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Gröbner bases for complete ℓ-wide families
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Abstract. Let n > 0, k, ℓ be integers with 0 ≤ ℓ − 1 ≤ k ≤ n, and consider the

complete ℓ-wide family

Fk,ℓ = {F ⊆ [n] : k − ℓ < |F | ≤ k}.

We describe (reduced) Gröbner bases of the ideal of polynomials, over an arbitrary

field F, which vanish on the characteristic vectors of the elements of Fk,ℓ.

As an application, we obtain results on certain inclusion matrices related to Fk,ℓ.

We show that if 0 ≤ m ≤ min(k, n − k + ℓ − 1) then
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!!
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n

i

!
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where F is an arbitrary field. We prove also a special case of a conjecture of Frankl related

to the determination of the maximum number of subsets of [n] with no shattered set of

size t and with no chain of size ℓ + 1. The paper extends the results obtained for the

case of uniform families (the case ℓ = 1) in [11].
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1. Introduction

Throughout the paper n, ℓ are positive integers, k is a nonnegative integer

such that 0 ≤ ℓ − 1 ≤ k ≤ n.

Let [n] stand for the set {1, 2, . . . , n}. The family of all subsets of [n] is

denoted by 2[n]. For an integer 0 ≤ d ≤ n we denote by
(

[n]
d

)

the family of all d

element subsets of [n], and
(

[n]
≤d

)

=
(

[n]
0

)

∪ · · · ∪
(

[n]
d

)

the subsets of size at most d.

Let Fk,ℓ denote the complete ℓ-wide family

Fk,ℓ = {F ⊆ [n] : k − ℓ < |F | ≤ k}.

A set family F ⊆ 2[n] is ℓ-wide if F ⊆ Fk,ℓ for a suitable k. Following [2], we

recall the notion of order shattering.

A set

T = {s1 < s2 < · · · < sd} ⊆ [n]

is order shattered by the family F ⊆ 2[n] if the following holds: in the case T = ∅

the family F has to contain a set; when |T | > 0, then there are 2d sets in F that

can be divided into two families F0 and F1 such that sd /∈ F for all F ∈ F0,

sd ∈ F for all F ∈ F1, and both F0, F1 order shatter the set T \{sd}, furthermore

Q ∩ F0 = Q ∩ F1 holds for Q = {sd + 1, sd + 2, . . . , n} and all F0 ∈ F0, F1 ∈ F1.

Let

osh (F) = {T ⊆ [n] : F order shatters T }.

Notice that osh (F) is a down-set, i.e., if A ∈ osh(F) and B ⊆ A, then B ∈ osh(F).

In [2] it was established that | osh (F) | = |F| for every F , and for 0 ≤ d ≤ n/2

we have

osh

((

[n]

d

))

=
{

{s1 < · · · < sj} ⊂ [n] : j ≤ d and si ≥ 2i for 1 ≤ i ≤ j
}

. (2)

It is immediate that for a nonempty family F ⊆ 2[n] we have

osh (co(F)) = osh (F) , (3)

where

co(F) = {[n] \ F : F ∈ F}.

Let F be a field. We denote by F[x1, . . . , xn] the ring of polynomials in

variables x1, . . . , xn over F. We write F[x1, . . . , xn]≤s for the vector space of all

polynomials over F with degree at most s.



Gröbner bases for complete ℓ-wide families 273

For a subset F ⊆ [n] we write xF =
∏

j∈F xj , and xF =
∏

j∈F (xj − 1). In

particular, x∅ = x∅ = 1.

Let vF ∈ {0, 1}n denote the characteristic vector of a set F ⊆ [n]. For a

family of subsets F ⊆ 2[n], let V (F) = {vF : F ∈ F} ⊆ {0, 1}n ⊆ F
n. A

polynomial f ∈ S = F[x1, . . . , xn] can be considered as a function from V (F) to

F in the straightforward way.

For the study of polynomial functions on V (F), it is useful to consider the

ideal I(V (F)):

I(V (F)) := {f ∈ S : f(v) = 0 whenever v ∈ V (F)}. (4)

In fact, substitution gives rise to an F-homomorphism from S to the ring of

F-valued functions on V (F). This map is seen to be surjective by an easy in-

terpolation argument, and the kernel is exactly I(V (F)). This way one can

identify S/I(V (F)) with the space of F-valued functions on V (F). In particular,

dimF S/I(V (F)) = |F|.

Consider a family F of subsets of [n]. We say that F shatters T if

{E ∩ T : E ∈ F} = 2T . (5)

Then define

sh(F) = {T ⊆ [n] : F shatters T }. (6)

From the definition we see that osh(F) ⊆ sh(F).

For example, let n = 4 and F = {∅, {1, 2}, {1, 3}, {2, 3}}. Simple applications

of the definitions give

sh(F) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}}, and

osh(F) = {∅, {2}, {3}, {2, 3}}.

Recall that a chain of size p in 2[n] is a sequence A1, . . . , Ap of subsets of [n]

with A1 ⊂ · · · ⊂ Ap.

For families F ,G ⊆ 2[n] the inclusion matrix I(F ,G) is a (0,1) matrix of

size |F| × |G| whose rows and columns are indexed by the elements of F and G,

respectively. The entry at position (F, G) is 1 if G ⊆ F and 0 otherwise (F ∈ F ,

G ∈ G).

Inclusion matrices and their ranks are quite useful in the combinatorics of

finite set families. In Chapter 7 of [4] there is an excellent treatment of this subject

which highlights the importance of inclusion matrices I(F ,G) with G =
(

[n]
m

)

and

G =
(

[n]
≤m

)

. By extending the rank formula available for uniform families (i.e. the

special case ℓ = 1) we prove the following result.
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Theorem 1.1. Let n > 0, ℓ, k, m be integers. Let 0 ≤ ℓ − 1 ≤ k ≤ n, and

0 ≤ m ≤ min(k, n − k + ℓ − 1). Let F be an arbitrary field. Then we have

rankF I

(

Fk,ℓ,

(

[n]

≤ m

))

=

m
∑

i=max(0,m−ℓ+1)

(

n

i

)

. (7)

As a surprising application, we prove, using the notion of order-shattering,

the following special case of a conjecture by Frankl, [8]: Let g(n, t, d) denote the

maximum number of subsets of [n] with no shattered set of size t and no chain of

size d + 1. In [8] Frankl proposed the following conjecture.

Conjecture 1 (Frankl [8]). Assume that 2t ≤ n + d. Then

g(n, t, d) ≤
t−1
∑

i=max(0,t−d)

(

n

i

)

. (8)

Clearly, if F is an ℓ-wide family of sets, then F does not contain any chain

of size ℓ + 1. We prove the following special case of this conjecture.

Theorem 1.2. Suppose that 2t ≤ n+ ℓ and let F ⊆ 2[n] be an ℓ-wide family

with no shattered set of size t. Then

|F| ≤
t−1
∑

i=max(0,t−ℓ)

(

n

i

)

.

In Section 2 we collected preliminaries about Gröbner bases and polynomials.

In Section 3 we state our main result. We give an explicit description of the

reduced Gröbner basis and the initial ideals for the ideals I(V (Fk,ℓ)) (Theorem 3.1

and its Corollaries). Our results extend those of [11] obtained for the case ℓ = 1.

The Gröbner bases turn out to be largely independent of the monomial order and

the field. In [6] Bernasconi and Egidi pointed out the importance of knowing

Gröbner bases of I(V (F)), where F is a symmetric set family. Our result gives

this information for the case of complete ℓ-wide families.

In Section 4 we generalize (2) and determine the sets order shattered by

ℓ-wide families. Then, building on this result, in Section 5 we prove our main

results. In Section 6 we determine the Hilbert function of S/I(V (Fk,ℓ)) (see

the next section for the definition), and obtain a special case of a conjecture by

Frankl, [8].
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2. Preliminaries

2.1. Gröbner bases and standard monomials. We recall now some basic

facts concerning Gröbner bases in polynomial rings. A total order ≺ on the

monomials composed from variables x1, x2, . . . , xm is a term order, if 1 is the

minimal element of ≺, and uw ≺ vw holds for any monomials u, v, w with u ≺ v.

Two important term orders are the lexicographic order ≺l and the deglex order

≺dl. We have

xi1
1 xi2

2 · · ·xim
m ≺l xj1

1 xj2
2 · · ·xjm

m

iff ik < jk holds for the smallest index k such that ik 6= jk. As for deglex, we

have u ≺dl v iff either deg u < deg v, or deg u = deg v, and u ≺l v.

The leading monomial lm(f) of a nonzero polynomial f ∈ S is the largest

(with respect to ≺) monomial which appears with nonzero coefficient in f when

expressed as an F-linear combination of monomials.

Let I be an ideal of S. A finite subset G ⊆ I is a Gröbner basis of I if for

every f ∈ I there exists a g ∈ G such that lm(g) divides lm(f). Using that ≺ is a

well founded order, it follows that G is actually a basis of I, i.e. G generates I as

an ideal of S. It is known (cf. [7, Chapter 1, Corollary 3.12] or [1, Corollary 1.6.5,

Theorem 1.9.1]) that every nonzero ideal I of S has a Gröbner basis with respect

to ≺.

A monomial w ∈ S is called a standard monomial for I if it is not a leading

monomial of any f ∈ I. Let sm(≺, I, F) stand for the set of all standard monomials

of I with respect to the term-order ≺ over F. It follows from the definition and

existence of Gröbner bases (see [7, Chapter 1, Section 4]) that for a nonzero ideal

I the set sm(≺, I, F) is a basis of the F-vector-space S/I. In fact, every g ∈ S

can be written uniquely as g = h + f where f ∈ I and h is a unique F-linear

combination of monomials from sm(≺, I, F). If F ⊆ 2[n], then x2
i −xi ∈ I(V (F)),

hence x2
i is a leading term for I(V (F)). It follows that the standard monomials

for this ideal are all square-free, i.e. of form xG for G ⊆ [n]. We put

Sm(≺,F , F) = {G ⊆ [n] : xG ∈ sm(≺, I(V (F)), F)} ⊆ 2[n].

It is immediate that Sm(≺,F , F) is a downward closed set system. By the discus-

sion after (4) the standard monomials for I(V (F)) form a basis of the functions

from V (F) to F, hence

| Sm(≺,F , F)| = |F|. (9)

In Theorem 4.3 of [2] the following was proved
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Theorem 2.1. Let F ⊆ 2[n] be a nonempty family and let F be a field.

Then M = {xF : F ∈ osh (F)} is the set of standard monomials with respect to

the lexicographic order ≺l of the ideal of all polynomials f ∈ F[x1, . . . , xn] which

vanish on V (F) ⊆ F
n.

A Gröbner basis {f1, . . . , fm} of I is reduced if the coefficient of lm(fi) is 1,

and no nonzero monomial in fi is divisible by any lm(fj), j 6= i. By a theorem of

Buchberger ([1, Theorem 1.8.7]), for a fixed term order ≺, any nonzero ideal of S

has a unique reduced Gröbner basis.

The initial ideal ini(I) of an ideal I is the ideal in S generated by the mono-

mials {lm(f) : f ∈ I}.

Now we introduce the notion of reduction, which is ubiquitous in the com-

putational applications of Gröbner bases. Let G be a set of polynomials in

F[x1, . . . , xn] and let f ∈ F[x1, . . . , xn] be a fixed polynomial. Let ≺ be an arbi-

trary term-order. We can reduce f by the set G with respect to ≺. This gives a

new polynomial h ∈ F[x1, . . . , xn].

Here reduction means that we possibly repeatedly replace monomials in f

by smaller ones (with respect to ≺) as follows: if w is a monomial occurring in f

and lm(g) divides w for some g ∈ G (i.e. w = lm(g)u for some monomial u), then

we replace w in f with u(lm(g) − g). Clearly the monomials in u(lm(g) − g) are

≺-smaller than w.

Later we shall use the following characterization of Gröbner bases (see The-

orem 3.10 in Chapter 1 of [7], or Theorem 1.9.1 in [1]):

Theorem 2.2. A nonempty finite set G of polynomials is a Gröbner basis

of the ideal I generated by G iff every f ∈ I reduces to zero with respect to G.

Let I be an ideal of S = F[x1, . . . , xn]. The Hilbert function of the algebra

S/I is the sequence hS/I(0), hS/I(1), . . . . Here hS/I(m) is the dimension over F

of the quotient F[x1, . . . , xn]≤m/(I ∩ F[x1, . . . , xn]≤m) (see [5, Section 9.3]).

In the case when I = I(V (F)) for some set system F ⊆ 2[n], the number

hF (m) := hS/I(m) is the dimension of the space of functions from V (F) to F

which can be represented as polynomials of degree at most m.

In the combinatorial literature hF (m) is usually given in terms of inclusion

matrices. It is a simple matter to verify that

hF (m) = rankF I

(

F ,

(

[n]

≤ m

))

. (10)

On the other hand,

hF (m) =

∣

∣

∣

∣

Sm(≺,F , F) ∩

(

[n]

≤ m

)
∣

∣

∣

∣

(11)
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where ≺ is an arbitrary degree-compatible term order, for instance deglex. This

holds because any function from V (F) to F can be G-reduced to a linear combina-

tion of standard monomials, where G is a Gröbner basis of I(V (F)). Moreover, in

the presence of a degree-compatible order, reduction cannot increase the degree.

In Theorem 6.2, and Corollaries 5.7 and 4.2 we provide also the Hilbert

function and the standard monomials for the ideals I(V (Fk,ℓ)).

2.2. The polynomials fH,k. We introduce a family of polynomials with integral

coefficients. These polynomials will be the “nontrivial” elements of the Gröbner

bases of ℓ-wide families.

Let ℓ, t be positive integers. We define H(t, ℓ) as the set of those subsets

H = {s1 < · · · < st} of [n] for which t is the smallest index j with sj < 2j− ℓ+1.

We remark that H(t, ℓ) = ∅ for t < ℓ. Indeed, if H ∈ H(t, ℓ), then t ≤ st <

2t − ℓ + 1, and ℓ − 1 < t. Also if t > (n + ℓ)/2, then H(t, ℓ) = ∅ again, because

then st−1 ≥ 2(t − 1) − ℓ + 1 > n − 1 would imply that st > n.

The elements of H(t, ℓ) are t-subsets of [n], and we have H ∈ H(t, ℓ) iff

s1 ≥ 3 − ℓ, s2 ≥ 5 − ℓ, . . . , st−1 ≥ 2t − ℓ − 1 and st < 2t − ℓ + 1. It follows that

st = 2t − ℓ (in the case t = 1 we have ℓ = 1 as well). For t > 1 we have also

st−1 = 2t − ℓ − 1.

As examples, for n large enough, we have H(2, 2) = {{1, 2}}, H(3, 2) =

{{1, 3, 4}, {2, 3, 4}}, and H(4, 2) = {{1, 3, 5, 6}, {1, 4, 5, 6}, {2, 3, 5, 6}, {2, 4, 5, 6},

{3, 4, 5, 6}}.

For a subset J ⊆ [n] and an integer 0 ≤ i ≤ |J | we denote by σJ,i the i-th

elementary symmetric polynomial of the variables xj , j ∈ J :

σJ,i :=
∑

T⊆J,|T |=i

xT ∈ F[x1, . . . , xn].

In particular, σJ,0 = 1.

Now let 0 < ℓ ≤ t < (n + ℓ)/2, 0 ≤ k ≤ n and H ∈ H(t, ℓ). Then put

H ′ = H ∪ {2t− ℓ + 1, 2t− ℓ + 2, . . . , n}.

We write

fH,k = fH,k(x1, . . . , xn) :=

t
∑

j=0

(−1)t−j

(

k − j

t − j

)

σH′,j .

Note that fH,k depends on t and ℓ through H . Moreover, H uniquely determines

t and ℓ. Specifically, we have f{1},k = x1 + x2 + · · · + xn − k, and

f{2,3},k = σU,2 − (k − 1)σU,1 +

(

k

2

)

,

where U = {2, 3, . . . , n}.
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3. The main results

Recall that we have n > 0, and 0 ≤ ℓ − 1 ≤ k ≤ n. We denote by I(k, ℓ) the

ideal I(V (Fk,ℓ)). The main contribution of the paper is an explicit description of

the reduced Gröbner bases for the ideals I(k, ℓ). First we state the following

Theorem 3.1. Let n > 0, k and ℓ be integers such that 0 < ℓ − 1 ≤ k ≤ n.

Let F be a field, and ≺ be an arbitrary term order on the monomials of S =

F[x1, . . . , xn] for which xn ≺ xn−1 ≺ · · · ≺ x1. If k < (n+ ℓ)/2, then the following

set G of polynomials is a Gröbner basis with respect to ≺ of the ideal I(k, ℓ) of S:

G = {x2
1 − x1, . . . , x

2
n − xn} ∪

{

xJ : J ∈

(

[n]

k + 1

)}

∪ {fH,k : H ∈ H(t, ℓ) for some t, ℓ ≤ t ≤ k}.

Similarly, if k ≥ (n + ℓ)/2, then the set G∗ below is a Gröbner basis of I(k, ℓ):

G∗ = {x2
1 − x1, . . . , x

2
n − xn} ∪

{

xJ : J ∈

(

[n]

n − (k − ℓ)

)}

∪ {fH,k : H ∈ H(t, ℓ) for some t, ℓ ≤ t ≤ n − (k − ℓ + 1)}.

Theorem 3.1 allows us to describe the initial ideals and reduced Gröbner ba-

ses of the ideals I(k, ℓ). Let n, F and ≺ be as in Theorem 3.1. Uniform families

(i.e. ℓ = 1) have been treated in [11]. Here we focus on the case ℓ > 1. This

differs slightly from the uniform case because there x1 is a leading monomial.

For 0 < ℓ ≤ k + 1 let B(k, ℓ) denote the collection of subsets U ⊆ [n], where

U = {u1 < · · · < uk+1} and uj ≥ 2j − ℓ + 1 holds for j = 1, . . . , k.

For example, if n = 5, k = 2 and ℓ = 2, then

B(2, 2) = {{1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5}, {3, 4, 5}}.

Corollary 3.2. Let 1 < ℓ ≤ k + 1. Assume that k < (n + ℓ)/2. Then

{x2
i : i = 1, . . . , n} ∪ {xU : U ∈ B(k, ℓ)}

∪ {xH : H ∈ H(t, ℓ) for some t, ℓ ≤ t ≤ k}

minimally generates ini(I(k, ℓ)).

Next assume that k ≥ (n + ℓ)/2. Then

{x2
i : i = 1, . . . , n} ∪ {xU : U ∈ B(n − k + ℓ − 1, ℓ)}

∪ {xH : H ∈ H(t, ℓ) for some t, ℓ ≤ t ≤ n − k + ℓ − 1}

minimally generates ini(I(k, ℓ)).
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As an example, if n = 5, k = 2 and ℓ = 2, then k < (n + ℓ)/2, thus

{x2
i : i = 1, . . . , 5} ∪ {xU : U ∈ B(2, 2)} ∪ {xH : H ∈ H(2, 2)}

minimally generates ini(I(2, 2)).

It turns out that a subset of G (G∗ resp.) is the reduced Gröbner basis of

I(k, ℓ).

Corollary 3.3. Let n, F, and ≺ as in Theorem 3.1, and 1 < ℓ ≤ k + 1.

Assume that k < (n + ℓ)/2. Then the following set is the reduced Gröbner basis

with respect to ≺ of the ideal I(k, ℓ):

{x2
1 − x1, . . . , x

2
n − xn} ∪ {xJ : J ∈ B(k, ℓ)}

∪ {fH,k : H ∈ H(t, ℓ) for some t, ℓ ≤ t ≤ k}.

In the case k ≥ (n + ℓ)/2 the following set is the reduced Gröbner basis with

respect to ≺ of the ideal I(k, ℓ):

{x2
1 − x1, . . . , x

2
n − xn} ∪ {xJ : J ∈ B(n − k + ℓ − 1, ℓ)}

∪ {fH,k : H ∈ H(t, ℓ) for some t, ℓ ≤ t ≤ n − k + ℓ − 1}.

We continue the preceding example. Let F be an arbitrary field and ≺ be

a term order on the monomials of S = F [x1, . . . , xn] for which xn ≺ xn−1 ≺ . . .

≺ x1. Let n = 5, k = 2 and ℓ = 2. Clearly k = 2 < (n + ℓ)/2 = 3.5, hence

{x2
1 − x1, . . . , x

2
5 − x5} ∪ {xJ : J ∈ B(2, 2)} ∪ {σ[5],2 − σ[5],1 + 3}

is the reduced Gröbner basis with respect to ≺ of the ideal I(2, 2).

The functions fH,k are quite important in our discussion. Next we provide

an alternative description for them. Let H ∈ H(t, ℓ) and H ′ = H ∪ {2t − ℓ + 1,

2t − ℓ + 2, . . . , n} ⊆ [n], where 0 < ℓ ≤ t ≤ (n + ℓ)/2. Let

lH′ = lH′ (x1, . . . , xn) :=
∑

j∈H′

xj .

We denote by gH,k the polynomial obtained from

t−1
∏

j=0

(lH′ − k + j)

by application of the relations x2
i − xi. Obviously gH,k is a linear combination of

square-free monomials.

Proposition 3.4. Assume that char F = 0, or char F > t. Then we have

fH,k =
1

t!
· gH,k.

We prove these statements in Section 5.
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4. Order shattering by ℓ-wide families

In this section we describe the sets order shattered by the ℓ-wide families

Fk,ℓ. For 0 ≤ ℓ − 1 ≤ k ≤ n we write

D(k, ℓ) = {{g1 < · · · < gt} ⊆ [n] : t ≤ k and gj ≥ 2j − ℓ + 1 if 1 ≤ j ≤ t}.

In particular ∅ ∈ D(k, ℓ).

As an example, let n = 4, k = 2 and ℓ = 2. Then

D(2, 2) = {∅, {1}, {2}, {3}, {4}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}.

If n = 5, k = 2 and ℓ = 1, then

D(2, 1) = {∅, {2}, {3}, {4}, {5}, {2, 4}, {2, 5}, {3, 4}, {3, 5}, {4, 5}}.

The following theorem is the combinatorial core of our results; it is an ex-

tension of (2).

We shall distinguish two cases: k < (n + ℓ)/2 and k ≥ (n + ℓ)/2. The second

case can be reduced to the first one by (3).

Theorem 4.1. (a) Let 0 ≤ k < (n + ℓ)/2. Then

osh(Fk,ℓ) = D(k, ℓ)

(b) If k ≥ (n + ℓ)/2, then

osh(Fk,ℓ) = D(n − k + ℓ − 1, ℓ).

Proof. Part (b) follows from part (a) by complementarity. Indeed,

co(Fk,ℓ) = Fn−(k−ℓ+1),ℓ, hence by (3)

osh(Fk,ℓ) = osh
(

co(Fk,ℓ)
)

= osh(Fn−k+ℓ−1,ℓ).

On the other hand, n− (k− ℓ+1) < (n+ ℓ)/2 follows from n ≤ 2k− ℓ, and hence

case (a) applies for the ℓ-wide family Fn−(k−ℓ+1),ℓ.

We turn to the proof of case (a) now. First we verify that osh(Fk,ℓ) ⊆ D(k, ℓ).

For this it is enough to check that if D /∈ D(k, ℓ), then D /∈ osh(Fk,ℓ).

Assume that D = {d1 < · · · < ds} /∈ D(k, ℓ). Then either s > k or there is

an index i ≤ s ≤ k such that di < 2i − ℓ + 1. In the first case D /∈ osh(Fk,ℓ),

because osh(Fk,ℓ) ⊆ osh
((

[n]
≤k

))

=
(

[n]
≤k

)

. In the second case let t be the smallest



Gröbner bases for complete ℓ-wide families 281

such index i. Let H := {d1, . . . , dt} ⊆ D. Then obviously ℓ ≤ t ≤ k, hence

H ∈ H(t, ℓ). Also, D ∈ osh(Fk,ℓ) would imply that H ∈ osh(Fk,ℓ), because

osh(Fk,ℓ) is downward closed. From the latter fact we derive a contradiction

below.

Indeed, suppose that there exists H ∈ H(t, ℓ)∩ osh(Fk,ℓ), where 0 < ℓ ≤ t ≤

k < (n + ℓ)/2. Let H = {h1 < · · · < ht}, then ht = 2t− ℓ and hi ≥ 2i− ℓ + 1 for

each 1 ≤ i ≤ t − 1. Since H ∈ osh(Fk,ℓ), the definition of order-shattering gives

us two subsets F0, F1 ∈ Fk,ℓ such that F0∩T = F1∩T , where T = {ht+1, . . . , n},

and F0 ∩ H = ∅, F1 ∩ H = H .

Let P := [n] \ (T ∪ H). Clearly |P | = t − ℓ. By definition

F0 = (F0 ∩ T ) ∪ (F0 ∩ H) ∪ (F0 ∩ P )

is a decomposition into disjoint sets. Let r := |F0 ∩ T |. Then

|F0| = |F0 ∩ T | + |F0 ∩ H | + |F0 ∩ P | ≤ r + t − ℓ,

because |F0 ∩ P | ≤ |P | = t − ℓ. Similarly

|F1| = |F1 ∩ T | + |F1 ∩ H | + |F1 ∩ P | ≥ r + t,

because |F1 ∩ H | = |H | = t. Hence |F1| − |F0| ≥ ℓ, which contradicts to

F0, F1 ∈ Fk,ℓ.

Now we prove that D(k, ℓ) ⊆ osh(Fk,ℓ). Let D = {d1 < · · · < dt} ∈ D(k, ℓ).

This means that di ≥ 2i − ℓ + 1 for 1 ≤ i ≤ t.

We extend the base set [n] by ℓ − 1 new elements: let

X = {−ℓ + 2,−ℓ + 3, . . . , 0, . . . , n}.

We intend to establish that D ∈ osh
(

X
k

)

. We note first that in the definition

of order-shattering only the ordering of the elements of the ground set is what

matters, not the elements themselves. From 0 ≤ k < (n + ℓ)/2 we have 0 ≤ k ≤

|X |/2. In view of (2), D ∈ osh
(

X
k

)

holds iff there are at least 2i − 1 elements of

X which are smaller than di. This is indeed true because D ∈ D(k, ℓ).

Let F ∈
(

X
k

)

be an arbitrary subset. We define F ′ := F ∩ [n]. Then we have

F ′ ∈ Fk,ℓ, because we dropped at most ℓ − 1 elements from F , and |F | = k. Let

G = {F ′ : F ∈
(

X
k

)

}. Then G ⊆ Fk,ℓ, and hence D ∈ osh
(

X
k

)

∩ 2[n] = osh(G) ⊆

osh(Fk,ℓ). This completes the proof. �

For k < (n + ℓ)/2 we denote by M(k, ℓ) the set of all monomials xG such

that G ∈ D(k, ℓ). For k ≥ (n + ℓ)/2 we set M(k, ℓ) to be M(n − (k − ℓ + 1), ℓ).

Theorems 2.1 and 4.1 give us the lexicographic standard monomials of ℓ-wide

families.
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Corollary 4.2. Let n > 0, k, ℓ be integers, 0 ≤ ℓ−1 ≤ k ≤ n. Then M(k, ℓ)

is the set of standard monomials for I(k, ℓ) with respect to the lexicographic

order ≺l. In particular,

|M(k, ℓ)| =

k
∑

i=k−ℓ+1

(

n

i

)

(12)

and M(k, ℓ) constitutes an F basis of the space of functions from V (Fk,ℓ) to F.

Remark. One can obtain (12) by lattice path counting techniques (see [12]

for an excellent account on those methods). This provides an alternative way to

prove Theorem 4.1.

5. Proofs of the main results

We extend the argument of [11] from the case ℓ = 1 to general ℓ-wide families.

For the reader’s convenience we include here proofs of some auxiliary facts which

have been given in [11].

Let F be a fixed field and let ≺ be an arbitrary term order on the monomials

of S = F[x1, . . . , xn] for which xn ≺ xn−1 ≺ · · · ≺ x1. Let 0 ≤ ℓ − 1 ≤ k ≤ n. For

t > 0 and G ⊆ [n] we put

Fk,t(G) = {D ⊆ [n] : k − t < |D ∩ G| ≤ k}.

Theorem 5.1. Assume that 0 < ℓ ≤ t ≤ (n + ℓ)/2, H ∈ H(t, ℓ), and

0 ≤ k ≤ n. Then fH,k ∈ I(V (Fk,t(H ′))).

Proof. We recall first that H ′ = H ∪ {2t − ℓ + 1, 2t − ℓ + 2, . . . , n} ⊆ [n].

Let D ∈ Fk,t(H ′) and let v = vD be the characteristic vector of D. By definition

|D ∩ H ′| ∈ {k, k − 1, . . . , k − t + 1}. (13)

Now

fH,k(v) =

t
∑

i=0

(−1)t−i

(

k − i

t − i

)

σH′,i(v) =

t
∑

i=0

(−1)t−i

(

k − i

t − i

)(

|D ∩ H ′|

i

)

.

We use the following identity

(

x − k + t − 1

t

)

=
t

∑

i=0

(−1)t−i

(

x

i

)(

k − i

t − i

)

, (14)
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which holds for every x ∈ C, k ∈ Z and t ∈ Z+. From (14) we infer that

fH,k(v) =

(

|D ∩ H ′| − k + t − 1

t

)

, (15)

which is indeed 0 because of (13). It remains to prove (14). We consider first the

Vandermonde identity ([10], pp. 169–170)

(

x + s

t

)

=

t
∑

i=0

(

x

i

)(

s

t − i

)

, (16)

which holds for all x, s ∈ C and t ∈ Z+. By negating the upper variable s on the

right-hand side we obtain

(

x + s

t

)

=
t

∑

i=0

(

x

i

)

(−1)t−i

(

t − s − i − 1

t − i

)

.

Finally the substitution s = t − k − 1 gives (14). �

Lemma 5.2. Assume that 0 ≤ k ≤ n, 0 < ℓ ≤ t ≤ min(k, n − k + ℓ − 1),

and H ∈ H(t, ℓ). Then fH,k can be written as a linear combination of square-free

monomials

fH,k =
∑

U⊆H′, |U|≤t

αUxU , (17)

where αU ∈ F. The leading monomial of fH,k with respect to ≺ is xH and the

leading coefficient is αH = 1. Also we have xH /∈ M(k, ℓ), but xU ∈ M(k, ℓ) for

U ⊆ H ′, |U | ≤ t, U 6= H . The latter monomials xU are precisely the non-leading

monomials in (17).

Proof. First suppose that k < (n + ℓ)/2.

The statement about the form (17) follows from the fact that the (elementary)

symmetric polynomials σH′,i (0 ≤ i ≤ t) are linear combinations of monomials

xU with U ⊆ H ′ and |U | ≤ t. Let U = {u1 < · · · < uj} be any such subset

and write H = {s1 < · · · < st}. By the definition of H ′ we have si ≤ ui for

i = 1, . . . , j, hence xU � xs1
· · ·xsj

� xH . Also, the coefficient of xH in fH,k is

(−1)t−t
(

k−t
t−t

)

= 1. These imply that xH is the leading monomial of fH,k.

It is immediate that xH /∈ M(k, ℓ) because st = 2t − ℓ. Next suppose that

U ⊆ H ′, |U | = j ≤ t, and U 6= H . If j < t, then 2i− ℓ+1 ≤ si ≤ ui for 1 ≤ i ≤ j,

and j ≤ k imply xU ∈ M(k, ℓ). If |U | = t, then from U 6= H we infer additionally

that ut > st = 2t − ℓ, giving that xU ∈ M(k, ℓ).

In the case k ≥ (n + ℓ)/2 we can give a similar proof, using the relations

M(n − (k − ℓ + 1), ℓ) = M(k, ℓ) and t ≤ n − k + ℓ − 1. This concludes the

proof. �
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Corollary 5.3. Assume that 0 ≤ k ≤ n, 0 < ℓ ≤ t ≤ min(k, n − k + ℓ − 1),

and H ∈ H(t, ℓ). Then xH /∈ Sm(≺,Fk,t(H ′), F).

Proof. This is obvious from Theorem 5.1 and Lemma 5.2, because xH is

the leading term of fH,k, a polynomial vanishing on V (Fk,t(H ′)). �

Lemma 5.4. Let 0 < ℓ ≤ t ≤ (n + ℓ)/2, 0 ≤ k ≤ n, and H ∈ H(t, ℓ). Then

Fk,ℓ ⊆ Fk,t(H ′).

Proof. Let D ∈ Fk,ℓ. We know that H ′ = H ∪{2t− ℓ+1, 2t− ℓ+2, . . . , n}

has n − t + ℓ elements, hence the size of [n] \ H ′ is t − ℓ. Using also, that

k − ℓ + 1 ≤ |D|, we obtain

k − t + 1 ≤ |D| − |[n] \ H ′| ≤ |D ∩ H ′| ≤ |D| ≤ k,

hence D ∈ Fk,t(H ′). �

Corollary 5.5. Let 0 < ℓ ≤ t ≤ (n + ℓ)/2, 0 ≤ k ≤ n, and H ∈ H(t, ℓ).

Then fH,k ∈ I(k, ℓ).

Proof. We know that fH,k ∈ I(V (Fk,t(H ′))) by Theorem 5.1 and Fk,ℓ ⊆

Fk,t(H ′) by Lemma 5.4. We conclude that fH,k ∈ I(V (Fk,t(H ′))) ⊆ I(k, ℓ). �

Proof of Theorem 3.1. Let k, 0 < n and ℓ be integers, such that 0 ≤

ℓ − 1 ≤ k ≤ n. We consider first the case k < (n + ℓ)/2. It is immediate that

x2
i −xi ∈ I(k, ℓ) and xJ ∈ I(k, ℓ) if |J | = k+1, hence by Corollary 5.5, G ⊆ I(k, ℓ).

To show that G is a Gröbner basis of I(k, ℓ) we use the characterization of

Gröbner bases from Theorem 2.2. Let I be the ideal of S generated by G.

Lemma 5.6. I = I(k, ℓ).

Proof. It is immediate that I ⊆ I(k, ℓ), because G ⊆ I(k, ℓ).

Now let f ∈ S be an arbitrary polynomial. Obviously we can reduce by G

any monomial of f which is divisible by x2
i for some i. We can thus assume that

f contains only square-free monomials xU , U ⊆ [n]. We can also eliminate those

xU for which |U | > k.

Suppose now that xU is a monomial (|U | ≤ k, U = {u1 < u2 < · · · < uj})

appearing in f which is not in M(k, ℓ). Then there exists an index i ≤ j such

that ui < 2i− ℓ+1. Let t be the smallest such index i and put H := {u1, . . . , ut}.

Then necessarily ℓ ≤ t and H ∈ H(t, ℓ) and xH divides xU by definition. By

Lemma 5.2 xH is the leading monomial of fH,k ∈ G, hence via fH,k we can reduce

f further.



Gröbner bases for complete ℓ-wide families 285

What we obtained is that any f ∈ S can be G-reduced to a linear combination

∑

w∈M(k,ℓ)

αw · w, (18)

where αw ∈ F. From (18) and Corollary 4.2 we deduce that

dimF S/I ≤ |M(k, ℓ)| =

k
∑

i=k−ℓ+1

(

n

i

)

= dimF S/I(k, ℓ), (19)

which, together with I ⊆ I(k, ℓ), implies that I = I(k, ℓ). The Lemma is proved.

�

If we consider the reduced form (18) of an f ∈ I(k, ℓ), then every αw is zero

by Corollary 4.2, because M(k, ℓ) is a basis of the space of functions from V (Fk,ℓ)

to F. This proves that G is a Gröbner basis of I(k, ℓ), when k < n+ℓ
2 .

Essentially the same argument works when k ≥ (n + ℓ)/2.

It is immediate that x2
i − xi ∈ I(k, ℓ). We know that if H, J ⊆ [n], then

xJ (vH) = 0 iff H ∩ J 6= ∅. Now if H ∈ Fk,ℓ and J ∈
( [n]
n−(k−ℓ)

)

, then H and J

must intersect because

|H | + |J | ≥ k − ℓ + 1 + n − k + ℓ = n + 1.

Assume now that t is an integer, such that ℓ ≤ t ≤ n − k + ℓ − 1. Then k ≥ n+ℓ
2

implies that n − k + ℓ − 1 < n+ℓ
2 , showing that t < n+ℓ

2 . Corollary 5.5 applies,

giving that fH,k ∈ I(k, ℓ), whenever H ∈ H(t, ℓ). We have therefore G∗ ⊆ I(k, ℓ).

From here we can prove that the ideal I generated by G∗ is I(k, ℓ) as in

Lemma 5.6. For this, one observes first that the leading term of a polynomial xJ ,

|J | = n − (k − ℓ) is xJ and all other terms have degree at most n − k + ℓ − 1.

These polynomials and x2
i − xi allow us to reduce any polynomial f into one of

degree at most n − (k − ℓ + 1).

Reduction via polynomials fH,k, where H ∈ H(t, ℓ) gives a linear combination

of type (18). From (18) we obtain (19) and I = I(k, ℓ) as before.

Finally, if f ∈ I(k, ℓ) then every αw is zero by Corollary 4.2, therefore G∗ is

a Gröbner basis of I(k, ℓ). �

Corollary 5.7. Let F, ≺, k, n, and ℓ be as in Theorem 3.1. Then

sm(≺,Fk,ℓ, F) = M(k, ℓ).
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Remark. This was established in Corollary 4.2 for the lexicographic order

≺l. The point here is that the statement holds for any term order ≺ on the

monomials for which xn ≺ xn−1 ≺ · · · ≺ x1.

Proof. The argument of Theorem 3.1 shows that any monomial w /∈M(k, ℓ)

can be G-reduced to ≺-smaller monomials. This means that w is a leading mono-

mial for I(k, ℓ), giving the containment ⊆. Equality then follows because by (9)

and Corollary 4.2 both sides have the same size |Fk,ℓ|. �

Proof of Corollary 3.2. We assume first that k < (n + ℓ)/2. Let W

denote the set of monomials given in the statement. Clearly we have W ⊂

ini(I(k, ℓ)). First we show that W is a generating set. For this it suffices to

verify, that any monomial w /∈ M(k, ℓ) is divisible by an element of W . If w is

not square-free, then it is divisible by x2
i for some 1 ≤ i ≤ n. We can therefore

assume that w = xU for some U = {u1 < · · · < uj} ⊆ [n] and either there exists

an 0 < i ≤ k such that ui < 2i − ℓ + 1, or j > k. In the first case let t be

the smallest index i with ui < 2i − ℓ + 1. Then for H = {u1, . . . , ut} we have

H ∈ H(t, ℓ), where ℓ ≤ t ≤ k, hence xH ∈ W and xH divides w. In the case j > k

for H = {u1, . . . , uk+1} we have H ∈ B(k, ℓ), hence xH ∈ W , moreover xH again

divides w.

Using, that 2 ≤ ℓ ≤ t, it is easy to verify, that there are no nontrivial

divisibilities among the elements of W . This settles the minimality.

The case k ≥ (n+ ℓ)/2 is reduced to the preceding one by using the following

obvious consequence of Corollary 5.7:

ini(I(k, ℓ)) = ini(I(n − k + ℓ − 1, ℓ)). �

Proof of Corollary 3.3. It follows from Corollary 3.2 that the leading

terms of the sets of polynomials given in the statement are minimal generating

sets of the initial ideal of I(k, ℓ). We have proven for fH,k and fH,n−(k−ℓ+1) in

Lemma 5.2 that all other (i.e. non-leading) monomials in these polynomials are

actually standard monomials for I(k, ℓ) (and for I(n − (k − ℓ + 1), ℓ) as well).

Also, because of ℓ > 1 we have xi ∈ M(k, ℓ) for i = 1, . . . , n.

It remains to check that the non-leading monomials of the polynomial xJ ,

where J ∈ B(k, ℓ), are elements of M(k, ℓ). Let J = {j1 < · · · < jk+1} ∈ B(k, ℓ).

Then the non-leading monomials of xJ are xU , where U = {u1 < · · · < um} ⊆ J

with m = |U | ≤ k. Clearly ui ≥ ji ≥ 2i − ℓ + 1 holds whenever 1 ≤ i ≤ m, hence

xU ∈ M(k, ℓ). The proof is complete. �

Proof of Proposition 3.4. Let D ⊆ [n] be an arbitrary set, v = vD the

characteristic vector of D. From the definition of gH,k and (15) it is apparent
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that
1

t!
gH,k(v) =

(

|D ∩ H ′| − k + t − 1

t

)

= fH,k(v).

Both gH,k and fH,k are linear combinations of square-free monomials. Square-

free monomials are precisely the standard monomials for Fn,n+1 = 2[n]. By the

uniqueness of the standard decomposition of a function we conclude that

1

t!
gH,k = fH,k. �

6. Some consequences

6.1. The Hilbert function of Fk,ℓ. Here we give the values hFk,ℓ(m) of the

Hilbert function of the complete ℓ-wide family Fk,ℓ. We need first a useful fact

of combinatorial nature about osh(Fk,ℓ). As before n > 0, ℓ, k are integers, and

0 ≤ ℓ − 1 ≤ k ≤ n.

Theorem 6.1. Suppose that 0 ≤ i ≤ min(k, n − k + ℓ − 1). Then

∣

∣

∣

∣

osh(Fk,ℓ) ∩

(

[n]

i

)∣

∣

∣

∣

=

(

n

i

)

−

(

n

i − ℓ

)

.

Remark. The binomial coefficient
(

n
j

)

is understood to be 0 if j < 0.

Proof. We use the description of osh(Fk,ℓ) given in Theorem 4.1. With

d = min(k, n− k + ℓ− 1) we have d < n+ℓ
2 and osh(Fk,ℓ) = D(d, ℓ). We consider

first the case 0 ≤ i < ℓ. Then

osh(Fk,ℓ) ∩

(

[n]

i

)

= D(d, ℓ) ∩

(

[n]

i

)

=

(

[n]

i

)

, (20)

giving the claim of the Theorem in this case. We turn now to the case ℓ ≤ i ≤ d.

The case (a) of Theorem 4.1 applies to F i,ℓ, giving that osh(F i,ℓ) = D(i, ℓ).

Directly from the definition we see that

D(d, ℓ) ∩

(

[n]

i

)

= D(i, ℓ) ∩

(

[n]

i

)

,

hence

osh(Fk,ℓ)∩

(

[n]

i

)

=D(d, ℓ)∩

(

[n]

i

)

= D(i, ℓ)∩

(

[n]

i

)

= osh(F i,ℓ)∩

(

[n]

i

)

. (21)
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We have also the following consequences of Theorem 4.1:

osh(F i−1,ℓ) ⊆ osh(F i,ℓ) (22)

and

osh(F i,ℓ) ∩

(

[n]

i

)

= osh(F i,ℓ) \ osh(F i−1,ℓ). (23)

Corollary 4.2, applied to both F i,ℓ and F i−1,ℓ gives that the size of the set

in (23) is
i

∑

j=i−ℓ+1

(

n

j

)

−
i−1
∑

s=i−ℓ

(

n

s

)

=

(

n

i

)

−

(

n

i − ℓ

)

.

This, together with (21), proves the statement. �

We turn now to the computation of the Hilbert function hFk,ℓ(m). By (10),

h gives the rank of certain important inclusion matrices:

rankF I

(

Fk,ℓ,

(

[n]

≤ m

))

= hFk,ℓ(m).

Theorem 6.2. Let n > 0, ℓ, k, m be integers, Let 0 ≤ ℓ − 1 ≤ k ≤ n, and

0 ≤ m ≤ min(k, n − k + ℓ − 1). Let F be an arbitrary field. Then we have

hFk,ℓ(m) =

∣

∣

∣

∣

osh(Fk,ℓ) ∩

(

[n]

≤ m

)
∣

∣

∣

∣

=

m
∑

i=max(0,m−ℓ+1)

(

n

i

)

. (24)

Proof. For short we write F = Fk,ℓ. From (11) we infer that

hF (m) =

∣

∣

∣

∣

Sm(≺dl,F , F) ∩

(

[n]

≤ m

)∣

∣

∣

∣

,

where ≺dl is the deglex order (or any other term order which refines the partial

ordering by degree). From Corollary 5.7 and Theorem 4.1 we have

Sm(≺dl,F , F) = D(t, ℓ) = osh(F),

where t = min(k, n − k + ℓ + 1). We consider the following decomposition into a

disjoint union

osh(F) ∩

(

[n]

≤ m

)

= ∪m
j=0

(

osh(F) ∩

(

[n]

j

))

.

Turning to the sizes of the above sets, Theorem 6.1 gives that

hF (m) =

∣

∣

∣

∣

∪m
j=0

(

osh(F) ∩

(

[n]

j

))∣

∣

∣

∣

=
m

∑

j=0

((

n

j

)

−

(

n

j − ℓ

))

=
m

∑

j=r

(

n

j

)

,

where r = max(0, m − ℓ + 1). This finishes the proof. �
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6.2. A special case of a conjecture by Frankl. Finally we prove Theo-

rem 1.2. It turns out to be a simple consequence of Theorem 6.2.

Proof of Theorem 1.2. F is an ℓ-wide family, therefore we haveF ⊆ Fk,ℓ

for some k, ℓ, with 0 ≤ ℓ − 1 ≤ k ≤ n. Put r = min(k, n − k + ℓ − 1, t − 1).

Theorem 4.1, the assumption on t together with osh(F) ⊆ sh(F) imply that the

family F ⊆ Fk,ℓ has no order-shattered sets of size > r. We have thus

osh(F) ⊆ osh(Fk,ℓ) ∩

(

[n]

≤ r

)

.

Theorem 6.2 implies that

| osh(F)

∣

∣

∣

∣

≤ | osh(Fk,ℓ) ∩

(

[n]

≤ r

)∣

∣

∣

∣

=
r

∑

i=max(0,r−ℓ+1)

(

n

i

)

≤
t−1
∑

i=max(0,t−ℓ)

(

n

i

)

.

The last inequality follows from r ≤ t−1 and t ≤ n+ℓ
2 . The proof is complete. �
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