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On a class of conformally invariant horizontal endomorphisms

By M. M. REZAII (Tehran), M. BARZEGARI (Tehran) and B. NAJAFI (Tehran)

Abstract. We construct a class of conformally invariant horizontal endomorphisms

(or Ehresmann connections) on a Finsler manifold which contains the Wagner endomor-

phisms studied in detail in [12].

1. Introduction

The set of all horizontal endomorphisms over a manifold M constitutes an
affine space modelled on the real vector space Ψ1(TM) of semibasic vector 1-
forms on TM . Motivated by a result of Sz. Szakál and J. Szilasi ([7], Propo-
sition 2.7), in this paper we study the orbit of the canonical horizontal endo-
morphism (the so-called Barthel endomorphism) of a Finsler manifold under the
action of a subspace of Ψ1(TM) depending on the Finsler structure. The elements
of this orbit will be mentioned as L-horizontal endomorphisms (L ∈ Ψ1(TM)).
We shall point out that Wagner endomorphisms studied in [11], [12] and [7] can
be obtained as special L-horizontal endomorphisms. Our main result states that
the set of all conservative L-horizontal endomorphisms on a Finsler manifold is
conformally closed.

Conventions. (i) We work on an n-dimensional connected smooth manifold
M whose topology is Hausdorff and has a countable base. C∞(M) denotes the
ring of smooth real-valued functions on M , X (M) stands for the C∞(M)-module
of (smooth) vector fields on M . Ω(M) :=

⊕n
i=0 Ωk(M) is the graded algebra of

differential forms on M , with multiplication given by the wedge product. The
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symbols d, iX , LX (X ∈ X (M)) denote the exterior derivative, the substitution
operator and the Lie derivative.

(ii) TM is the 2n-dimensional tangent manifold of M ,
◦
TM ⊂ TM is the

open submanifold of the non-zero tangent vectors to M . fv and fc stand for the
vertical and the complete lift of a smooth function on M into TM .

2. Preliminaries

2.1. For any vector field X on M there exist unique vector fields Xv, Xc

on TM such that

Xvf c = (Xf)v, Xcf c = (Xf)c (f ∈ C∞(M)). (1)

Xv is the vertical lift, Xc is the complete lift of X. The C∞(TM)-module of
vertical vector fields on TM will be denoted by Xv(TM). The Liouville vector
field C ∈ Xv(TM) is generated by the flow of positive dilatation δt : v ∈ TM 7−→
δt(v) := etv ∈ TM (t ∈ R). A function F ∈ C∞(TM), a vector field ξ ∈ X(

◦
TM),

and a differential form α ∈ Ω(
◦
TM) are called r-homogeneous (r ∈ Z), if the

relations
CF = rF, [C, ξ] = (r − 1)ξ, LCα = rα

hold, respectively. Notice that

[C,Xv] = −Xv, [C,Xv] = 0 (X ∈ X (M)), (2a– b)

so Xv is 0-homogeneous, Xc is 1-homogeneous vector field on TM .

2.2. By a vector k-form on TM we mean a skew-symmetric C∞(TM)-
multilinear map K : (X(TM))k → X(TM) if k ∈ {1, . . . , 2n}, and a vector field
on TM , if k = 0. In particular, a vector 1-form on TM is just a type (1, 1)
tensor field. The C∞(TM)-module of vector k-forms on TM will be denoted by
Ψk(TM). There is a unique vector 1-form J ∈ Ψ1(TM) such that

JXv = 0, JXc = Xv (X ∈ X (M)). (3a– b)

J is called the vertical endomorphism. Clearly, J is of rank n and J2 = 0. A
differential form α ∈ Ωk(TM) is semibasic, if iJξα = 0; a vector form K ∈
Ψk(TM) is semibasic, if iJξK = 0 and J ◦K = 0 (k ≥ 1, ξ ∈ X(TM)).
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2.3. We recall that if θr and θs are graded derivations of degree r and s,
respectively, of a graded algebra, then their graded commutator is defined by

[θr, θs] := θr ◦ θs − (−1)rsθs ◦ θr. (4)

Then [θr, θs] is a graded derivation of degree r + s. By the Frölicher–Nijenhuis
theory of vector forms to any vector k-form K ∈ Ψk(TM) two graded derivations
of Ω(TM) are associated, denoted by iK and dK . iK is of degree k − 1, dK is of
degree k, and the following rules are prescribed:

iK ¹ C∞(TM) = 0; iK ◦ α = α ◦K, if α ∈ Ω1(TM); (5)

dK := [iK , d]
(4)
= iK ◦ d− (−1)k−1d ◦ iK . (6)

Then, in particular, for all F ∈ C∞(TM),K ∈ Ψk(TM) we have dKF = dF ◦K.
For vector 0-forms ξ ∈ Ψ0(TM) = X(TM), i.e., for vector fields on TM , iξ and
dξ reduce to the usual substitution operator and Lie derivative, respectively. To
any vector forms K ∈ Ψk(TM), L ∈ Ψ`(TM) there is a unique vector (k+ l)-form
[K, L] ∈ Ψk+l(TM), the Frölicher–Nijenhuis bracket of K and L such that

d[K,L] = [dK , dL].

In this paper we are going to systematically use the Frölicher–Nijenhuis cal-
culus of vector forms. A detailed account on the theoretical background can be
found e.g. in monographs [5], [6], and (of course) in the original source [2]. A well
applicable list of formulae is gathered together (among others) in the reference
[7] by Sz. Szakál and J. Szilasi. Concerning the vertical endomorphism and
the Liouville vector field we have

[J,C] = J, [J, J ] = 0. (7a– b)

A vector form K on TM is called homogeneous of degree r ∈ Z if [C,K] =
(r − 1)K. We note finally that the complete lift f c of a function f ∈ C∞(M) is
1-homogeneous and

dJf c = d(fv) =: (df)v; (8)

see [8], Lemma 2.

2.4. By a semispray over M we mean a C1 vector field S : TM → TTM ,

smooth on
◦
TM , satisfying the condition JS = C. A 2-homogeneous semispray is
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called a spray. If S is a semispray over M and K is a vector 1-form on TM , then
for any vector field ξ on TM we have

K[Jξ, S] = Kξ, (9)
in particular

J [Jξ, S] = Jξ. (10)

Indeed, by Proposition 1.7 of [3] the vector field [Jξ, S]− ξ is always vertical.
Two sprays S and S over M are said to be (pointwise) projectively related if

there is a smooth function P on
◦
TM such that S = S + PC (over

◦
TM). Then

the projective factor P is necessarily 1-homogeneous.

2.5. A vector 1-form h ∈ Ψ1(TM), smooth – in general – only over
◦
TM

is said to be a horizontal endomorphism (or Ehresmann connection) over M if it
is a projector (i.e., h2 = h) and Kerh = Xv(TM), or, equivalently, if J ◦ h = J

and h ◦J = 0. h is called homogeneous if it is 1-homogeneous in the above sense,
i.e. [C,h] = 0. The (weak) torsion of h is the vector 2-form t := [J,h]. If S is a
semispray over M , then Sh := h ◦ S is also a semispray, depending only on the
Ehresmann connection. Sh is called the associated semispray to h.

A fundamental result due to M. Crampin and J. Grifone states that any
semispray S generates a horizontal endomorphism of zero weak torsion by the
formula

h =
1
2

(1X(TM) + [J, S]). (11)

Its associated semispray is Sh = 1
2 (S + [C,S]). If S is a spray then Sh = S, and

h is homogeneous. For a recent treatment of these facts we refer to [6].

3. Some calculus on Finsler manifolds

3.1. Let a function E : TM → R be given. Assume:

(i) E(v) > 0 for all v ∈
◦
TM , E(0) = 0;

(ii) E is of class C1 on TM , smooth on
◦
TM ;

(iii) E is (positive-)homogeneous of degree 2, i.e., CE = 2E;

(iv) the fundamental 2-form ω := d dJE is non-degenerate.

Then (M, E) is said to be a Finsler manifold with energy E. Notice that ω is
semibasic and we have the relations

iJω = 0, iCω = dJE, LCω = ω. (12a– c)
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Due to the non-degeneracy of ω, for any 1-form β ∈ Ω1(TM) there is unique

vector field β# on TM (smooth, in general, only on
◦
TM) such that

iβ# ω = β. (13)

This map # : β → β# is called the (Finslerian) sharp operator. In particular, the
gradient of a function f ∈ C∞(TM) is the vector field grad f := (df)#.

Lemma 1. If (M, E) is a Finsler manifold and β is a semibasic 1-form on

TM , then

β# ∈ Xv(TM),
[
C, β#

]
= (LC β)# − β#. (14a– b)

Proof. Using (1.4g) of [7], (12a) and (13) we get

iJβ#ω = iβ# ◦ iJω − iJ ◦ iβ#ω = −iJβ = 0,

since β is semibasic. Thus Jβ# = 0, therefore β# is vertical. As for (14b),

i[C,β#] ω = LC iβ# ω − iβ# LC ω
(12c),(13)

= LC β − β,

hence [C, β#] = (LC β)# − β#. ¤

3.2. Following Grifone [3], by the potential of a semibasic form K ∈
Ψk(TM) we mean the (k − 1)-form K◦ := iSK, where S is any semispray over
M (k = 1). Clearly, K◦ is independent of the choice of S.

Lemma 2. Let (M, E) be a Finsler manifold and L be an r-homogene-

ous semibasic vector 1-form on TM . Then dLE, (dLE)# and L◦ are (r+1)-

homogeneous, while [J, (dLE)#] is r-homogeneous.

Proof. We have [LC , dL] = d[C,L] = (r − 1)dL, hence

LC dLE = dLLC E + (r − 1)dL E = (r + 1)dL E.

This proves the r-homogeneity of dL E. Using this fact and (14b), we get

[C, (dLE)#] = (LCdLE)# − (dLE)# = (r + 1)(dLE)# − (dLE)# = r(dLE)#,

as was to be shown. Since

[C,L]◦ = [C, L]S = [C,L◦]− L[JS, S]
(9)
= [C, L◦]− L◦
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and, on the other side, [C, L]◦ = (r − 1)L◦, it follows that [C, L◦] = r L◦, i.e., L◦

is (r + 1)-homogeneous.
Finally, using the graded Jacobi identity, the (r +1)-homogeneity of (dLE)#

and (7a), we get

[C, [J, (dLE)#]] = −[J, [(dLE)#, C]]− [(dLE)#, [C, J ]]

= (r + 1)[J, (dLE)#] + [(dLE)#, J ] = r[J, (dLE)#],

which proves the last claim. ¤

3.3. To conclude this section, we recall the fundamental lemma of Finsler
geometry due to J. Grifone [3], see also [6]. Let (M,E) be a Finsler manifold.
If

S0 := −(dE)# over
◦
TM, S0(0) := 0

then S0 is a spray over M , called the canonical spray of (M, E). S0 generates a
homogeneous horizontal endomorphism h0 according to (11), called the canonical
horizontal endomorphism or the Barthel endomorphism of (M, E). h0 is conser-
vative in the sense that dh0E = 0.

4. L-horizontal endomorphisms on a Finsler manifold

Keeping the notation introduced in Section 3, throughout in the following we
work on a Finsler manifold (M,E).

4.1. Sz. Szakál and J. Szilasi have shown in [7] that any homogeneous,
conservative horizontal endomorphism h over M can be expressed as follows:

h := h0 +
1
2

t◦ +
1
2

[J, (dt◦E)#]. (15)

Next we consider a quite natural generalization.

Lemma 3 and definition. If L is a semibasic vector 1-form on TM and

hL := h0 + L + [J, (dLE)#], (16)

then hL is also a horizontal endomorphism, called an L-horizontal endomorphism
on (M, E). In particular, for any homogeneous, conservative horizontal endomor-
phism h we have h = h 1

2 t◦ .
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Proof. Indeed, the term L + [J, (dLE)#] in (16) is semibasic, therefore
J ◦ hL = J ◦ h0 = J , hL ◦ J = h0 ◦ J = 0. The relation h = h 1

2 t◦ is just a
reformulation of (15). ¤

4.2. We gather together and prove some basic properties of L-horizontal
endomorphisms.

Proposition 1. Let L be a semibasic vector 1-form on TM .

(i) If L is 1-homogeneous, then hL is homogeneous.

(ii) The associated semispray SL to hL is related to the canonical spray of (M,E)
by

SL = S0 + L◦ + (LCdLE)#.

If, in particular, L is 1-homogeneous, then SL is a spray.

(iii) The weak torsion of SL is tL = [J, L].

(iv) If L is 1-homogeneous and SL is projectively related to S0, then the projective

factor is 3
2

L◦E
E ¹

◦
TM .

Proof. The first claim is immediate: the 1-homogeneity of L implies the
1-homogeneity of [J, (dt◦E)#] by Lemma 2.
To verify (ii), let S be a semispray over M . Then

SL := hL ◦ S = h0◦S + L◦ + [J, (dLE)#]S

= S0 + L◦ + [C, (dLE)#]− J [S, (dLE)#]
(14b),(10)

= S0 + L◦ + (LCdLE)# − (dLE)# + (dLE)#

= S0 + L◦ + (LCdLE)#,

as desired.
The weak torsion of hL is

tL := [J,hL] =
[
J,h0 + L + [J, (dLE)#]

]
= [J, L] +

[
J, [J, (dLE)#]

]
.

Applying the graded Jacobi identity we easily get that the last term of the right-
hand side vanishes; this proves (iii).

To prove (iv), let SL = S0 + PC,P ∈ C∞(
◦
TM). Then PC = L◦ + 2(dLE)#

by the 2-homogeneity of (dLE)#. Now we act on the fundamental 2-form ω by
the substitution operators induced by PC and L◦ + 2(dLE)#, respectively. We
find:

iPCω = PiCω
(12b)
= PdJE; (17)

i
L◦ω + 2i(dLE)#ω

(13)
= i

L◦ω + 2dLE. (18)
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Evaluating the right-hand sides of (17) and (18) on a semispray S we have

PdJE(S) = P (CE) = 2PE

and

(i
L◦ω + 2dLE)(S) = ω(L◦, S) + 2dE(L◦) = d(dJE)(L◦, S) + 2dE(L◦)

= L◦dJE(S)− SdJE(L◦)− dJE([L◦, S]) + 2L◦E

= 4L◦E − dE(J [L◦, S])
(10)
= 4L◦E − L◦E = 3L◦E.

Thus 2PE = 3L◦E, which concludes the proof. ¤

4.3. The next proposition will imply that the Wagner endomorphisms can
be considered as special L-horizontal endomorphism.

Proposition 2. Let f be a smooth function on M . If K is a semibasic

vector 1-form and

L := fcK − dfv ⊗K◦, (19)

then L is also a semibasic 1-form, and

hL = h0 + f cK − dfv ⊗K◦ + f c[J, (dKE)#] + dfv ⊗ (dKE)#

−K◦E[J, grad fv]− dJ (K◦E)⊗ grad fv.
(20)

Proof. It is obvious that L is indeed semibasic. To verify (20), it is enough
to check that under the choice (19), (dLE)# = f c(dKE)# − (K◦E) grad fv. To
see this, let X be any vector field on M . Then we get

i(dLE)#ω(Xc) = LXC(E) = (f cK(Xc)− dfv(Xc)K◦)E = f c(KXc)E

− (K◦E)dfv(Xc) = f cdKE(Xc)− (K◦E)igrad fv ω(Xc)

= i
fc(dK E)#−(K◦E) grad fv

ω(Xc),

which yields the desired relation. We may now apply some standard rules for
calculation of the Frölicher–Nijenhuis theory and relation (8) to obtain (20). ¤

Corollary. The class of the L-horizontal endomorphisms of a Finsler mani-

fold contains the Wagner endomorphisms.

Proof. As Vincze has shown in [12], the Wagner endomorphism h associ-
ated to a smooth function f on M can be represented in the form

h = h0 + f cJ − E[J, grad fv]− dJE ⊗ grad fv.
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Replacing K by 1
2J and taking into account that J◦ = C, (dJE)# = C, (20)

takes the form

h 1
2 fcJ− 1

2 dfv⊗C = h0 +
1
2

fcJ − 1
2

dfv ⊗ C +
1
2

f c[J,C] +
1
2

dfv ⊗ C

− 1
2
CE[J, grad fv]− 1

2
dJ(CE)⊗ grad fv

= h0 + fcJ − E[J, grad fv]− dJE ⊗ grad fv = h,

proving our claim. ¤

5. The effect of conformal changes

We continue to assume that (M, E) is a Finsler manifold.

5.1. Let f be a smooth function on M and define a positive function on
TM by

ϕ := exp ◦fv. (21)

If Ẽ := ϕE, then (M, Ẽ) is also a Finsler manifold (see [11] Lemma 1). We say
that (M, Ẽ) has been obtained by a conformal change of E given by the scale
function ϕ. It is known ([8]) that the Barthel endomorphism h̃0 and the canonical
spray S̃0 of (M, Ẽ) are related to the corresponding data of (M, E) by

h̃0 = h0 − 1
2
(fcJ + dfv ⊗ C) +

1
2
E[J, grad fv] +

1
2
dJE ⊗ grad fv, (22)

and
S̃0 = S0 − f cC + E grad fv, (23)

respectively.

Lemma 4. Let β be a semibasic 1-form on TM . Under the conformal

change with scale function given by (21) the vector field β# changes by the rule

ϕβ
e# = β#, where #̃ is the sharp operator in the Finsler manifold (M, Ẽ).

Proof. Let ω̃ be the fundamental 2-form of (M, Ẽ). Then

ω̃ = ddJ Ẽ = d(d
J
ϕE) = d(ϕdJE) = dϕ ∧ dJE + ϕω,

so for any vector field X on M we have

iβ e# ω̃(Xc) = iβ e# (dϕ ∧ dJE + ϕω)(Xc) = dϕ ∧ dJE(β e#, Xc)
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+ ϕiβ e#ω(Xc) = dϕ(β e#)dJE(Xc)− dϕ(Xc)dJ(β e#)

+ iϕβ e#ω(Xc)
(14a)
= iϕβ e#ω(Xc).

On the other hand, iβ e# ω̃ = β = iβ# ω; therefore ϕβ
e# = β#. ¤

Proposition 3. If L is a semibasic vector 1-form on TM , then the vector

fields (dLE)# and (LCdLE)# are invariant under any conformal change of E.

Proof. Consider the conformal change given by the scale function (21).
Then

dLẼ = dL(ϕE) = ϕdLE + EdLϕ = ϕdLE,

since L is semibasic and ϕ is a vertical lift. Hence using Lemma 4,

ϕ(dLẼ)e# = (dLẼ)# = (ϕdLE)# = ϕ(dLE)#;

therefore (dLẼ)e# = (dLE)#. Similarly, the 1-form (LCdLE) is also semibasic
and

LCdLẼ = LC(ϕdLE) = (LCϕ)dLE + ϕLCdLE = ϕLCdLE,

so, applying Lemmas 4 again, we get

ϕ(LCdLẼ)e# = (LCdLẼ)# = (ϕLCdLE)# = ϕ(LCdLE)#.

This yields the desired second equality. ¤

Remark. If L := 1
2 (fcJ − dfv ⊗C), our proposition leads to Proposition 3 of

Vincze’s paper [11].

Proposition 4. Let L be a semibasic vector 1-form on TM . Under the

conformal change given by the scale function (21) the horizontal endomorphism

hL and its associated semispray SL change as follows:

h̃L = hL − 1
2
(f cJ + dfv ⊗ C) +

1
2
E[J, grad fv] +

1
2
dJE ⊗ grad fv, (24)

S̃L = SL − f cC + E grad fv. (25)

Proof. By the conformal invariance of (dLE)#, (16) and (22) yield imme-
diately (24). Similarly, applying the conformal invariance of (LCdLE)#, Propo-
sition 1(ii) and (23), we obtain (25). ¤
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5.2. Now we are in a position to state and prove our main observation.

Theorem. The set of all conservative L-horizontal endomorphisms on a

Finsler manifold is conformally closed.

Proof. Consider the conformal change Ẽ := ϕE, ϕ := exp ◦fv (f ∈C∞(M)).
Let L be a semibasic vector 1-form on TM , and define K := h̃L − hL. Then K

is semibasic, and we have K := h̃0 − h0 by (16) and the confomal invariance of
(dLE)#. Since h̃0 and h0 are conservative, we get

0 = deh0
Ẽ = dh0+KẼ = dh0(ϕE) + dKẼ

= Edh0ϕ + ϕdh0E + dKẼ = Edh0ϕ + dKẼ,

hence
dKẼ = −Edh0ϕ. (26)

Now suppose that the horizontal endomorphism hL is conservative. Then

dehL
Ẽ = dhL+KẼ = dhL

Ẽ + dKẼ
(26)
= dhL

Ẽ − Edh0ϕ

= dhL
ϕE − Edh0ϕ = ϕdhL

E + EdhL
ϕ− Edh0ϕ

= EdhL−h0ϕ = 0,

since hL − h0 is semibasic by (16), and ϕ is a vertical lift. Thus h̃L is also
conservative, and the proof is concluded. ¤
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