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On the spectral radius
of Coxeter transformations of trees

By PIROSKA LAKATOS (Debrecen)

Abstract. The spectral radius of a Coxeter transformation which plays an impor-
tant role in the representation theory of hereditary algebras (see [DR]), is its important
invariant. This paper provides both upper and lower bounds for the spectral radii of
Coxeter transformations of the wild stars (i.e. the trees that have a single branching
point and are neither of Dynkin nor of Euclidean type). In addition, the paper deter-
mines limit of the spectral radii of particular infinite sequences of wild stars.

1. Definitions and preliminary results

Let ∆ be a tree, i.e. a finite non-oriented connected graph without cy-
cles (multiple edges are allowed); let {1, 2, . . . , n} be the set of its vertices.
The spectrum Spec(∆) of ∆ is the set of the eigenvalues of the adjancency
matrix A = A(∆) = (aij) of ∆; here aij is the number of edges between
the vertices i and j, and thus A is an integral symmetric matrix. Denote
the spectral radius of ∆ (i.e. the largest eigenvalue of A) by ρ(∆).

Let Ω be an orientation of the tree ∆ and C = CΩ(∆) : Cn→Cn the
corresponding Coxeter transformation. Recall that the matrix Φ = ΦΩ(∆)

of C with respect to the standard basis can be written as Φ = −C−1Ctr,
where C = CΩ(∆) = (cij) is an integral n × n matrix with cji equal to
the number of paths from the vertex i to the vertex j in Ω(∆). The
characteristic polynomial of Φ is called the Coxeter polynomial of C. The
spectrum Spec(C) is the set of all eigenvalues of Φ and the spectral radius
of C is

ρ(CΩ(∆)) = max{‖λ‖ : λ ∈ Spec(CΩ(∆))}.
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It is well-known (see [C]) that the characteristic polynomial of the
Coxeter transformation is reciprocal and that the spectrum Spec(CΩ(∆))
of the Coxeter transformation CΩ(∆) does not depend on the orientation
of Ω if ∆ is a tree. Thus, we may write Spec(C∆) = Spec(CΩ(∆)).

In the case when the graph is of Dynkin or Euclidean type then
Spec(C) is well known. In general, A’Campo has proved the following
relationship between the sets Spec(∆) and Spec(C∆).

Theorem 1.1 ([C]).
a) Given 0 6= λ ∈ C then λ+λ−1 ∈ Spec(∆) if and only if λ2 ∈ Spec(C∆).
b) Spec(C∆) ⊆ S1 ∪ R+, where S1 = {λ ∈ C : ‖λ‖ = 1}.
c) If ∆ is not Dynkin, then there exists a real number λ ≥ 1 such that

ρ(∆) = λ + λ−1 and ρ(C∆) = λ2. Moreover, ∆ is Euclidean if and
only if λ = 1.

Since the Perron–Frobenius theorem for non-negative matrices yields
that ∆′ ⊂ ∆ implies ρ(∆′) < ρ(∆) (cf. [H]), we get immediately the
following corollary.

Corollary 1.2. If ∆′ is a subtree of a tree ∆, neither of which is
Dynkin, then ρ(C∆′) < ρ(C∆).

Denote by d(i) the degree of the vertex i; i.e. d(i) =
∑n

j=1 aij .

Theorem 1.3 (see [PT] and [X]). Let m be the maximum of the de-
grees of all vertices of ∆. Then
a) ρ(C∆) ≤ m2 − 2.
b) If ∆ is neither of Dynkin nor of Euclidean type, then µ0 ≤ ρ(C∆);

where µ0 is the largest (real) root of the polynomial

f(x) = x10 + x9 − x7 − x6 − x5 − x4 − x3 + x + 1.

2. Wild stars

Let p = (p1, p2, . . . , ps), s ≥ 3, be a sequence of positive integers pi,
1 ≤ i ≤ s and let n =

∑s
i=1 pi+1. The wild star is a tree with simple edges

which consists of paths with one common endpoint. Denote ∆[p1,p2,...,ps]

the wild star consisting of s paths of length p1, p2, . . . , ps, and denote by
χ[p1,p2,...,ps](x) and ρ(C[p1,p2,...,ps]) the characteristic polynomial and the
spectral radius of C∆[p1,p2,...,ps] respectively.

The following theorem is an answer to a problem concerning Coxeter
polynomials posed by de la Pena, J.A. in his paper [P], for wild stars.
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Theorem 2.1. The Coxeter polynomial of a wild star has exactly two
real roots and one irreducible non-cyclotomic factor.

Proof. Let f(x) be the Coxeter polynomial of a wild star. By [P]
f(x) has exactly two positive real roots δ and 1/δ. From Theorem 1.1/b it
follows that these roots are its only real roots. Each non-real element of the
spectrum of a wild star has absolute value equal to 1, thus the eigenvalues
lie on the unit circle. Let g(x) be the monic irreducible factor over Q
having the root δ. If 1/δ is not a root of g(x) then the constant term
of the polynomial f(x)/g(x) has absolute value 1/δ which is inpossible
because 1/δ is not an integer. Furthermore, the roots of f(x)/g(x) lie on
the unit cicle. A theorem of Kronecker states that if the roots of a monic
polynomial with integer coefficients lie on the unit circle, then they are
roots of unity. Thus, the only non-cyclotomic factor g(x) of the Coxeter
polynomial f(x) is irreducible. ¤

Let us write

vk = vk(x) = (xk − 1)/(x− 1) for k ∈ Z+.

It is known that among the trees with s + 1 vertices the star of type
∆[1,1,...,1] has the largest radius, viz. ρ∆[1,1,...,1] =

√
s (see [CDS]); moreover

by Theorem 1.1/a, we have ρ(C[1,1,...,1]) < s − 1. The following theorem
shows that upper bound of spectral radii depends on the degree of the
branching point.

Theorem 2.2. If ∆[p1,p2,...,ps] 6= ∆[p1,1,1,...,1] is neither of Dynkin nor
of Euclidean type, then

s− 2 < ρ(C[p1,p2,...,ps]) < s− 1 if 1 < pi < ∞, for all 1 ≤ i ≤ s.

Proof. The bounds of spectral radii are determined by relation (see
Corollary 1.2).

ρ(C[p,p,...,p] ≤ ρ(C[p1,p2,...,ps]) ≤ ρ(C[P,P,...,P ]),

where p = min{p1, p2, . . . , ps} and P = max{p1, p2, . . . , ps}. For a wild
star ∆[ p,p,...,p︸ ︷︷ ︸

s times

], we get by Boldt’s reduction formula [B]

(1)
χ[p,p,...,p] = vs−1

p+1(x)(svp+2(x)− (s− 1)(x + 1)vp+1(x))

= vs−1
p+1(x)(xp+1 + 1− (s− 2)xvp(x)).
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Furthermore, the non-cyclotomic factor f(x) = xp+1+1−(s−2)xvp(x) for
p ≥ 1 satisfies f(s−1) = s > 0 and, for p > 1 in the case that ∆[p1,p2,...,ps] is
neither of Dynkin nor of Euclidean type, we have f(s−2) < 0. Theorem 2.1
implies that the Coxeter polynomial has only one real zero greater than 1,
thus ρ(C[p1,p2,...,ps]) < s− 1.

Consider the graph Γ = ∆[2,2, 1,...,1︸ ︷︷ ︸
s−2 times

], (s > 4) which is neither Dynkin

nor Euclidean. One can calculate that

χΓ = v3(x)v2(x)s−3(x4 − (s− 3)x3 − (s− 2)x2 − (s− 3)x + 1),

and s− 2 < ρ(Γ) < s− 1.
If p = 1 then for s = 3 the wild star ∆[1,2,6], for s = 4 the wild

star ∆[3,2,1,1] and for s > 4 the wild star ∆[2,2,1,...,1] is a subgraph of
∆[p1,p2,...,ps] 6= ∆[p1,1,1,...,1], consequently, its spectral radius is greater than
s− 2. ¤

Remark. Consider the graph Γ = ∆[2, 1,...,1︸ ︷︷ ︸
s−1 times

], s ≥ 4, which is no

Dynkin. Easy calculation shows that the non-cyclotomic irreducible factor
of χΓ is x4− (s− 3)x3− (s− 3)x2− (s− 3)x+1, and s− 3 < ρ(Γ) < s− 2.

Write

p(t) = (p1(t), p2(t), p3(t)) and p(t) = min
{
p1(t), p2(t), p3(t)

}
.

Theorem 2.3. If
{
∆[p(t)] | t ≥ 1

}
is a sequence of wild stars and

limt→∞ p(t) = ∞ then

lim
t→∞

ρ(C[p(t)]) = 2.

Proof. In order to prove the theorem, we apply Corollary 1.2. In-
deed, consider ∆[p1(t),p2(t),p3(t)] as a substar of ∆[p(t)] and show that

lim
t→∞

ρ(C[p(t),p(t),p(t)]) = 2.

Write p = p(t) and apply (1):

χ[p,p,p] = v2
p+1(x)(xp+1 + 1− xvp(x)).
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For f(x) = xp+1 + 1 − xvp(x) and p > 2 we have f(1) = 2 − p < 0 and
f(2) = 3 > 0, i.e. its (only) real root which is greater than 1 lies in the
interval (1, 2). If x0 = 2p−1

p+1 = 2− 3
p+1 and p ≥ 4 then

f(x0) =
(2p− 1)p+1

(p + 1)p+1
+ 1− 2p− 1

p + 1

(
2p−1
p+1

)p

− 1
2p−1
p+1 − 1

=

(
p−2
p+1 − 1

)(
2p−1
p+1

)p+1

+ p−2
p+1 + 2p−1

p+1

p−2
p+1

=
−3
p+1

(
2p−1
p+1

)p+1

+ 3
p−1
p+2

< 0,

since
(2p− 1)p+1

(p + 1)p+2 > 1.

Consequently, the real root α of the reciprocal polynomial f(x) =
xp+1 + 1 − xvp(x) which is greater than 1, satisfies α ∈ (2 − 3

p+1 , 2); this
completes the proof. ¤

Theorem 2.4. Let p1, p2, . . . , ps−1 be a fixed sequence of positive in-
tegers. Then

lim
k→∞

ρ(C[p1p2,,...,ps−1,k]) = xo,

where xo is the only positive real root of the polynomial χ2(x) − χ1(x).
Here χk(x) = χ[p1,p2,...,ps−1,k](x).

Proof. Write ρk = ρ(C[p1,p2,...,ps−1,k]). By Theorem 1.2/a we have
ρk ≤ s2 − 2 and the sequence of {ρk | k = 1, 2, . . . } is monotone. Hence,
there exists a limit point limk→∞ ρk = x0. By Corollary 1.2,

(2) 1 < ρ1 < ρ2 < . . . ρk+1 < · · · < s2.

Using the reduction formula of [B])

χk(x) = (x + 1)χk−1(x)− xχk−2(x),
we get

vk−1(x)(χ2(x)− χ1(x)) + χ1(x) = χk(x).

Taking x = ρk, we have vk−1(ρk)(χ2(ρk) − χ1(ρk)) = −χ1(ρk). Since the
polynomial χ1(x) is bounded on the interval [ρ1, s

2 − 1], we get

|χ2(ρk)− χ1(ρk)| = |χ1(ρk)|
vk−1(ρk)

≤ c

vk−1(1)
≤ c

k
,
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where c > 0 is the maximal value of |χ1(x)| for x ∈ [ρ1, s
2 − 2]. It follows

that for arbitrary ε > 0, there exists k ∈ N, such that |χ2(ρk)−χ1(ρk)|<ε.
Consequently limk→∞ χ2(ρk) − χ1(ρk) = χ2(ρ) − χ1(ρ) = 0. Thus, x0 =
limk→∞ ρk is a positive root of χ2(x)− χ1(x).

Using (2) (see Lemma 2.8 in [P]), we can show by induction on the
number of edges that

χ2(x) = 1 + x− a2x
2 − · · · − an−2x

n−2 + xn−1 + xn,

χ1(x) = 1 + x− b2x
2 − · · · − bn−3x

n−3 + xn−2 + xn−1,

and ai ≥ bi > 0 for 2 ≤ i ≤ n − 3. Therefore the coefficients of the
polynomial χ2(x) − χ1(x) have one change of sign, and it has only one
positive root. ¤

Remark. Using Boldt’s formulas, the notation vk = vk(x) and the
relations

(x + 1)vpi − xvpi−1 = vpi+1

and

vp2vp1+1 − xvp1vp2−1 = vp1+p2 ,

we obtain the following formulae for χ[p1,p2,p3]

(x+1)vp1+1vp2+1vp3+1−x(vp1vp2+1vp3+1+vp1+1vp2vp3+1)−xvp1+1vp2+1vp3

= ((x + 1)vp1+1vp2+1 − xvp1vp2+1 − vp1+1vp2)vp3+1 − xvp1+1vp2+1vp3

= (vp1+2vp2+1 − xvp1+1vp2)vp3+1 − xvp1+1vp2+1vp3

= vp1+p2+2vp3+1 − xvp1+1vp2+1vp3

= vp1+p2+2vp3+1 − xvp1+p2+1vp3 + xvp1+p2+1vp3 − xvp1+1vp2+1vp3

= vp1+p2+p3+2+xvp3(vp1+p2+1 − vp2+1vp3)=vp1+p2+p3+2 − x2vp1vp2vp3 .

Thus, χ[p1,p2,2](x) − χ[p1,p2,1](x) = vp1+p2+4 − vp1+p2+3 − x2vp1vp2v2 +
x2vp1vp2 = xp1+p2+3 − x3vp1vp2 .

For example, we have

lim
m→∞

ρ(C[1,3,m]) = the real root of the polynomial x3 − x2 − 1 (∼ 1.465).
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By the above statement a particular case of Theorem 2.4 yield the following
results ([CDS]):

lim
m→∞

ρ(C[1,2,m]) = the real root of the polynomial x3 − x− 1 (∼ 1.3241).

and

lim
m→∞

ρ(C[2,2,m]) = the positive real root of the polynomial x2 − x− 1.

Using Theorem 1.1/a and Proposition 3.6 in [H] we have

lim
m→∞

ρ(C[2,2,m]) = lim
m→∞

ρ(C[1,m,m]) = (1 +
√

5)/2 (∼ 1.61803).
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