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Conformal flatness of complex Finsler structures

By TADASHI AIKOU (Kagoshima)

Abstract. In the present paper, we shall be concerned with conformal flatness
of convex Finsler structures. We introduce a complex Finsler connection and define its
conformal curvature Θ. This curvature Θ is invariant by any conformal rescaling of
the convex Finsler structure. Our main result is to show that this conformal curvature
measures the conformal flatness.

1. Introduction

Let π : E → M be a holomorphic vector bundle of rank r over a
complex manifold M of complex dimension n. The total space E is also a
complex manifold of complex dimension n + r. The tangent vectors along
the fibres define a holomorphic vector sub-bundle V of the holomorphic
tangent bundle TE, that is, V = ker dπ. Then we know that V ∼= π−1E,
and V is integrable. If a convex Finsler structure F is given on E, we can
introduce a natural Hermitian structure h on V. The Hermitian geome-
try of (V, h) has been investigated by Kobayashi [8], and a number of
important results were obtained.

In this paper, however, we shall study the bundle (V, h) by using
its Finsler connection, not the Hermitian connection. This connection is
derived from the given Finsler structure F and a splitting of the following
exact sequence of holomorphic vector bundles

(1.1) 0 → V i−→ TE → π−1TM → 0,
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or equivalently its dual

(1.2) 0 → π−1TM∗ → TE∗ → V∗ → 0.

Let σ : π−1TM → TE be a splitting of (1.1). Putting H :=
σ(π−1TM), it defines a transversal distribution of V which is C∞ iso-
morphic to π−1TM . Let {s1, . . . , sr} be a local holomorphic frame field of
E on an open set U . Then it induces a local complex coordinate system
(z1, . . . , zn, ξ1, . . . , ξr) on the open set π−1(U) in E. Now, H has local
frame field Xα on π−1(U) of the form

(1.3) σ

(
∂

∂zα

)
= Xα =

∂

∂zα
−

r∑

l=1

N l
α

∂

∂ξl
,

where {N l
α} are local functions on π−1(U) satisfying some transformation

law. Such a family {N l
α} is called a non-linear connection on E.

If a splitting σ is given on the sequence (1.1), the co-tangent bundle
TE∗ has a C∞-splitting TE∗ = H∗⊕V∗. Then, according to this splitting,
the differential operator ∂ is also decomposed as ∂ = ∂H + ∂V , where
∂H is the natural projection to the transversal part H∗, and ∂V = ∂ −
∂H. If a convex Finsler structure F is given on E, we can take a non-
linear connection satisfying ∂2

H ≡ 0, and by using this, we can introduce a
canonical Finsler connection (cf. [1], [3], [4], [5]).

In a previous paper [3], we have discussed the conformal flatness of
a Finsler structure in terms of Weyl connections. In this paper, we shall
introduce a conformal invariant Θ which measures the conformal flatness
of a complex Finsler structure, and we show that the vanishing of Θ is
equivalent to the conformal flatness of F (Theorem 3.3). Our conformal
invariant Θ is a natural generalization of the one in the Hermitian case
(cf. [10]).

2. Finsler structures and Finsler connections

Let M be a connected complex manifold of dimension n, and E a
holomorphic vector bundle of rank r over M . Each fibre Ez is a complex
vector space of dimension r. In the case of r = 1, any complex Finsler
metric is a Hermitian metric. Hence, in the sequel we assume that rank
E ≥ 2.
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Definition 2.1 ([6]). A function F (z, ξ) on E is said to be a complex
Finsler structure if it satisfies the following conditions:

(2.1) F (z, ξ)≥0, and F (z, ξ) = 0 iff ξ = 0,

(2.2) F (z, ξ) is C∞ on the outside of the zero-section and continuous on E,

(2.3) F (z, λξ) = |λ|2 F (z, ξ) for an arbitrary λ∈C.

We shall fix an open covering {U} with holomorphic frame field {sU}
and the induced coordinate system {π−1(U), (z, ξ)} on E. A complex
Finsler structure F is said to be convex if the Hermitian matrix

(
Fij̄

)

defined by

Fij̄ =
∂2F

∂ξi∂ξ̄j

is positive-definite. In this paper we always suppose the convexity of F .
On π−1(U), the vertical bundle V is spanned by the vertical vector fields
Y1 := ∂/∂ξ1, . . . , Yr := ∂/∂ξr. We define a Hermitian structure h on V by

h (Yi, Yj) = Fij̄ .

The transversal distribution H is locally spanned by the transversal vector
fields {Xα} of the form (1.3) for a complex non-linear connection N i

α. We
shall determine a canonical non-linear connection N i

α.
The connection form θ of the Hermitian connection ∇h of (V, h) is

given by

θi
j =

∑
F im̄∂Fjm̄ =

∑
F im̄

(∑ ∂Fjm̄

∂zα
dzα +

∑ ∂Fjm̄

∂ξk
dξk

)
.

On the other hand, V has a canonical holomorphic section ε : (z, ξ) →
(z, ξ; ξ), or in local coordinates

ε(z, ξ) =
∑

J

ξjYj .

Then we put
∇hε =

∑

i

θi ⊗ Yi
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where the (1, 0)-form θj is defined by

θi = dξi +
∑
m

θi
mξm = dξi +

∑
m,α

F im̄ ∂Flm̄

∂zα
ξldzα.

Here we used the identity
∑r

k=1 ξk(∂Fij̄/∂ξk) ≡ 0 which is derived from
the homogeneity assumption (2.3). Now we shall define a morphism σ∗ :
V∗ → TM∗ by

σ∗(dξi) = θi.

It is trivial that σ∗ defines a splitting of the sequence (1.2). For this
splitting σ∗, in local coordinates, the non-linear connection N i

α is given by

(2.5) N i
α =

∑
F im̄ ∂Flm̄

∂zα
ξl.

The differential operators ∂H and ∂V are given by

∂Hf =
∑
α

Xαfdzα =
∑
α

(
∂f

∂zα
−

∑
m

Nm
α

∂f

∂ξm

)
dzα,

∂Vf =
∑
m

Ymfθm =
∑
m

∂f

∂ξm
θm

for an arbitrary function f on E. By using the facts that
∑

Fij̄ξ
iξ̄j = F

and Xαξi = −N i
α, we get the following identity

(2.6) ∂HF =
∑
α

(
∂F

∂zα
−

∑

l

N l
α

∂F

∂ξl

)
dzα ≡ 0.

We denote by the index C the complexification of vector bundles, e.g.,
TCM = TM ⊕ TM , VC = V ⊕ V, . . . .

Definition 2.2 ([2]). A connection ∇ : Γ(V) → Γ(V ⊗ TCE∗) defined
by the following two properties is called the Finsler connection of (E, F )
or (V, h).

(1) ∇ is a (1, 0)-type connection,

(2) ∇ satisfies
dHh(Z,W ) = h(∇Z,W ) + h(Z,∇W )
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for ∀Z, W ∈ Γ(V), where we put dH = ∂H + ∂̄H.

Since ∇ is of (1, 0)-type, we may put

∇Yj =
∑
m

ωm
j Ym

for (1, 0)-forms ωm
j . Then we have dHFij̄ =

∑
Fmj̄ω

m
i + Fim̄ωm

j . Hence,
since ωi

j is of (1, 0)-type, the connection form ω of ∇ is given by the
following transversal form:

ωi
j =

∑
F im̄∂HFjm̄ =

∑
α

Γi
jαdzα,

where the coefficients Γi
jα are given by

(2.7) Γi
jα

=
∑

F im̄XαFjm̄ =
∑

F im̄

(
∂Fjm̄

∂zα
−

∑
N l

α

∂Fjm̄

∂ξl

)

with the functions N i
α defined by (2.5). Moreover, we get easily the fol-

lowing relation:

(2.8) Γi
jα =

∂N i
α

∂ξj
.

Remark 2.1. The following relation between the connection forms θi
j

and ωi
j is easily obtained:

θi
j = ωi

j +
∑

k,l

Ci
jkθk,

where we put Ci
jk =

∑
F im̄YkFjm̄. Hence the Hermitian connection ∇h

corresponds to the so-called Cartan connection and our connection ∇ cor-
responds to the so-called Rund connection in real Finsler geometry (cf. [9]).
We note that, from (2.8), our connection∇ also corresponds to the Berwald
connection.

We shall compute the curvature Ω = dω + ω ∧ ω and investigate its
local expressions with respect to {dzα, θi}. Since the non-linear connection
N i

α is given by (2.5), we have
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Lemma 2.1. ∂Hω + ω ∧ ω ≡ 0.

Proof. The proof is obtained by direct calculation. If we put

Ri
jαβ

= XαΓi
jβ
−XβΓi

jα
+

∑
Γi

mαΓm
j β

−
∑

Γi
mβΓm

j α
,

the right hand side can be written as

∂Hωi
j +

∑
ωi

m ∧ ωm
j = −1

2

∑
Ri

jαβ
dzα ∧ dzβ .

Hence we must prove Ri
jαβ

≡ 0. Since Γi
jα

=
∑

F im̄XαFjm̄,

Ri
jαβ

=
∑{

XαF im̄XβFjm̄ + F im̄XαXβFjm̄ −XβF im̄XαFjm̄

− F im̄XαXαFjm̄ + Γi
mαΓm

j β
− Γi

mβΓm
j α

}

=
∑{

XαF im̄XβFjm̄ −XβF im̄XβFjm̄ + F im̄
∑

Rl
αβYiFjm̄

+ Γi
mαΓm

j β
− Γi

mβΓm
j α

}

=
∑

Ci
jmRm

αβ ,

where we used Γi
jα

=
∑

F im̄XαFjm̄, and put Ri
αβ = XαN i

β −XβN i
α.

On the other hand, by definition of Ri
jαβ

and
∑

ξjΓi
jα = N i

α, we get
easily Ri

αβ =
∑

Ri
jαβξj . The equation above and

∑
Ci

jkξj ≡ 0 imply
Ri

αβ = 0, and so Ri
jαβ

≡ 0. ¤

By virtue of Ω = dω + ω ∧ ω = ∂̄ω + ∂Vω + (∂Hω + ω ∧ ω) and
Lemma 2.1, we have

Proposition 2.1. The curvature form Ω of ∇ is given by Ω = ∂̄ω +
∂Vω = ∂̄Hω + ∂̄Vω + ∂Vω:

(2.9) Ωi
j =

∑

α,β

Ri
jαβ̄dzα ∧ dz̄β +

∑

α,k

Ri
jαk̄dzα ∧ θ̄k +

∑

α,k

Ri
jαkdzα ∧ θk,

where we put Ri
jαβ̄

= −Xβ̄Γi
ja

, Ri
jαk̄

= −Yk̄Γi
jα

, Ri
jαk = −YkΓi

jα
.
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Remark 2.2. From this lemma, we can easily infer the identity ∂2
H ≡ 0.

Here we describe a special class of Finsler structures. A complex
Finsler bundle (E, F ) is said to be modeled on a complex Minkowski space if
its connection ∇ is projectable to a connection of E, that is, its connection
coefficients Γi

jα are functions of position of z ∈ M alone. Then we have

Theorem 2.1 ([2]). Let (E, F ) be modeled on a complex Minkowski

space. Then there exists a Hermitian structure hF on E, and the Finsler

connection ∇ of (E, F ) is given by the pull-back of the Hermitian connec-

tion of (E, hF ).

It is trivial that (E, F ) is modeled on a complex Minkowski space if
and only if ∂Vω = ∂̄Vω = 0, and, in this case, the first term of (2.9) is
given by the curvature of its associated hF .

3. Conformally flat Finsler structures

We begin with the following

Definition 3.1. A complex Finsler structure F is said to be flat if there
exists an open covering {U} and a suitably chosen holomorphic frame field
sU = {s1, . . . , sr} on each U such that with respect to {U, sU} the function
F is independent at the base point z ∈ M : F = F (ξ). Such a covering
{U, sU} is said to be adapted.

This notion is a complex analogue of a locally Minkowski space in real
Finsler geometry (cf. Definition 24.1 in [9]). We shall use, however, the
term flat since the following theorem holds:

Theorem 3.1. A complex Finsler structure F is flat if and only if

its Finsler connection ∇ is flat, that is, the curvature Ω of ∇ vanishes

identically.

Proof. We suppose that F is independent at z ∈ M with respect to
an adapted {U, sU}. Then, from (2.5), we have N i

α = 0, and so by virtue
of (2.8) we get Γi

jα = 0. Hence, with respect to an adapted {U, sU} the
connection form ω vanishes on each U . This means the vanishing of its
curvature.

Conversely we assume that the curvature Ω of ∇ vanishes identically.
Then, (E, F ) is modeled on a complex Minkowski space, and, by Theo-
rem 2.1, ∇ is the Hermitian connection of the associated hF . Since ω = 0
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is completely integrable, on a suitable open neighborhood U of each point
z ∈ M , we can introduce a parallel frame field sU = {s1, . . . , sr}. Since
dsj = 0, we have ∂̄sj = 0, and so sU is holomorphic. Therefore the con-
nection form ω with respect to {U, sU} vanishes on each U . Hence, by
virtue of

∑
ξjΓi

jα = N i
α, we have N i

α = 0. Consequently, from (2.6) we
have F = F (ξ) with respect to {U, sU}. ¤

By this theorem and Theorem 2.1, we have

Proposition 3.1. A convex Finsler structure F on E is flat if and
only if (E, F ) is modeled on a complex Minkowski space and its associated
Hermitian metric hF is flat.

By this proposition, we know that if (E, F ) is a flat Finsler vector
bundle, then it admits a flat Hermitian structure hF . Conversely, the
norm function derived from a flat Hermitian structure is also a flat Finsler
structure. Hence we have (cf. Proposition 4.21 on p. 14 of [7])

Theorem 3.2. The following conditions are equivalent:

(1) E admits a flat Finsler structure.

(2) E admits a flat unitary structure.

(3) E is defined by a representation ρ : π1(M) → U(r): E ∼= M̃ ×ρ Cr,

where π1(M) is the fundamental group of M and M̃ is the universal cov-
ering of M .

We shall consider a conformal rescaling F → F̃ = eσ(z)F of the Finsler
metric F for a differentiable function σ(z) on M . We shall calculate the
connection form ω̃ of (E, F̃ ). Because of F̃ij̄ = eσ(z)Fij̄ and (2.5), the
non-linear connection is changed as Ñ i

α = N i
α + (∂σ/∂zα) ξi. Hence, by

(2.8) we get

(3.1) ω̃ = ω + ∂σ ⊗ IV

for the identity endomorphism IV of V. Then we have

Lemma 3.1. Let (E, F ) be modeled on a complex Minkowski space
with an associated Hermitian structure hF . Then, for any confomal rescal-
ing F → F̃ = eσ(z)F , (E, F̃ ) is also modeled on a complex Minkowski
space, and the conformal rescaling eσ(z)hF of hF associates with (E, F̃ ).

Proof. The Finsler connection ∇̃ of (E, F̃ ) is given by (3.1). Hence
the first assertion is trivial. Moreover, we have

ω̃ = ω + ∂σ ⊗ IV = (eσ(z)hF )−1∂(eσ(z)hF ) = hF̃
−1∂hF̃ .
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Hence eσ(z)hF associates with (E, F̃ ). ¤
From (3.1) and Proposition 2.1, the curvature form is transformed as

follows:

(3.2) Ω̃ = Ω + ∂̄∂σ ⊗ IV .

From (3.1), the (1, 0)-form θj is transformed as θ̃j = θj + ξj ⊗ ∂σ.
Then we have

Lemma 3.2. By any conformal rescaling F → F̃ = eσ(z)F , the forms
∂Vω and ∂̄Vω are invariant.

Proof. By definition,

∂Vωi
j =

∑

α,k

∂Γi
jα

∂ξk
θk ∧ dzα.

With respect to the new function F̃ , we shall compute the right hand side:

∑

α,k

∂Γ̃i
jα

∂ξk
θ̃k ∧ dzα =

∑

α,k

∂

∂ξk

(
Γi

jα +
∂σ

∂zα

)
(θk + ξk∂σ) ∧ dzα

=
∑

α,k

∂Γi
jα

∂ξk
θk ∧ dzα,

since, by the homogeneity of F , we have
∑
k

ξkYkΓi
jα ≡ 0. This means that

the form ∂Vω is invariant under any conformal rescaling.
The proof for the invariance of ∂̄Vω is similar. ¤
By this lemma, we have

Proposition 3.2. The End(V)-valued (1, 1)-form

(3.3) Θ = Ω− 1
r
ρ⊗ IV

is invariant by any conformal rescaling, where ρ is defined by ρ = Tr.∂̄Hω.

Proof. By Lemma 3.1, the forms ∂Vω and ∂̄Vω are invariant by any
conformal rescaling. Hence the (1, 1)-form ρ is transformed as

ρ̃ = Tr.(Ω̃− ∂Vω − ∂̄Vω) = Tr.(Ω + ∂̄∂σ ⊗ IV − ∂Vω − ∂̄Vω)

= Tr.∂Hω + r∂̄∂σ = ρ + r∂̄∂σ.
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Thus we have ∂̄∂σ = (ρ̃ − ρ)/r. Substituting this into (3.2), we see that
Θ is invariant by any conformal rescaling. ¤

We call the Θ given by (3.2) the conformal curvature of (E,F ). It is
trivial that if Ω vanishes, then Θ also vanishes.

Definition 3.2. A Finsler structure F is (locally) conformally flat if
every z ∈ M has an open neighborhood U and a differentiable function
σU : U → R such that F̃U = eσU F is a flat Finsler structure on U .

Now we shall prove our main theorem:

Theorem 3.3. Let F be a convex Finsler structure on a holomorphic
vector bundle E. Then F is conformally flat if and only if the conformal
curvature Θ vanishes identically.

Proof. We shall fix a frame field {U, sU} for E, and use the local
expressions with respect to {U, sU}.

We suppose that Θ vanishes identically. Then, since ∂Vω = ∂̄Vω = 0,
(E, F ) is modeled on a complex Minkowski space. By Theorem 2.1 there
exists an associated Hermitian structure hF , and Ω is given by the pull-
back of the one ΩF of hF . Hence ρ is the Ricci curvature of hF :

ρ = ∂̄∂ log det(hij̄),

where we put hij̄ = hF (si, sj). On each U , we put σU (z) = 1
r log det(hij̄),

and we consider the conformal rescaling F → F̃U = eσU (z)F |U . Then,
F̃U is also modeled on a complex Minkowski space, and its curvature Ω̃ is
given by

Ω̃ =
1
r
ρ̃⊗ IV =

1
r

(
Tr.ΩF + r∂̄∂σU

)⊗ IV

=
1
r

(−∂̄∂σU + ∂̄∂σU

)⊗ IV = 0,

which shows that F̃U is flat. Hence F is conformally flat.
The converse is trivial. ¤
The conformal flatness of a Hermitian structure has been studied

in [10], where the conformal flatness of a Hermitian structure has been
characterized by the vanishing of a conformally invariant curvature ten-
sor. Our conformal curvature Θ coincides with that of Matsuo if the given
Finsler structure F is the norm function associated to a Hermitian struc-
ture h, that is, F (z, ξ) =

∑
hij̄(z)ξiξ̄j . Then, from Theorem 3.3, we have
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Proposition 3.3. A convex Finsler structure on E is conformally flat
if and only if (E, F ) is modeled on a complex Minkowski space, and its
associated Hermitian structure is conformally flat.

Let P be the GL(r,C)-principal bundle associated to E. We denote
by PGL(r,C) the projective linear group GL(r,C)/C∗Ir, where C∗Ir is the
center of GL(r,C). A vector bundle E is said to be projectively flat if the
PGL(r,C)-principal bundle P̂ = P/C∗Ir is provided with a flat structure
(cf. [7]).

If the conformal curvature satisfies Θ ≡ 0, then the curvature Ω of
the associated hF satisfies

Ω =
1
r
ρ⊗ IV .

Hence, according to Proposition 2.8 in [7], the bundle E is projectively
flat, and P̂ is defined by a representation ρ : π1(M) → PU(r), where
PU(r) = U(r)/U(1)Ir is the projective unitary group. This means that, if
we consider the universal covering space M̃ as a π1(M)-principal bundle
M̃ → M , the bundle P̂ is defined by the representation ρ : π1(M) →
PU(r). The flat structure of P̂ is induced by the natural flat structure of
M̃ → M .

By Proposition 3.3, we know that, if (E, F ) is a conformally flat
Finsler vector bundle, it admits a conformally flat Hermitian structure
hF . Conversely, the norm function defined by a conformally flat Hermit-
ian structure is also a conformally flat Finsler structure. Hence we have
(cf. Proposition 4.22 in p. 14 of [7])

Theorem 3.4. The following conditions are equivalent:

(1) E admits a conformally flat Finsler structure.

(2) E admits a conformally flat Hermitian structure.

(3) The bundle P̂ = P/C∗Ir is defined by a representation ρ : π1(M) →
PU(r) : P̂ ∼= M̃ ×ρ PU(r).

Example 3.1. Let M be a so-called Hopf manifold {Cn − 0}/∆λ,
where ∆λ is the group generated by the holomorphic transformations
(z1, . . . , zn) → (λz1, . . . , λzn) on Cn − {0} for λ ∈ C, 0 < |λ| < 1. Then
there exists a standard Hermitian structure on TM :

(3.3) ds2 =
1

‖z‖2
∑
α

dzα ⊗ dz̄α = e− log ‖z‖2 ∑
α

dzα ⊗ dz̄α,
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where ‖z‖2 =
∑

α zαz̄α. This metric is locally conformal Kähler-flat
(l.c.K0 in short, cf. [12]). Its Hermitian connection is given by

(3.4) ω = −∂(log ‖z‖2)⊗ ITM .

The norm function defined by the metric above is F0(z, ξ) = e− log ‖z‖2‖ξ‖2.
To obtain a conformally flat Finsler structure F , we shall modify F0

into the form

(3.5) F (z, ξ) = e− log ‖z‖2f(ξ)

for a positive function f(ξ) on Cn satisfying f(λξ) = |λ|2f(ξ) and the Her-
mitian matrix

(
∂2f/∂ξi∂ξ̄j

)
is positive definite. Since F is also invariant

by the action of ∆λ, it defines a convex Finsler structure on TM . It is
trivial that this Finsler structure F is conformally flat. We shall check this
by computing its conformal curvature Θ.

This complex Finsler manifold (M,F ) is modeled on a complex Min-
kowski space, and its associated Hermitian metric is given by (3.1). We
shall show this. If we put fij̄(ξ) = ∂2f/∂ξi∂ξ̄j , we have Fij̄ = e− log ‖z‖2 ×
fij̄(ξ). Hence, by (2.5), the non-linear connection N i

α of (M, F ) is given
by

(3.6) N i
α = − z̄α

‖z‖2 ξi.

Moreover, from (2.8), the connection coefficients of ∇ are given by

Γi
jα = −∂ log ‖z‖2

∂zα
δi
j .

Hence the Finsler connection ∇ is given by (3.4).
Since the curvature form Ω of ∇ is given by Ω = −∂̄∂(log ‖z‖2)⊗ITM ,

we get ρ = −n∂̄∂(log ‖z‖2). From these equations and the definition of Θ,
we get Θ ≡ 0.

Let (E,F ) be a complex Finsler bundle over a compact Kähler man-
ifold (M, g). Assume that (E, F ) is conformally flat. Then, since Θ = 0,
(E, F ) is modeled on a complex Minkowski space, and its curvature Ω is
given by Ω = 1

r ρ⊗IV . Now, it is easily proved that the associated Hermit-
ian vector bundle (E, hF ) satisfies the weak Einstein condition. Moreover,
if (M, g) is compact Kähler, by suitable conformal rescaling hF → ahF ,
we can obtain that φ is constant (cf. Proposition 2.4 in Chapter IV of [7]).
Hence the associated Hermitian bundle (E, hF ) is Einstein–Hermitian over
(M, g). Consequently we have
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Proposition 3.4. Let (E,F ) be a convex Finsler vector bundle over

a compact Kähler manifold (M, g). If (E, F ) is conformally flat, then the

associated Hermitian vector bundle (E, hF ) satisfies the Einstein condition.

4. Some remarks from Hermitian geometry

By Proposition 3.3, some geometric properties of a conformally flat
(E, F ) are obtained from those of (E, hF ). We shall show some results
directly obtained from Hermitian or Kählerian geometry.

Let M be a complex manifold of dimCM = n, and F a convex Finsler
structure on TM . The pair (M, F ) is called a complex Finsler manifold .
Suppose that (M, F ) is conformally flat. Then (TM,F ) is modeled on
a complex Minkowski space, and its associated Hermitian metric hF is
conformally flat. Hence, there exists an open covering {U} and a family of
local functions {σU} such that hU = eσU hF is a flat metric on U . Moreover,
if each hU is a flat Kähler metric on U , (M, hF ) is l.c.K0. (Example 1 is just
of this type). Then, applying Theorem 2.2 in [12] (see also Theorem 6.8
in [11]), we see that the universal covering M̃ of M is Cn−{0}, and hF is
globally conformal to the metric induced by (3.3). Applying this fact, we
have

Theorem 4.1. Let (M,F ) be a compact complex Finsler manifold

of dimCM = n which is conformally flat. Suppose that its associated

Hermitian manifold (M, hF ) is (not globally) l.c.K0. Then the universal

covering M̃ of M is given by Cn−{0}, and F is globally conformal to the

Finsler structure induced by the one of the form (3.5).

Proof. The fact that M̃ = Cn − {0} is trivial from Vaisman’s the-
orem. We shall prove the second part of the theorem. Since the Finsler
connection ∇ of (M, F ) is given by the form ω in (3.2), its non-linear con-
nection N i

j is given by (3.6). Now, from (2.6), we have XαF = 0. Hence,
in this case, we have

∂F

∂zα
+

z̄α

‖z‖2 F = 0.

This equation implies

∂

∂zα

(
elog ‖z‖2F

)
=

∂

∂zα

(‖z‖2F )
= z̄αF + ‖z‖2 ∂F

∂zα
= 0.
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In the same way as above, we have ∂
(
elog ‖z‖2F

)
/∂z̄α = 0. Hence we get

elog ‖z‖2F = f(ξ)

for a function f which depends only on ξ. It is trivial that f satisfies the
homogeneity and the convexity conditions. Consequently F must be of
the type (3.5). ¤

In a previous paper [2], we have introduced the notion of Finsler–
Kähler manifold . We shall recall its definition. We use the Greek letters
j, k, . . . for the indices of the local coordinates of M . If a complex Finsler
manifold (M,F ) is given, its non-linear connection N i

j is given by (2.5):

N i
j =

∑

l,m

F im̄ ∂Flm̄

∂zj
ξl,

and the connection coefficients of its Finsler connection ∇ are given by
Γi

jk = ∂N i
k/∂ξj . Then (M,F ) is said to be Finsler–Kähler if the condition

Γi
jk = Γi

kj

is satisfied. In [1], such a manifold is called strongly Finsler–Kähler . By
Theorem 2.1 it is trivial that, if a Finsler–Kähler manifold (M,F ) is mod-
eled on a complex Minkowski space, then its associated hF is Kähler.

Any conformally flat Kähler manifold is flat (cf. Theorem 4.1 in [13],
see also Corollary 4.3 in [10]). In our case, we have

Theorem 4.2. Let (M, F ) be a Finsler–Kähler manifold. If (M, F ) is

conformally flat, then (M,F ) is flat.

Proof. By Proposition 3.3, (M, F ) is conformally flat if and only if it
is modeled on a complex Minkowski space, and moreover its associated hF

is conformally flat. By the assumption of Finsler–Kähler, the associated
(M, hF ) is a conformally flat Kähler manifold. Hence (M, hF ) is flat.
Consequently, by Proposition 3.1, (M, F ) is flat. ¤
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