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On normal approximations to strongly mixing random fields

By VIDMANTAS BENTKUS (Vilnius) and JONAS KAZYS SUNKLODAS (Vilnius)

Abstract. Let &, be a strongly mixing sequence of real random variables such
that E€, = 0. Write S, = &1+ -+ - + &, and consider the normalized sums Z, = S, /Bn,
where B2 = ES2?. Assume that a thrice differentiable function h : R — R satisfies
sup g |h"' (x)| < co. We obtain optimal (in a sense) bounds for A,, = |Eh(Z,)—Eh(N)|,
where N is a standard normal random variable. Namely, we show that A,, = O(nil/ 2)7
provided that the random variables &, are bounded by a constant, B2 > ¢on, where ¢ is
a positive constant, and that the strong mixing coefficients (r) satisfy >~ 2 | ra(r) < co.
The results extend to the case of random fields {£,,a € Zd}. To prove the results we
apply a new method.

1. Introduction

Let {£,,a € Z%} be arandom field of real random variables (1.v.’s) £, indexed
by points a € Z? of the standard lattice Z¢ C R? (R is the real line). For a subset
U C Z%, let Fy be the minimal o-algebra such that all r.v.’s &, with a € U are
measurable.

Introduce the distance

AU, V)=inf{lla—b||:a €U, be V}
between the subsets U,V C Z%, where |a|| = max{|a;| : 1 < i < d}, for a =

(a1,...,aq) € Z%. Write |U| = card U for the number of elements in the set U.
Henceforth we assume that for U,V C Z¢

sup {|P(AB) —P(A)P(B)|: A€ Fy, B € Fv} < f({U|+|V])a(d(U,V)) (1)
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with a nonnegative nondecreasing function f(n) of integer argument n > 2 and
nonnegative function «(r) of integer argument r > 1 such that a(r) — 0 as
r — 00.

If condition (1) is satisfied, we say that the random field {&,, a € Z¢} satisfies
the strong mixing condition.

In what follows, N is a standard normal r.v.

Write

Sy =Y &, By=ES), Zyv=S5v/By
acVv
for a fixed nonempty set V' C Z¢ with |V| < co and By > 0, and, for the functions
h:R— R,
Ay = [Eh(Zv) — ER(N)|.

Introduce the boundedness condition
P{l¢&| < M} =1 forallaeV (2)

with a non-random constant M > 0.
Write
o0
Ai=Y " a(r) and |[|h"| = sup |n"(z)].
r—1 z€R
Here and in what follows, A/, k", and h"’ denote the first, second, and third
derivative of the function h, respectively.

Our main result is the following Berry—Esseen (or Lyapunov) type bound
for Ay .

Theorem 1. Assume that a real random field {¢,,a € Z%}, d > 1, with
E¢, = 0 for all a € V, satisfies the strong mixing condition (1) with Ay < co and
boundedness condition (2). Let h be a thrice differentiable function such that
[IA""||oo < 0. Then

Ay < ClIh" |l f(IVNMEIV|BY?, (3)

where C' = C(d, \g) is a positive finite factor depending only on the dimension d
and \g.

Bound (3) is optimal in the sense that for dependent fields (with an infinite
range of dependence) it provides convergence rates in the CLT of the same order
as in the case of i.i.d. summands with finite third absolute moment, i.e., in the
special case (sup,, f(n) < oo in the definition of condition (1) and B > ¢o|V|,
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where ¢p is a positive constant), the obtained upper bound of Ay is of order
o(Vv|~12).

Note that the stationarity of an approached random field is not requested.

In the case d =1 one can use in (3) f =1 and V = {1,...,n} with |V| =n.
Note that the strong mixing condition (1) for d = 1 is not the same as the strong
mixing condition introduced by ROSENBLATT [26] between “the past” and “the
future” (because one can use the order on the real line).

Write cov(€,n) = E&n—EEEn for real r.v.’s £ and .

Now we present an analogous version of Theorem 1, when the mixing coeffi-
cients are defined as follows: for n € N, k, 1 € NU{o0o},

g (n) = sup{|P(AB) — P(A)P(B)| : A € Fy, B € Fy,
UV cZ, U <k, |V|<I, dU,V) >n},

where N ={1,2,...}.
Denote

o0
Ag = Z rzd_lozzﬁoo(r),
r=1

where ay o0 (n) = sup; ag, 1 (n).
The following statement is valid.

Theorem 2. Assume that a real random field {¢,,a € Z%}, d > 1, with
E¢, =0 for all a € V, satisfies the condition Ay < oo and boundedness condition
(2). Let h be a thrice differentiable function such that ||h"'||s < co. Then

Ay < C||B" |l oMV |By?, (4)

where C' = C(d, Ay) is a positive finite factor depending only on the dimension d
and Ay.

There is a rich literature to normal approximations of sums of weekly depen-
dent sequences and fields, see papers [8], [14], [21], [24], [25], [28]-[36] and books
[7], [13], and [18]. On the central limit theorem for random fields, see papers [3],
[9], [19], [20], [22], [23]. About the mixing properties of random fields, see the
books [11] and [13]. Equivalent mixing conditions for stationary random fields
have been discussed in [4]. Let us discuss here only the results where bounds for
errors of approximations are of the same order (as the sample size increases) as in
the independent case. We omit the discussion where the dependence has a finite
range, like for m-dependent sequences and fields. We only note that the case of



256 Vidmantas Bentkus and Jonas Kazys Sunklodas

m-dependent random fields is well studied — see, for example, [5]-[7], [14], [16],
[27], [30]-[33] and others.

For the sequence {§;,i > 1} with E§ = 0, let {{;,¢ > 1} with E¢; = 0,
be a Gaussian sequence such that the covariance structures of {£;,i > 1} and
{G,i > 1} are identical, that is, E§;&4+; = E(;(i+,. As far as we are aware, UTEV
(1991) was the first to obtain the optimal bound

[EA(n™ %€+ + &) = EA(n™ (G + -+ Ga))[ = O(n™'?)

assuming a weak stationarity of {&;,7 > 1} and imposing some moment assump-
tions. His conditions include smootheness of h, as well as conditions on Ibrag-
imov’s (or uniformly strong) mixing. He used a nice and original modification
of the classical Bernstein method and that of convolutions. This is quite unex-
pected since Bernstein’s method (versus the Stein method [28], [29]) is commonly
considered as a method which cannot produce bounds even close to optimal ones.

Rio (1996) established an optimal bound for the Kolmogorov metric

sup [P{n~/%(& + -+ + &) <2} — @(2)] = O(n~'/?)

z€R
assuming that a strictly stationary sequence {;,7 > 1} satisfies the ¢-mixing con-
dition with >°°2, r¢(r) < oo and boundedness condition (2) for V = {1,...,n},
where ¢(r) stand for Ibragimov’s mixing coefficients, and ®(z) is the standard
normal distribution function. To prove this result, a modified version of the clas-
sical composition (or Lindeberg, Bergstrem, etc.) method was applied.

To prove Theorem 1, we extend a method introduced in BENTKUS (2003).
The idea is to consider an appropriate curve joining Zy and N in the space of
r.v.’s, and to apply the Newton—Leibnitz formula along the curve. Using this
method, no assumptions on independence or equidistribution are needed, how-
ever an additive structure of the object is desirable (e.g., Zy is a sum). The
method can be combined with the Fourier transform, i.e., it is applicable to char-
acteristic functions. Some examples in the context of the CLT in R? are provided
in BENTKUS (2003), the case of non-identically distributed summands is consid-
ered in BENTKUS (2004). The present paper is just a pilot study of dependent
sequences and fields. Our plan would be to obtain asymptotic (Edgeworth) ex-
pansions assuming sufficient smoothness, as well as to get Berry—Esseen bounds
for Kolmogorov’s and other metrics, each time looking for optimal combinations
of smoothness, moment (or boundedness) and dependency conditions such that
the bound is of the same order as in the independent case, as the sample size
increases. We hope that one cannot replace the strong mixing condition in The-
orem 1 by another (considerably) weaker dependency assumption.
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2. Auxiliary Lemmas and Proposition 4

Let G and ‘H be sub-o-algebras of the o-algebra F on a probability space
(Q, F,P). Denote the strong mixing coefficient between G and H by

(G, H) = sup{|P(AB) — P(A)P(B)|: A€ G, B € H}.

Lemma 3 (see [17, p. 388] and [15, p. 277]). Suppose that £ and n are
real r.v.’s which are G-and H-measurable, respectively, and that P{|¢| < C1} =
P{|n| < Cs} = 1. Then

|cov(&,n)| < 4C1Cra(G, H). (5)

Proposition 4. Let {A,,a € V} and {Y,,a € V} be two real random
fields, defined on a fixed nonempty set V with |V| < oo of standard lattice
Z% d > 1, such that Zy = Yogev Aa and Yy = > Y, are independent,
EZy = EYy = 0, EZ2 = EY2, E|A,* < oo and E|Y,|® < oo for all a € V.
Let the r.v. 7 be uniformly distributed in the interval [0,1] and independent of
all the other r.v.’s. Let h : R — R be a thrice differentiable function such that
[I7""||so < co. Introduce the following notation:

Xo = Xa(7) = Aasiny+ Yocosy, Ty =Tv(v) =) Xa,

acV
= Y X (1 =Xa),
beV:||b—all=r,
a-fixed, a€V
Tém) =Ty — Z t((lr)7 u((lr) — X(/lt((lr) _ EX(;t((lT)a
r=0

where 0 < v < 7/2. Here and in what follows, X and T, denote the first order
derivatives with respect to v of X, and Ty, respectively.
Then

Bh(Zy) ~ ER(Y) = [ " wryn @), (6)
and the following expansion is valid for IEIO“{/h’(TV):
ETLH (Ty) = $1 + - - - + e, (7)
where

2r
Si=2030 > EuDt@On" (T + 7)),

acV r>1 g=r+1

o= > Bu{HOn (T + 1),

acV r>1q>2r+1
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Sy = 30 SR (T + ril),

acV r>1
Sa=Y D EX,() (1 - )" (T8 + 7)),
acV r>1
S5 = E[X,Xa(l —7) — EX, X ] X2 (T") + 7X,),
acV
Do =—Y_ Y EX/t7) N RO (T + D).
acV r>1 q=0

PROOF. The fundamental theorem of integral calculus yields

/2
W(Zv) — h(Yy) = / TY ()W (T (7).

Here and in the sequel, we omit the argument y in which it appears. Consider
the integrand function TY,h'(Tv ).
The Taylor expansion yields

TUH (Tv) = > X00 (T + X,)
acV
= > XUW(TO) + X" (TV) + X2Bo (1 = )R (T + 7X,)], (8)
acV

where E; is the expectation taken with respect to the r.v. 7.
In what follows, the index a (a € V) is fixed.
Ezpansion of Xt'lXah”(TéO)).
We rewrite the term X;Xah”(TéO)) in such a way:

X! X 0" (T = uOn"(TO) + B (TINEX! X,,.

Note that 7™ = 7™ 4™ for all m = 0,1,2,... (T.°Y = Ty). We
shall use this fact without mentioning it in the sequel. Therefore, using the
Taylor expansion, we eliminate the r.v. t((ll) from the sum Téo) in the expression
u((lo)h”(TéO)). From the remaining sum T.", we eliminate the r.v. ¢ and so on,

until zero appears instead of Téo). Step by step we obtain that

WO (T0) = iOH'(0) + Y uPOER (IO 1) (9

r>1
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Now, adding and subtracting we pack away, one by one, the r.v.’s t,(f),
=Y. ... into the sum 7" up to the sum Ty in the term n'( ér)). Thus,

using the Taylor expansion, we get that for all r > 0

WITE) = B(Ty) = Y OB (T + 7). (10)
q=0

It follows from (9) and (10) with » = 0 that

X(;Xah”(TéO)) _ uz(zo)h”(o) + Z ugo)tg’”)ETh”’(Ty) + Ttl(lr))

r>1

+ W'(TV)EX. X, — X B 2" (T + 71X, )EX! X,.  (11)

Ezpansion of Xl’lh’(TéO)).
Further, using the Taylor expansion, we eliminate the r.v. t((ll) from the sum

Téo) in the expression X!h' (Téo)). From the remaining sum Tél)

, we eliminate
the r.v. t,(f) and so on, until zero appears instead of Téo). Step by step we obtain

that

Xo (T0) = Xoh'(0) + ) Xotln" (1)

r>1
+ 3 XL(D)E (1 — )R (T + D). (12)

r>1
Next we rewrite the term Xl'ltt(f)h”( é”) in (12) (for all > 1) in such a way:
XotW'(T7) = uDB"(TS7) + b (T)EXGH).

(T)h//

In the sum 7" which appears in the term ug (Ty)), we increase a “hole”

up to the “hole” in the sum Té%) using the Taylor expansion. Later on, we

t((l2r+1) : t22r+2)

eliminate, one by one, the r.v.’s ,..., from the sum Tézr) until zero

appears instead of T, Then, using (10) we get that for all » > 1

2r
XU I0) = W0+ Y HVE R (I )
g=r+1
£ 3D U NI + i)

q>2r+1

+ BTy EX () = > OB (T + rtD)EX ). (13)

q=0
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Substituting (13) into (12) we obtain that

2r
XO(TO) = XOR'(0) + > ulPw(0) + >0 > ul OB AT + ()
r>1 r>1qg=r+1
LY IR AT + )
r>1q>2r+1
+B(Tv) Y EXt0 = Zt DE, " (T 4 7t VEX ()
r>1 r>1qg=0
+ XL E)E (1 — D) (T + 7t (D). (14)
r>1

It follows from (8), (14), and (11) that

Ty 0 (Ty) = W (0)Ty, + h"(0) > ) "l

acV r>0

+> 3 i uDEDE R (TD  71(0)

a€V r>1q=r+1

+3 30> ulHOE AT + D) + B (Ty )ETY, Ty
ac€V r>1q>2r+1

-> ZZt E-h"(TD + O EX] ("

a€V r>1q=0

+ ST XLED)E (1 - R (T + 1t))

acV r>1

+ 3 Y OB AT 4 7t00) = > XGER (T 4+ 7X0)EX, X,
acV r>1 acV

+ > XLX2E, (1 — )R (T + 7X,). (15)
acV

Since the r.v. Zy is independent of Yy, EZy = EYy = 0 and EZZ = EY{,
one has that
ET, =0 and ETLTy = 0. (16)

From (15) and (16) it follows the proof of the basic identity (6)—(7). O
In what follows, we denote the centered r.v. as E: & —E¢.

Lemma 5. Let {Y,,a € V} be independent r.v.’s and {Y,,a € V} be in-
dependent of the random field {A,,a € V}, EA, = EY, = 0, E|A4,|> < oo and
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E|Y,|?> < oo for all a € V, where V is a fixed nonempty set V with |V| < oo of
standard lattice Zd, d > 1. Denote

Xo=pAa+q¥e, = > X, (t0=X,), o) =Xt)-EXt]

a
beV:||b—all=r,
a-fixed, a€V

where p = sinvy, ¢ = cos~v, 0 < v < w/2. Here and in what follows, X! denote
the first order derivative with respect to v of X,.

The following connections are valid:

If a # b, then

X} X7 = p*qAa A} + 2p° Aa Yy + P ALY
— p°Ya Af — 20 qYa WYy — pgPYa Yy (17)

Ifa#b, a # ¢, b# c, then

XL Xp X, = p2qAcApAc + p@* Ao (AYe + Yo Al) + P AYA Y
— Y Ay A, — p2qYu (AY. + Yy AL) — p@P Y VY (18)

If a # b, then

ulO X, = pPqA2 Ay — PPqY2 Ay + pPA2Y, — pY2Y,

a

+ p(q2 - p2)AaYaAb + q(q2 - p2)AaYaYb- (19)
For allr > 1:
uD=pg > AA+dA Y. Y
beV:||b—all=r, beV:|b—all=r,
a-fixed, acV a-fixed, a€V
—pYa > Ay-piYa > Y, (20)
beV:||b—all=r, beV:||b—all=r,
a-fixed, a€V a-fixed, a€V
Xt =pgda > A+dPA. D> Y
beV:||b—all=r, beV:||b—all=r,
a-fixed, ac€V a-fixed, a€V
—pYa > A—pgYa > Y (21)
beV:||b—all=r, beV:||b—all=r,
a-fixed, a€V a-fixed, a€V

1
EX,X,) < 5[BA A, a#D, (22)
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/ 1 2 2
|EXaXa| S §|]E‘Aa - ]E‘Ya |’ (23)

1 1
E|X!|X2 < 51E|Aa|3 + E|A,|EY? + E|Y,|EAZ + 5IE|Ya|3. (24)

The proof of Lemma 5 is elementary, so we omit it.

Lemma 6. Let {{,,a € Z}, d > 1, be a real random field satisfying con-
dition (1), A = 3Zpcza\ qop @([[bl]) < 00, E&a = 0 and P{|&,| < M} =1 for all
a € V. Then

By < (1+4f2)A)M?V|. (25)

The proof of Lemma 6 follows from (5) and (1).

3. Proof of Theorem 1

To estimate the difference Eh(Zy) — Eh(N), we use Proposition 4. Let A,
and Y, in Proposition 4 be A, = &,/Bv, Y, = na/\/m where {n,,a € V}
are independent standard normal r.v.’s, and {n,,a € V'} are independent of the
random field {&,,a € V}. It is assumed that By > 0. It is evident that >
Y, =Yy is also a standard normal r.v.

First of all note that, if Y, ~ N(0, &) (i.e., if the r.v. Y, is normally

acV

Vi
distributed with EY, = 0 and EY,? = ‘71‘), then it is easy to see that
E|Y,| = Cy — E|Y,[* = Cy— 26
| a| - 1|V|1/25 | a| - 3|V|3/25 ( )

where C; = /2/m, C3 = /8/m.
If 7 ~ U[0,1] (i-e., the r.v. 7 is uniformly distributed in the interval [0, 1]),
then

1
Ell-r|=3. (27)
Moreover, for any fixed a € Z¢, d > 1,
{beZ: ||a—b| =7} <2d(2r +1)%1 (28)

We shall use relations (26)—(28) without mentioning them in the sequel.
We now estimate the terms on the right-hand side of (7).

Since for all be V .

|V|—1/2’ (29)

M
E| X < — +C4
By
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one has that, for all a € V and ¢ > 0,

M 1
EltD| < 2d(2¢ + 1) | — +C;——— | . 30
[ta?| < 2d(2q +1) Bv+ e (30)

Using (22), (5) from Lemma 3, and (1), we obtain that, for all « € V' and
r>1,

2
EXU0] < 4df(2) 3o (2r + 1) a(r). (31)
14

From (31) and (30) it follows that

1Z6] < 1B [loo D D IEX 21D B[]
q=0

acV r>1

B VM3
< ||W"|| 0 16d%12771 f(2) (1+c1 v )' |

2d—1
V20 B2 Zr alr).  (32)
r>1

Since the r.v. 7 is independent of all the other r.v.’s, P{|§,| < M} =1 for all
a € V, using (24), (29), and (23) we obtain

1S5 < 10" loe D (BIXGIXZE[L — 7] + [EX; Xo|E[Xa)

acV
3 By B2 1 1 B3
< | “l2+c 74 “c lon) _2Bv
—'"[4*1WWM4+WMF+(21+43>WWMﬁ
Vi
X g (33)
174

We now estimate |X4]. We get

Sd<D0d D EXCXFA - nh(T + ()]

a€V r>21beV:||b—all=r

N Y EXX X — )R (T + 7). (34)

a€V r>1beV:||b—all=r,
ceV:|le—all=r,
#c

Using the expression of X/ X? from (17), taking into account that h”’(TéT) +

Tt,(f)) does not contain Y,, and {Y,,a € V} are independent of the random field
{A,,a € V} and the r.v. 7, we obtain that, for all a,b € V : ||b—al =7 > 1,

1
IEX! X2(1 — )b (T\") + 7t{)| < §|IEAGA§(1 — D" (T 4 7)) (35)
+EALAY (1 — 7R (T + 7t + |EA Y2 (1 — 1)A" (T) + 7).
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Note that
T+ = Y Xe+r Y X

ceV:lle—al|>r ceV:|lc—all=r

Denote the random vector ) and vector y as
Y=(nY,ceV:|c—a|2>27r), y=(tyec€V:]|c—al>r).

In the sequel, P¢ is the distribution of a random vector £. Denote

siy=" Y. 1=V|- > oL

ceVifle—al>r cEVifle—al<r—1

Then, applying (5) of Lemma 3 and (1), we get that, for all a,b € V :
b—all=r>1,

|EA,AZ(1 — 1) (T 4 (7))

/()+ (1—t)EAaA§h'“<sim< S A+t > Ac>
Rs(r 1

ceV:lle—al|>r ceV:|lc—all=r

+ cosvy < Z Yo+ 1 Z yc> > Py (dy)

ceV:i|lc—al|>r ceV:|c—al|=r

3
< 4||h”’||oog—‘3/f(5(7“) + 1)@(?‘)/R 1 —t[Py(dy)

s(r)+1

3
— ||h///||oo2]g—3f(s(r) + Da(r). (36)
1%

Similarly to (36), we get that, for all a,b € V : |[b—al| =7 > 1,
IEA,ApYy(1 — )W (T 4 1))

M?
< A" o Fs() + D) [ el = Py ()
v RS(T)+1

M2

_ "

(s(r) + D)a(r), (37)

[EAY (1= )R (TS + 7t)))|

M
< 4 g 50+ D) [ 1= ePy()
M

— h/l/ 002

f(s(r) + Da(r). (38)
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Substituting (36)—(38) into (35), we get that for alla,be V : ||b—al] =7 >1

IEX,XZ(1— )R (T + 7))

B B2 M3
S Hh///”Oo <1 +201 1% )

T e ) gl e0) ¢ el (3)

It only remains to estimate an analogous term in (34), where instead of X/ X?
we take X! X X.. Using the expression of X)X}, X, from (18), taking into account
that h”’(T(T) + Tt(r)) does not contain Yy, and {Y,a € V} are independent of
the random field {A,,a € V} and the r.v. 7, we obtain in the same way that, for
all a,b,ceV:|b—a|=r>1,|lc—a||l=r>1,b#c,

IEX. X, X (1 — )R (T + 7t0)| < leAaAbAc(l — )T + 7))

4 3 EAAY.( = D (T 4 710)| + 5 [BAY A1 — )" (T 4 70|
+ [EA Y Y. (1 — 1R (T + 7))

M3
< 2||h" ooz f(s(r) + Da(r)E[1 — 7|
BV
M2
+ 200" oo - f (s(r) + Dau(r) E[YC[E[1 — 7]
14
M2
+2/0" oo - f (s(r) + Dau(r) E[Y[E[L — 7]
14
" M
+ 4k IImB—Vf(S(T) + Da(r)E[Y,|E[YC[E[1 — 7|

2 3
+2C%|VJTM2) ]gg f(s(r) + Da(r). (40)

By
<M |lse | 1 +2C
< 1071 (14 20

Substituting (39) and (40) into (34), we have

_ By B3
< " 292(d—1) 2 1%
|V|M
1V Y Dar). (41)
|4

r>1

In the same manner as (35) and (40), using (19), (5) of Lemma 3, and (1),
we obtain that, for all a,b e V i ||b—al =7 > 1,

Eul®) Xyh" (T + ()|
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1 - 1 -
<3 [EA, AZR" (T + 7t()| + 5 [EV, A2R"(T) + 7))
By \ M3
n
< 1t (14 Cr s ) G 50) + o), (42)
Therefore

S < 0D Y EuDXh"(T + 7t)))

a€V rz1 beV:||b—al|=r

B V|M3
< Hhm||oo4 <1+Cl |4 > | |

VIR ) BT S fsr+Dar) Y1
r>1

beV:||b—al|=r

3
< Hh///”OOSd?)d—l (1 +Cl BV ) |V|M

TSR (141D DO

r>1

We now estimate |X3|. Analogously, using (20), we get that, for all a € V,
r>1,q>2r+1,

Eul)tOR" (T 4 740)|

1
<5 D

ceV:||c—all=¢q

1
ts D

ceV:l|c—all=¢q

Ehm(Téq) 4 Tt((IQ))AC Z A/aA\b
beV:||b—all=r

(44)

Eh///(Téq)_i_Tt((IQ))Yc Z A/aA\b .
beV:|b—all=r

Note that

> A

M? _
S 4dB—2(2T+ 1)d 1.
beV:||b—all=r

\%4

Other than the previous notation, in the sequel
YV=(r,Ye,e€eV:|e—a|l >q), y=t,ye,e€V:|e—al|>q).

Denote

s(t) = Z 1.

beV:||b—al=r

Then, applying (5) and (1) we have, for alla € V, r > 1, ¢ > 2r + 1,

Ehm(Téq) 4 Tth))Ac Z A/aA\b
beV:||b—al|l=r
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. " .
= ’ /S(q)+1 Eh (51n7( Z A, +t Z Ae>

ecV:|le—al|>q eeV:|le—al|=¢q
+cosv< Yooyttt Y ye>>Ac
eeV:|e—al|l>q eeV:|le—all=¢

x> A, AyPy(dy)

bEV'Hb—aH—T

< Hh’”l\oolﬁng F(s(@) + st @r + 1) alg ), (45)

’ Ehm(Téq) 4 Ttl(IQ))YC Z A/aA\b
beV:||b—all=r

< Hh”’l\oolﬁng F(sa) + s(t))(2r + 1) alg — r)EY.|

2
< I 1640 (7 F(s(a) + ()2 + ) alg =) (40

Therefore, from (44)—(46) we get that

Bl <> > >

acV r>1q>2r+1

B VM3
< [H" 16490 <1+01 v )' I Y o) el ).

Eu(T h"’(T(q) + 7-t(q))|

1/2
|V| / M r>1 q>2r+1
Since

> 2 A Valg—r) <4t 3T ), (47)

r>1 q>2r+1 r>1

one has

_ B VM3

22| < ||7"|| 00164218971 <1+01|V|1/V2M) V] FQVD D ralr). (48)

r>1

It only remains now to estimate |X|. Recalling the definition of the r.v. u,(f),

we see that the largest "hole” of the two ones in the term Eu(r) (q)h”’(T,gq) +Tt,(1q))
is between the r.v.’s t") and X!. Applying (21) we get that, for alla € V, r > 1,
r+1<q<2r

’IEX t(T (g )h”/(T(q) + Tt(q))‘

- Eh”’(T(q) + Tt( ))A Z A, Z Ap

2
ceV:|c—all=q beV:||b—al|l=r
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1
+ 5 Eh”/(Téq) 4 Tt((IQ))Aa Z Y. Z Ay
ceV:lc—all=q  beV:||b—a|=r

3
< W o8 (20 + 1) (20 4+ 1) T F(V a(r)
14

Y Y

ceV:lc—all=¢q

_ M2
+ |2 loodd(2r + 1)~ 5 F(IV D (r)E
\%4

B M3
< [P )| 0821507 <1+01 v )

VM B—‘B/f(|V|)r2(d*1)a(r). (49)
Using (30) and (31), we get that, forallae V,r>1,r+1< ¢ < 2r,

Bt 0" (TS + rtOVEX 0] < ||| Bt | JEX 25|
By ) M3

V20 B—‘g,/f(Q)TQ(dfl)Oé(T)- (50)

< Hh///||008d215d71 (1 4 Cl

From (49) and (50) it follows the estimate of |¥]:

B VM3
151 < IR |00 16d2159 (1+c1 4 )"

vz ) m T VD 2 el (51

r>1

Substituting (51), (48), (43), (41), (33), and (32) into (7) and using (6), we
have (3).
Theorem 1 is proved.

The proof of Theorem 2 is analogous to that of Theorem 1, so we omit it.
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