the following two cases:

a) ai = [β] for all i ∈ N,
b) there is a smallest index i ≥ 1, such that ai 6= [β] (i.e. the remainder

falls into the interval [0, 1] after the ith step), and then for the shifted
sequence aiai+1 . . . the Parry condition is satisfied.

Thus the univoque sequences are the following:
a) The sequences [β] = K and 0,
b) the sequences of type [β] . . . [β]bibi+1 . . . and 0 . . . 0bibi+1 . . . , where

for the tail b = bibi+1 . . .

t1t2 . . . < σj(b) < t1t2 . . .

is true for all j = 0, 1, . . . .

So we can represent the whole univoque set from Z as follows:

H = {0} ∪ {L} ∪ Z ∪
∞⋃

j=1

ΘjZ ∪
∞⋃

j=1

(KΘ + KΘ2 + · · ·+ KΘj + ΘjZ).

4. The Hausdorff dimension of the set H

The Hausdorff dimensions of the sets ΘjZ and KΘ+ · · ·+KΘj +ΘjZ

(j = 1, 2, . . . ) are clearly the same as the dimension of the set Z. Thus the
Hausdorff dimension of the whole set H equals the dimension of the base
set Z.

To compute the dimension of the set Z, we first specify the self-sim-
ilarity dimension, and after this we check the fulfilment of the open set con-
dition, which guarantees that the Hausdorff dimension equals the self-sim-
ilarity dimension, according to the method presented by G. A. Edgar [4].
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We can construct the set Z from itself with K−1 pieces of projections

Z =
K−1⋃
a=1

(aΘ + ΘZ),

thus its self-similarity dimension s is computable from the equation 1 =
(K − 1)Θs, and so

s =
− log(K − 1)

log Θ
=

log(K − 1)
log β

.

As to the open set condition, if we prove that the sets aΘ + ΘZ

(a = 1, . . . ,K − 1) with different a values are disjoint, then open sets
“little bit” larger than Z are a good choice for each projection.

Let us consider for example the sets belonging to the values a = 0 and
a = 1. If these are disjoint, then the other couples of sets are disjoint too,
because from the set ΘZ we get all of the sets aΘ+ΘZ (a = 1, . . . , K−1)
with shifts by Θ, . . . , (K − 1)Θ. The smallest and largest elements of Z

are

Θ + Θ2 + · · · = Θ
1−Θ

, and (K − 1)Θ + (K − 1)Θ2 + · · · = (K − 1)Θ
1−Θ

respectively, thus

ΘZ ⊆
[

Θ2

1−Θ
,
(K − 1)Θ2

1−Θ

]
.

The sets ΘZ and Θ + ΘZ have a non-empty intersection if

(K − 1)Θ2

1−Θ
≥ Θ +

Θ2

1−Θ
, i.e. if (K − 1)Θ2 ≥ Θ ⇐⇒ Θ ≥ 1

K − 1
.

But, since 1
K+1 < Θ < 1

K , this does not hold. So finally we have proved
the following

Theorem 2. The Hausdorff dimension of the univoque set is

dim H =
log(K − 1)

log β
.
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Remark. To represent the univoque sequences we can use a graphic
model. We build a directed graph, the nodes of which are the usable digits
in the number system, and draw an edge from the node a to b if the digit b

is allowable (in a univoque sequence) after the digit a. We label the edges
by Θ. Thus we get a directed graph called Mauldin–Williams graph [4].
Wandering over all the digits of the graph, we can construct all univoque
sequences.

In the present case the self-similarity dimension of the graph is the
same as the self-similarity dimension of the set H (because the part of the
graph representing the elements of the set Z is strongly connected and
strongly contracting), and the open set criterion guarantees that this is
the Hausdorff dimension of the set H.

On the basis of our investigations, the graph of the univoque sequences
in the “small case” is the following:

a) The graph part containing the nodes 1, 2, . . . ,K − 1 is totally con-
nected (there is an edge from an arbitrary node to an arbitrary node).

b) From the nodes 0 and K there are edges to the nodes 0, 1, . . . , K−1
and 1, 2, . . . , K respectively. This allows the sequence-parts 00 . . . 0 and
KK . . .K at the beginning of the sequences. If we come out of these
loops, then we (finally) enter the graph part a).

The graph model is a useful means to demonstrate the univoque se-
quences, but it is not absolutely necessary.

Finally, we illustrate the theoretical results by an interesting example.
In this part we compute the self-similarity dimension by a slightly different
method [4], using the Mauldin–Williams graph.

The number system with base number 3+
√

13
2 . In this number system

[β] = 3, A = {0, 1, 2, 3},

Θ =
−3 +

√
13

2
, L =

3Θ
1−Θ

=
3

β − 1
=

6
1 +

√
13

.

Since 3Θ+Θ2 = 1, the sequences belonging to the regular and the quasireg-
ular expansion of 1 are 31 and (30)∞, respectively.

As we know, the univoque sequences are the following:

a) The sequences 3 and 0,



The structure of the univoque set in the small case 163

b) the sequences of type 3 . . . 3bibi+1 . . . and 0 . . . 0bibi+1 . . . , where bj =
1 or bj = 2 for all j = i, i + 1, . . . .
Let us denote the set of the univoque numbers beginning with i with

Hi, where i = 0, 1, 2, 3. The set of all univoque numbers is H = H0 ∪H1 ∪
H2 ∪H3. Thus

H0 = (0 + ΘH0) ∪ (0 + ΘH1) ∪ (0 + ΘH2),

H1 = (Θ + ΘH1) ∪ (Θ + ΘH2),

H2 = (2Θ + ΘH1) ∪ (2Θ + ΘH2),

H3 = (3Θ + ΘH1) ∪ (3Θ + ΘH2) ∪ (3Θ + ΘH3).

The structure of the univoque set is representable by the Mauldin–
Williams graph shown in Figure 1.

Figure 1: The graph representing the structure of the set H

This graph is not strongly connected, but its strongly connected part
(which represents the set Z) has self-similarity dimension equal to the
Hausdorff dimension of the set H, if the open set condition is satisfied.
This part specifies the following equation system:

qs
1 = Θs · qs

1 + Θs · qs
2

qs
2 = Θs · qs

1 + Θs · qs
2,

where q1 and q2 are the Perron numbers belonging to the (reduced) nodes
1 and 2 respectively, and s is the self-similarity dimension of the (reduced)
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graph. Now the two Perron numbers are the same, so we can choose them
to be 1. From this we get

1 = 2 ·
(−3 +

√
13

2

)s

, thus s =
log 1

2

log −3+
√

13
2

=
log(K − 1)

log β
.

Choosing open sets U1 = U2 a “little bit” larger than Z, the required
condition is satisfied, so s is the Hausdorff dimension of the univoque set.
The set H approximately has the form shown on Figure 2.

Figure 2: The approximate form of the set H
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