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Extrinsic spheres of a generalized Hopf manifold
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To the memory of Professor András Rapcsák

Abstract. In the present article we study the geometry of extrinsic spheres in lo-
cally conformal Kaehler manifolds with parallel Lee form (generalized Hopf manifolds).
Our method consists in analysing the positions of the mean curvature vector field with
respect to the three canonical distributions of a g.H.m. . Using two celebrated theorems
of M. Obata we determine sufficient conditions for an extrinsic sphere to be isometric
with a standard one.

1. Introduction

Initially K. Nomizu called sphere a totally umbilical submanifold with
parallel mean curvature vector field in an arbitrary Riemannian manifold.
Since this definition reflects an extrinsic property of the submanifold, the
name extrinsic sphere was found more adequate.

One dimensional extrinsic spheres are called simply circles. They
are the geodesic (or curvature) circles previously considered by S. Lie,
G. Darboux and W. Blaschke. It was proved in [No-Ya] that an iso-
metric submanifold of a Riemannian manifold M̃ is an extrinsic sphere if
and only if every circle on it is also a circle in M̃ .

A natural question when studying such objets is: when is an extrinsic
sphere isometric with a standard sphere? Every classification attempts to
answer it. For a Kaehlerian ambient space the classification was carried
out in [Ch] while for a Sasakian ambient in [Ya-Ne-Ka] and [Ha].

In this paper we discuss extrinsic spheres in a particular class of Her-
mitian manifolds, namely the generalized Hopf manifolds (g.H.m.). The
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second section presents the necessary background about g.H.m. and their
submanifolds as well as other definitions we shall need later. In the third
section we describe the canonical distributions of a g.H.m. The fourth
section discusses the mean curvature vector of an extrinsic sphere in con-
nection with these distributions while in the fifth section we present a clas-
sification of extrinsic spheres in generalized Hopf manifolds and provide a
class of examples. Finally we discuss the case of a locally conformally flat
ambient manifold.

Some of the results in this paper were announced in [Ia-Or-Ma].

2. Preliminaries

All manifolds and geometric objects on them are supposed differen-
tiable of class C∞. The notations are standard.

A locally conformal Kaehler manifold is a Hermitian manifold (M̃, J ,
g) of complex dimension m̃ whose metric is conformally related to a Kaehle-
rian one in a neighborhood of each of its points (cf. [Val]). Denoting with
Ω the fundamental 2-form on M̃ (defined by Ω(X, Y ) = g(X,JY )) we have
an alternative definition in the following

Theorem 2.1. A Hermitian manifold is a locally conformal Kaehler

manifold if and only if the equation

dΩ = ω ∧ Ω

defines a closed global 1-form ω (called the Lee form).

We shall suppose ω without singularities; hence it is possible to con-
sider the unitary 1-form u = ω/2c, 2c = ‖ω‖. We set U = u#, V =
−JU, v = u ◦ J .

If ω is parallel with respect to the Levi–Civita connection ∇̃ of M̃
(or, equivalently, c = ct. and ∇̃u = 0) then M̃ is called a generalized Hopf
manifold (g.H.m.). This name is motivated by the example of the com-
plex Hopf manifold S1 × S2n−1 (which, for topological reasons, is known
not to admit Kaehlerian metrics) endowed with the Boothby metric (cf.
[Val]) ds2 = (

∑
dzi ⊗ dz̄i/|z|2. The structure of a compact g.H.m. whose

distribution generated by the vector fields U and V is regular in the sense
of R. Palais is best understood:
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Theorem 2.2. A compact, connected regular generalized Hopf mani-
fold M̃ is a T 1

C-principal analytic fibre bundle over a Hodge manifold (for
a well determined 1-dimensional complex torus).

On a g.H.m. the covariant derivative of the complex structure is given
by the formula

(2.1) (∇̃XJ)Y = c {−g(X,Y )V − Ω(X,Y )U + v(Y )X − u(Y )JX}
which easily implies

(2.2) ∇̃XV = c {u(X)V − v(X)U − JX} .

Let now M be an isometric submanifold of real dimension m ≥ 2. We
denote with ∇ (resp. ∇⊥) the metric connexion induced in the tangent
(resp. normal) bundle of M and with h (resp. AN ) the second fundamental
form (resp. the Weingarten operator in the normal direction N). We
denote with g the metric induced on M .

The vector field H = (1/m) trace gh ∈ C∞(T⊥M) (for a vector bundle
E → M we denote with C∞(E) the module of its differentiable sections; we
consider only vector bundles over M) is called the mean curvature vector
field of the submanifold. If h = g ⊗ H, M is called a totally umbilical
submanifold; if, moreover, H is non-zero and parallel in the normal bundle
then M is an extrinsic sphere. In this last case k = ‖H‖ is a non-zero
constant and, letting H = kµ, the Gauss and Weingarten formulae read:

∇̃XY =∇XY + kg(X, Y )µ

∇̃XN =− kg(N,µ) +∇⊥XN .

In particular we hawe

(2.3) ∇̃Xµ = −kX .

To answer the question stated in the Introduction we shall make es-
sential use of two results of M. Obata that we now recall:

Theorem 2.3 ([Ob1,2]). Let Mm (m ≥ 2) be a complete, connected
and simply connected Riemannian manifold. Then M is isometric with a
sphere of radius 1/

√
k if and only if there exists a nonconstant function f

on M satisfying one the following equations:

∇df + kfg = 0(1)

∇∇df + k
∑

cicl

2df ⊗ g + kdf ⊗ g = 0 .(2)
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To conclude the preliminaries we recall the definitions of two struc-
tures which will appear in our classification.

Firstly a (1,1) tensor field φ and a 1-form η on a Riemannian manifold
(N, g) satisfying

φ2 = −I + η ⊗ ξ, g(φX, Y ) + g(X,φY ) = 0, 2ag(φX, Y ) = dη(X,Y )

where ξ = η#, define a metric (homothetic, if a 6= 1) contact structure. (cf.
[Bl]). If the almost complex structure defined on N × R by J(X, b d

dt ) =
(φX − bξ, η(X) d

dt ) is integrable then the structure is called Sasakian.
The standard contact structure of an odd-dimensional sphere is a typical
example.

On the other hand, a real submanifold M of a Hermitian mani-
fold (M̃, J, g) is a CR submanifold (cf. [Be]) if it is endowed with a pair
of complementary orthogonal distributions D and D⊥, the first being
holomorphic (JX ∈ C∞(D), X ∈ C∞(D)) and the second totally real
(JX ∈ C∞(T⊥M), X ∈ C∞(D⊥)).

3. Vector distributions on a generalized Hopf manifold

Let D1 be the 1-dimensional differentiable distribution generated by
the Lie vector field U (which, by assumption, has no singularities). It is
parallel with respect to the Levi–Civita connection ∇̃ of M̃ . Let D2 be
the distribution generated by the vector field V and D3 the Kaehlerian
distribution (studied mainly in [Ia-Or]) whose sections are orthogonal to
both U and V . One thus obtains an orthogonal decomposition TM =
D1 ⊕D2 ⊕D3. Let D be the distribution D2 ⊕D3.

It is known (cf. [Ch-Pi], [Val,2]) that D is integrable and totally geo-
desic. This is a consequence of the parallelism of U .

For each X ∈ C∞(D) we put

(3.1) JX = φX + η(X)U

where φ ∈ C∞(Hom(D,D)) and η ∈ C∞(D∗).
It is easily seen that η = u ◦ J and that

(3.2) φ2 = −I + v ⊗ V .

Let ∇′ be the connexion induced by ∇̃ in the subbundle D. One has
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Proposition 3.1. The following formulas hold on a generalized Hopf
manifold:

(∇′Xφ)Y = c {v(X)Y − g(X, Y )V }(3.3)

∇′XV = cφX .(3.4)

Proof. Using (2.1) and (3.1) we find

∇′XφY + X(η(Y ))U + η(Y )∇XU − φ∇′XY − η(∇′XY )U =

= c {g(X, Y )JU + u(JX)Y }
for X, Y ∈ C∞(D). Comparing the components in C∞(D) and in C∞(D1)
on the two sides of the previous equality one directly obtains (3.3) and

X(η(Y ))− η(∇′XY ) = −cΩ(X,Y ) ,

a relation which may be written

X(g(V, Y )− g(∇′XY, V ) = −cΩ(X, Y ) .

This, combined with (3.1), leads to:

g(∇′XV, Y ) = cg(φX, Y )

for each Y ∈ C∞(D) and the proof is complete.

In a similar manner one verifies that φ is skewsymmetric (with respect
to g) and satisfies the formula

g(φX, φY ) = −g(X, Y ) + v(X)v(Y ) .

We may conclude:

Corollary 3.2 [Val]. An integral manifold of maximal dimension of
the distribution D bears a homothetic Sasakian structure.

4. Mean curvature vector of an extrinsic sphere.
Properties related to the canonical distributions

Let M be an extrinsic sphere of the generalized Hopf manifold M̃ ,
with mean curvature vector field H. Let us put

(4.1) Jµ = µ′ + µ′′
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where µ′ (resp. µ′′) is the tangent (resp. normal) part of Jµ. Similarly, we
denote by U ′ (U ′′), V ′ (V ′′) the tangent (normal to M and µ) component
of U, V . Then we have

U = U ′ + U ′′ + g(U, µ)µ(4.2)

V = V ′ + V ′′ + g(V, µ)µ .(4.3)

If U ∈ C∞(T⊥M) (note that this also implies C∞(TM) ⊂ C∞(D)) we
define φ′ ∈ C∞(Hom(D,D)) and φ′′ ∈ C∞(Hom(D, T⊥M)) by means of
the decomposition formula

(4.4) φX = φ′X + φ′′X − g(X, µ′)µ .

Lemma 4.1. Let M be an extrinsic sphere orthogonal to the Lee
vector field U of the generalized Hopf manifold M̃ . If H is also orthogonal
to U then

(∇′Xφ′)Y = c {g(V ′, Y )X − g(X, Y )V ′}+(4.5)

+ k {g(X, Y )µ′ − g(Y, µ′)X}
(∇′Xφ′′)Y def= ∇⊥Xφ′′Y − φ′′∇XY = g(X, Y ){kµ′′ − cU ′′} .(4.6)

Proof. The proof consists in a direct computation. Because D is a
totally geodesic foliation we have

(∇′Xφ)Y = ∇′XφY − φ∇′XY = ∇′Xφ′Y +∇′Xφ′′Y −Xg(Y, µ′)µ+

+kg(Y, µ′)X − φ {∇XY + kg(X, Y )µ} =

= ∇Xφ′Y + kg(X, φ′Y )µ +∇⊥Xφ′′Y −Xg(Y, µ′)µ + kg(Y, µ′)X−
−φ∇XY − φ′′∇XY + g(∇XY, µ′)µ− kg(X, Y )µ′ − kg(X, Y )µ′′ .

The conclusion now follows from Proposition 3.1 and by comparing the
tangent and the normal components on the two sides of the above equation.

We may now pass to the examination of the three mutually exclu-
sive positions of the mean curvature vector with respect to the canonical
distributions, namely:
a) H is not orthogonal to D1

b) H is orthogonal to D1 but not to D2

c) H ∈ C∞(D3).
Let us first note that H cannot be a section of D1. Indeed, this will

be a consequence of
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Proposition 4.2. If the function f = g(U, µ) is constant on M then

it is identically zero.

Proof. We have successively:

Xg(U, µ) = g(∇̃XU, µ) + g(U, ∇̃Xµ) = −kg(U ′, X) .

If f is constant then g(U ′, X) = 0 so that U ′ = 0. On the other hand,
covariant differentiation of (4.2) implies ∇XU ′ = kg(U, µ)X. As U ′ = 0,
we conclude that U ⊥ µ and the proof is complete.

Now, if U = U ′, then H ⊥ U so H ∈ C∞(D1); thus H is not orthogonal
to D1 and from the above proof we derive the

Corollary 4.3. There is no extrinsic sphere tangent to the Lee vector

field U of a generalized Hopf manifold.

As a direct consequence of formulae (2.3) and (3.4) we obtain

Lemma 4.4. For an extrinsic sphere of a generalized Hopf manifold

the following formula holds

Xg(V, µ) = −kg(V,X)− cg(X, µ′) X ∈ C∞(D) .

Lemma 4.5. Suppose H is orthogonal to D1 and f = g(V, µ) is con-

stant on M . Then

i) ∇XU ′ = kg(µ, V ′) + cφ′X
ii) ∇⊥XV ′′ = cφ′′X
iii) g(V, µ) ≡ 0 on M .

Proof. If f is a constant, from Lemma 4.4 we conclude that µ′ and
V ′ are colinear and µ′ = −(k/c)V ′. Then the three relations are derived
from the covariant differentiation of (4.2), (4.3) and of the Gauss and
Weingarten formulae.

Finally, a similar computation yields

Lemma 4.6. If H is orthogonal to D1 ⊕D2 and Y ∈ C∞(D) then

(∇Xφ′)Y = (c + k2/c){g(V ′, Y )X − g(X, Y )V ′} .
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5. Main results

We now examine the three positions of the mean curvature vector field
of an extrinsic sphere M with respect to the canonical distributions and,
in each case, we find a function satisfying one of the equations in Obata’s
theorem. When we cannot prove the nonconstancy of this function, and
thus cannot derive the isometry with a standard sphere, we point out some
additional structures, compatible with the metric, on the submanifold.

In the first case, a), when H is not orthogonal to D1, letting f =
g(U, µ) we find

df(X) = X(g(U, µ)) = −kg(U ′, X)

(∇df)(X,Y ) = (∇Xdf)(Y ) = −k {∇Xg(U ′, Y )− g(U ′,∇XY )} =

= kg(∇XU ′, Y ) = −kg(AU ′′X,Y ) = −k2fg(X, Y ) ,

thus f satisfies equation (1).
In the second case, b), when H is orthogonal to D1 but not to D2 we

let f = g(V, µ) and, as above, we see that f satisfies equation (1). Taking
into account Proposition 4.2 and Lemma 4.5 we may state

Theorem 5.1. Let M be a connected, simply connected, complete
extrinsic sphere of a generalized Hopf manifold. If its mean curvature
vector field is not a section of the Kaehlerian distribution D3, then M is
isometric with a standard sphere of radius 1/

√
k.

The situation is much more complicated when H assumes its last
position, c), i.e. H ∈ C∞(D3). We first show that f = g(V ′, V ′) verifies
equation (2) if U is normal to M . Indeed:

df(X) = 2g(∇XV ′, V ′) = 2cg(φ′X,V ′) = −2cg(X, φ′V ′)

(∇df)(X, Y ) = X(df(Y ))− df(∇XY ) = −cXg(Y, φ′V ′)+

+2cg(∇XY, φ′V ′) = −2cg(Y,∇X(φ′V ′)) .

Taking into account Lemma 4.6 we derive:

∇X(φ′V ′) = (∇Xφ′)V ′ + φ′∇XV ′ =(5.1)

= (c2 + k/c)fX − g(X, V ′)V ′ + c(φ′)2X

(∇df)(X, Y ) = 2(c2 + k2)g(X, V ′)g(Y, V ′)− fg(X,Y )+

+ c2g(φ′X, φ′Y )

(∇∇df)(X, Y, Z) =− (c2 + k2){2df(X)g(Y,Z)

+ df(Y )g(X,Z) + df(Z)g(X, Y )} .
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Thus we may state

Proposition 5.2. Let M be a complete, connected and simply con-
nected extrinsic sphere of a generalized Hopf manifold. If H is a section of
the distribution D3, U is orthogonal to M and f = g(V ′, V ′) is noncon-

stant, then M is isometric with a standard sphere of radius 1/
√

c2 + k2.

What happens if, under the same conditions as above, f = g(V ′, V ′)
is constant on M? From df = 0 we derive g(X, φ′V ′) = 0. Using (5.1) we
obtain:

(5.2) (φ′)2X = − c2

c2 + k2
{fX − g(X, V ′)V ′} .

On the other hand:

φV ′ = φ′′V ′ − g(V ′, µ′)µ = φ′′V ′ + (k/c)fµ

‖φ′′V ′‖2 = ‖φV ′‖2 − 2(k/c)fg(φV ′, µ) + (k2/c2)f2 .

We separately evaluate the terms on the right hand side of the last equality:

g(φV ′, µ) = −g(V ′, φµ) = −g(V ′, µ) = (k/c)fµ

‖φV ′‖2 = −g(V ′, φ2V ′)

φ2V ′ = −V ′ + fV

−g(V ′, φ2V ′) = −g(V ′, fV − V ′) = −f‖V ′‖2 + f = f − f2 .

Finally we get

(5.3) ‖φ′′V ′‖ =
(

1− c2 + k2

c2
f

)
f ≥ 0 .

It is thus necessary that

f ∈
[
0,

c2

c2 + k2

]

and, consequently, we are led to analyse the following cases:

Case I: f ∈
(
0, c2

c2+k2

)
. We let φ∗ = 1

((c2+k2)f)1/2 φ, ξ∗ = (1/f)V ′,
η∗(X) = g(X, ξ∗). A direct checking shows that (φ∗, ξ∗, η∗, g) defines a
homothetic Sasakian structure on M .

Case II: f = 0. Then V ′ = 0, thus U and V are both orthogonal to
M . Then from (2.2) we obtain:

g(JX, Y ) = g(φ′X, Y ) = (1/c)g(∇̃XV, Y )− (1/c)g(AV X, Y ) .
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As J is antisymmetric and AV is symmetric we deduce AV = 0 and
g(JX, Y ) = 0 that is JX ∈ C∞(T⊥M). We conclude that M is a to-
tally real submanifold of M̃ . On the other hand φ′X ∈ C∞(T⊥M), hence
dim M ≤ (1/2) dim M̃ − 1.

Case III: f = c2/(c2 + k2) Now φ′′V ′ = 0, and, because H ∈ C∞(D3),
we also have φ′V ′ = (kc/(c2 + k2))µ ∈ C∞(T⊥M). Let us denote by T ′M
the subbundle of TM whose sections are normal to V ′. For each section
X ∈ C∞(T ′M) (5.2) implies:

(φ′)2X = −((c2 + k2)/c2)fX = −X

‖φ′X‖2 = ‖X‖2 = ‖φX‖2 .

Thus φ′ = φ on sections of T ′M . This means that U and V are orthogonal
on the sections of T ′M so that the restriction of J to T ′M coincides with
the action of φ′. Moreover φV ′ = JV ′ hence JV ′ ∈ C∞(T ′M). This in
turn implies TM = T ′M ⊕ {V ′} so that M is a CR submanifold of odd
dimension in M̃ (its totally real distribution is 1-dimensional).

To conclude, we have proved

Theorem 5.3. Let M be an extrinsic sphere of a generalized Hopf
manifold M̃ . If its mean curvature vector field is a section of the distribu-

tion D3, if U is normal to M and if f = g(V ′, V ′) is a constant function

on M , then M may be:

i) a totally real submanifold and dim M ≤ (1/2) dim M̃ − 1, or

ii) a CR submanifold and dim M is odd, or

iii) a homothetic Sasakian manifold.

We now recall from [Ia-Or] that an integral manifold of the distribu-
tion D3 (which is not completely integrable) is a totally real submanifold.
Then point ii) admits the following refinement (cf. loc. cit.) which we quote
for the sake of completeness:

Theorem 5.4. Let M be a complete, connected and simply connected

integral manifold of the Kaehlerian distribution D3 of a generalized Hopf

manifold. If M has flat normal connection, and is an extrinsic sphere then

M is isometric with a standard sphere.
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Example. Let N be a 2n − 1 dimensional Riemannian manifold en-
dowed with a Sasakian structure (φ, ξ, η, g1). Let us denote by u the lenght
element on S1(1). On the product manifold M̃ = N × S1 one may define
a Hermitian structure (J, g) as follows (cf. [Bl-Ou]):

J(X1, X2) = (φX1 − u(X2)ξ, η(X1)u#) X1 ∈ C∞(TN), X2 = fu#

g = g1 + u⊗ u .

Moreover, it can be checked directly that this structure is locally confor-
mal Kaehler with parallel Lee form (which is precisely u, with obvious
identifications). Let now M be an extrinsic sphere of N . As g is a product
metric and N is totally geodesic in M̃ we conclude that M is an extrinsic
sphere in M̃ too.

6. Locally conformally flat ambient

We now consider M̃ to be a locally conformally flat g.H.m., meaning
that the local Kaehler metrics are flat. Equivalently, the Weyl connection
associated to the Levi–Civita connection of g and to the Lee form is flat.
The complex Hopf manifold is a typical example. In this situation the
curvature tensor R̃ of g has a particularly nice form (cf. [Val]):

R̃(X, Y )Z = c2{u(X)u(Z)Y − u(Y )u(Z)X − u(X)g(Y, Z)U+(6.1)

+u(Y )g(X, Z)U + g(Y, Z)X − g(X, Z)Y } .

First of all we have:

Lemma 6.1. Let M be a submanifold with parallel second fundamen-

tal form in a locally conformally flat g.H.m. Then the Lee vector field is

everywhere tangent or everywhere normal to M .

Proof. The Codazzi equation and formula (6.1) lead to:

norR̃(X, Y )Z = c2{g(U ′, Y )g(X,Z)− g(U ′, X)g(Y, Z)}U ′′ = 0 .

As dim M ≥ 2 we can choose X = Z, X ⊥ Y and derive g(U ′, Y )U ′′ = 0.
Thus U ′′ = 0 or U ′ = 0 and the proof is complete.

Taking into account Corollary 4.3 we obtain
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Corollary 6.2. An extrinsic sphere of a locally conformally flat g.H.m.
is everywhere normal to the Lee vector field.

As a consequence, the Gauss equation for an extrinsic sphere will be

R(X, Y ; Z, W ) = (c2 + k2){g(X, Y )g(Z, W )− g(X, Z)g(Y, W )} .

On the other hand, the Ricci equation and formula (6.1) together imply
R⊥ = 0. Summing up and taking into account the well-known Hadamard
theorem we have proved

Theorem 6.3. A complete, connected and simply connected extrinsic
sphere of a locally conformally flat generalized Hopf manifold is isometric
with a standard sphere of radius 1/

√
c2 + k2. Moreover, its normal bundle

is flat.

References

[Be] A. Bejancu, Geometry of CR submanifolds, Reidel Publ. Co., Dordrecht, 1986.
[Bl] D. E. Blair, Contact manifolds in Riemannian geometry, Springer Verlag, 1976.
[Bl-Ou] D. E. Blair and J. A. Oubina, Conformal and related changes of metric on

the product of two almost contact manifolds, Publ. 34 (1990), 199–207.
[Ch] B. Y. Chen, Extrinsic spheres in Kaehler manifolds, Mich. Math. J. 23 (1976),

327–330 and 24 (1977), 97–102.
[Ch-Pi] B. Y. Chen and P. Piccinni, The canonical foliations of a locally conformal

Kaehler manifold, Ann. Mat. Pura Appl. 35 (1985), 289–303.
[Ha] I. Hazegawa, Remarks on extrinsic spheres and totally contact umbilical subman-

ifolds in Sasakian manifolds, J. Hokkaido Univ. Education 36 (1988), 39–48.
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