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On the spectral radius
of Coxeter transformations of trees

By PIROSKA LAKATOS (Debrecen)

Abstract. The spectral radius of a Coxeter transformation which plays an impor-
tant role in the representation theory of hereditary algebras (see [DR]), is its important
invariant. This paper provides both upper and lower bounds for the spectral radii of
Coxeter transformations of the wild stars (i.e. the trees that have a single branching
point and are neither of Dynkin nor of Euclidean type). In addition, the paper deter-
mines limit of the spectral radii of particular infinite sequences of wild stars.

1. Definitions and preliminary results

Let A be a tree, i.e. a finite non-oriented connected graph without cy-
cles (multiple edges are allowed); let {1,2,...,n} be the set of its vertices.
The spectrum Spec(A) of A is the set of the eigenvalues of the adjancency
matrix A = A(A) = (a;5) of A; here a;; is the number of edges between
the vertices ¢ and j, and thus A is an integral symmetric matrix. Denote
the spectral radius of A (i.e. the largest eigenvalue of A) by p(A).

Let © be an orientation of the tree A and C = Cqa) : C" — C" the
corresponding Coxeter transformation. Recall that the matrix ® = ®q(a)
of C with respect to the standard basis can be written as ® = —C~1C*",
where C' = Cq(ay = (ci5) is an integral n x n matrix with c;; equal to
the number of paths from the vertex i to the vertex j in Q(A). The
characteristic polynomial of ® is called the Cozeter polynomial of C. The
spectrum Spec(C) is the set of all eigenvalues of ® and the spectral radius
of C is

p(Co(ay) = max{||A]| : A € Spec(Ca(a))}-
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It is well-known (see [C]) that the characteristic polynomial of the
Coxeter transformation is reciprocal and that the spectrum Spec(Cqo(a))
of the Coxeter transformation Co(a) does not depend on the orientation
of Qif A'is a tree. Thus, we may write Spec(Ca) = Spec(Cq(a))-

In the case when the graph is of Dynkin or Euclidean type then
Spec(C) is well known. In general, A’CAMPO has proved the following
relationship between the sets Spec(A) and Spec(Ca ).

Theorem 1.1 ([C]).

a) Given0 # X € C then \A+\~! € Spec(A) if and only if \* € Spec(Ca).

b) Spec(Ca) C SYURT, where St ={\ € C: ||\|| = 1}.

c) If A is not Dynkin, then there exists a real number A\ > 1 such that
p(A) = X+ A7 and p(Ca) = A2. Moreover, A is Euclidean if and
only if A\ =1.

Since the Perron—Frobenius theorem for non-negative matrices yields
that A’ C A implies p(A’) < p(A) (cf. [H]), we get immediately the
following corollary.

Corollary 1.2. If A’ is a subtree of a tree A, neither of which is
Dynkin, then p(Ca’) < p(Ca).

Denote by d(i) the degree of the vertex 4; i.e. d(i) = Y7, aij.

Theorem 1.3 (see [PT] and [X]). Let m be the maximum of the de-
grees of all vertices of A. Then
a) p(Ca) <m? —2.
b) If A is neither of Dynkin nor of Euclidean type, then pug < p(Ca);
where 11 is the largest (real) root of the polynomial

flx)=a0+2% —2" —ab —2® —2* — 23 4+ 1.

2. Wild stars

Let p = (p1,p2,--.,Ds), s > 3, be a sequence of positive integers p;,
1<i<sandletn = Zle p; +1. The wild star is a tree with simple edges
which consists of paths with one common endpoint. Denote Ay, .. . 5]
the wild star consisting of s paths of length py,ps,...,ps, and denote by
Xp1,p2s.ps] (£) a0d p(Crp, po.... p.1) the characteristic polynomial and the
spectral radius of Ca(, . respectively.

The following theorem is an answer to a problem concerning Coxeter
polynomials posed by de la PENA, J.A. in his paper [P], for wild stars.
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Theorem 2.1. The Coxeter polynomial of a wild star has exactly two
real roots and one irreducible non-cyclotomic factor.

PrROOF. Let f(z) be the Coxeter polynomial of a wild star. By [P]
f(z) has exactly two positive real roots 6 and 1/0. From Theorem 1.1/b it
follows that these roots are its only real roots. Each non-real element of the
spectrum of a wild star has absolute value equal to 1, thus the eigenvalues
lie on the unit circle. Let g(x) be the monic irreducible factor over Q
having the root ¢. If 1/J is not a root of g(x) then the constant term
of the polynomial f(z)/g(x) has absolute value 1/§ which is inpossible
because 1/ is not an integer. Furthermore, the roots of f(x)/g(z) lie on
the unit cicle. A theorem of Kronecker states that if the roots of a monic
polynomial with integer coefficients lie on the unit circle, then they are
roots of unity. Thus, the only non-cyclotomic factor g(z) of the Coxeter
polynomial f(x) is irreducible. O

Let us write
v =vp(z) = (¥ = 1)/(x — 1) for ke Z,.

It is known that among the trees with s + 1 vertices the star of type
Ap11,....1) has the largest radius, viz. pag,, ,; = /s (see [CDS]); moreover
by Theorem 1.1/a, we have p(Cj11,...1)) < s — 1. The following theorem
shows that upper bound of spectral radii depends on the degree of the
branching point.

Theorem 2.2. If A, . 1 7# Ao 1,1,...,1) is neither of Dynkin nor
of Euclidean type, then

5 =2 < p(Clpy psyps) <s—1 if 1 <p;<oo, foralll<i<s.

PROOF. The bounds of spectral radii are determined by relation (see
Corollary 1.2).

PClpp,...00 < PClpypos...p.)) < PCrpp,....P)),

where p = min{py,pa,...,ps} and P = max{py,p2,...,ps}. For a wild

star App .. »], We get by BOLDT’s reduction formula [B]

s times

(1) X[p,p,....p) = vé;%(m)(svp_g(x) — (s =1)(z + Dvpyi(z))

= vp_T_l(:c)(J:p+1 +1—(s—2)zvy(x)).
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Furthermore, the non-cyclotomic factor f(z) = 2Pt +1—(s—2)zv,(z) for
p > 1satisfies f(s—1) = s > 0 and, for p > 1in the case that Ay, ,, . 5.
neither of Dynkin nor of Euclidean type, we have f(s—2) < 0. Theorem 2.1

]iS

implies that the Coxeter polynomial has only one real zero greater than 1,
thus p(Cip, ps,...p,)) <5 — 1.
Consider the graph I' = Az 5 1,...,1 1, (5§ > 4) which is neither Dynkin
——

s—2 times

nor Euclidean. One can calculate that
xr = v(@)a(2) " (at — (s — 3)a® — (s — 2)a® — (s — ) + 1),

and s —2 < p(I') <s—1.

If p = 1 then for s = 3 the wild star A 26, for s = 4 the wild
star Az 91,1] and for s > 4 the wild star Ao, .. 1) is a subgraph of
Appipaseips] 7 Dipii1,1,...,1], consequently, its spectral radius is greater than

s — 2. O

Remark. Consider the graph I' = App 1.1, s > 4, which is no
~——

s—1 times

Dynkin. Easy calculation shows that the non-cyclotomic irreducible factor
of xpis ot — (s —3)23 — (s —3)22 — (s —3)z+1,and s —3 < p(I') < s — 2.

Write
p(t) = (pu(t),p2(t),ps(t)) and p(t) = min {p(t), pa(t), ps(t) }-

Theorem 2.3. If {Aj,uy | t > 1} is a sequence of wild stars and
lim;_, o p(t) = oo then

Jim p(Crp(ey) = 2.

PROOF. In order to prove the theorem, we apply Corollary 1.2. In-
deed, consider Ay, (¢)ps(t),ps(t)] 8 & substar of Ap,;y and show that

Jim p(Cip(e).pe) pi)) = 2-
Write p = p(t) and apply (1):

X[p,p.p] = v§+1(x)($p+1 +1- a:vp(x)).
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For f(xz) = 2P™ + 1 — zv,(z) and p > 2 we have f(1) =2 —p < 0 and
f(2) =3 >0, ie. its (only) real root which is greater than 1 lies in the
(1,2)

interval I xg = %T =2— 27 and p > 4 then

2p—1\P
(p-1ptt | 2p-1 (7;+1) —1

f(zo) =
+1 2p—1
(p+1)P p+1 21

p—2 -1\ 2 2p1 3 (2p-1\PT

B (p+1 _1> <p+1) Trr T b <p+1) +3

B p=2 - p—1 <0,

p+1 p+2
. (2p — P!
since P12
(p+1)

Consequently, the real root « of the reciprocal polynomial f(z) =
2Pt 4+ 1 — zv,(z) which is greater than 1, satisfies o € (2 — %, 2); this
completes the proof. O

Theorem 2.4. Let p1,po,...,ps—1 be a fixed sequence of positive in-
tegers. Then
klim PClpipa,..pe—i,k]) = Tos
— 00

where x, is the only positive real root of the polynomial x2(x) — x1(z).
Here Xk () = Xips pa,..pe 1.1 (%):

Proor. Write px = p(Cip, ps,....p._1,k)- By Theorem 1.2/a we have
pr < 82 — 2 and the sequence of {py | k = 1,2,...} is monotone. Hence,
there exists a limit point limy_, o pr = xg. By Corollary 1.2,

(2) 1<p1<p2<...pk+1<---<s2.

Using the reduction formula of [B])

Xk(2) = (2 + D)xp—1(2) — 2X8—2(2),
we get

vk—1(2) (x2(®) — xa (%)) + xa(x) = xx(2).

Taking « = pi, we have vg—1(px)(x2(pr) — x1(pk)) = —x1(px). Since the
polynomial 1 (z) is bounded on the interval [py, s> — 1], we get

pale)l _ e _

vk—1(pr) ~ vp—1(1) ~ K

Ix2(pr) — x1(pk)| =
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where ¢ > 0 is the maximal value of |y (z)| for z € [p1,s% — 2]. It follows
that for arbitrary e > 0, there exists k € N, such that |x2(pr)—x1(pr)|<e.

Consequently limg o x2(pr) — X1(px) = x2(p) — x1(p) = 0. Thus, z¢ =
limy o pi is a positive root of xo(x) — x1(z).

Using (2) (see Lemma 2.8 in [P]), we can show by induction on the
number of edges that

Xo(@) =142 — apa® — -+ — ap_oz"™ 2 + 2" L 4 2",
xi1(x)=1+x— box? — - — bn_3$n73 Logne2 a:"fl,

and a; > b; > 0 for 2 < § < n — 3. Therefore the coefficients of the
polynomial xo(x) — x1(x) have one change of sign, and it has only one
positive root. O

Remark. Using Boldt’s formulas, the notation vy = vi(z) and the
relations

(z + 1)vm — XVp;—1 = Up;+1
and

UpyUpy1+1 — TUpy Upy—1 = Upy+pa>s

we obtain the following formulae for X[, 1y ps]

(24+1)VUp, +1Vpy +1Vpg +1 =T (Vpy Upy+1Vps+1FUpy +1Vpy Upg+1) —TVUpy +1Upp +1Ups
= ((x + 1)Up, +1Vpy+1 — TUp, Vpy+1 — Upy +1Up, )Vps+1 — TVUp, +1Vpy+1Upg
= (Upy+2VUps+1 — TVpy +1VUp, JVpg+1 — TUp; +1Vpy+1Up,
= Upy+pa+2Ups+1 — LVUp;+1Upy+1Ups
= Upy+pa+2Ups+1 — TUpi+pot1Ups T TUpy 4y +1Ups — TVUp; 41VUpy+1Ups
= Upy +P2+p3+2+xvp3 (Up1+p2+1 - Upz-f-lvps):vm +p2+p3+2 xgvpl Up, Ups -

_ 2
Thus, X[p1,p2,2] (.%') — X[p1,p2,1] (.%') = Upy+po+4 — Upy+4pa+3 — T Vp, Up, V2 +

2 — pP1t+p2+3 _ .3
L7Upy VUpy, = T L7 Up, Up, -

For example, we have

lim p(Cp,3,m)) = the real root of the polynomial 23— 2% —1 (~ 1.465).
m—0Q
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By the above statement a particular case of Theorem 2.4 yield the following
results ([CDS]):

lim p(Cp1,2,m]) = the real root of the polynomial 2° — z — 1 (~ 1.3241).
m—00

and

lim p(Cj2,2,m]) = the positive real root of the polynomial 22—z —1.

Using Theorem 1.1/a and Proposition 3.6 in [H] we have

W}i_fgo P(Ci2,2,m)) = mlgnoo P(Ci,m,m)) = (1 + \/5)/2 (~ 1.61803).
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