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Optimal feedback control for impulsive systems on the space
of finitely additive measures

By N. U. AHMED (Ottawa)

Abstract. In this paper we consider evolution equations and inclusions on the

space of finitely additive measures arising naturally from differential equations and in-

clusions (on Banach spaces) containing non smooth vector fields or and multi functions

possessing only measurable selections. We also consider applications of these results to

control theory and min-max problems for uncertain dynamic systems.

1. Introduction

Let us consider the evolution equation,

dx = Axdt + f(t, x)dt + g(t, x)ν(dt), t ≥ 0

x(0) = ξ, (1)

in a Banach space E where A is the infinitesimal generator of a C0-semigroup,
S(t), t ≥ 0, on E and f, g : [0, T ]× E −→ E are measurable maps to be clarified
shortly and ν is a signed measure. Considering the special case (g = 0), if E

is a finite dimensional space, continuity of f is sufficient for the existence of a
continuous solution locally which may blow up in finite time. In contrast, it
is well known that if E is infinite dimensional space, mere continuity of f in x

does no longer guarantee the existence of a strong, mild or even a weak solution.
Here we consider measurable vector fields; so the hope for path wise E valued
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solutions ( that is, solutions defined on I ≡ [0, T ] with values in E) is completely
dashed. Due to this fact in recent years significant interest has developed in
the study of measure valued solutions see [Fattorini 7, Ahmed 1–6, 14]. In fact
the notion of measure solution or generalized solution was already introduced
by DiPerna [9] in his study of conservation laws described by nonlinear partial
differential equations and later used by Slemrod and Roytburd [12] in the
study of dynamic phase transitions. This was primarily based on the Young
measure introduced by L. C. Young in the study of Calculus of variations and
optimal control [13] where the controls (inputs) are measure valued functions
called relaxed controls while the solutions are paths or curves in the original state
space. The concept of measure valued solutions is substantially different. Here
one deals with functions taking values from the space of measures on the original
state space. One proves the existence of measure valued functions as solutions
for evolution equations in situations where there is no solution in the usual sense
such as strong, mild or weak.

Measure solutions introduced by Fattorini [7] and Ahmed [1–6] are sub-
stantial generalizations of Young measures covering semilinear and quasilinear
evolution equations in abstract Banach spaces. Here we use the existence results
from [1]–[3] in our study of control problems involving systems of the form (1) with
measurable vector fields {f, g} thus requiring the notion of measure solutions.

The rest of the paper is organized as follows. In Section 2, the notion of
measure solution is introduced and existence of such solutions for the evolution
equation (1) are presented. Based on these results, in Section 3 evolution equa-
tions on the space of measures considered as natural state space for such equations
are introduced. In Section 4, we study the question of existence and regularity
properties of measure solutions for differential inclusions. In Section 5, we study
the question of existence of optimal feedback controls for several control prob-
lems involving such systems. The paper is concluded with some comments on
applications and open problems.

2. Measure valued solutions

Let Z denote any regular topological space and B0(Z) the space of bounded
scalar valued functions on Z with the topology of sup norm given by

‖f‖ ≡ sup{|f(z)|, z ∈ Z}.
This is a Banach space. However the elements of this space may not be Borel
measurable. Let Σ ≡ ΣZ denote an algebra of subsets of the set Z generated by
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closed sets and let B(Z) ≡ B(Z, Σ) denote the class of scalar valued functions
defined on Z which are uniform limits of characteristic functions of sets from Σ.
The space B(Z) is furnished with the same topology as B0(Z). An element f of
this space is said to be Σ measurable if for every Borel set Γ from the real line
(the range space), the set

f−1(Γ) ≡ {z ∈ Z : f(z) ∈ Γ} ∈ Σ.

The class of all bounded Σ measurable functions is dense in B(Z). It is clear
that B(Z) is a closed subspace of B0(Z) and hence it is also a Banach space.
Let Mba(Z) ≡Mba((Z, Σ)) denote the class of all scalar valued bounded finitely
additive measures (set functions) defined on the algebra Σ. Furnished with the
total variation norm, Mba(Z) is a Banach space.

The following Lemma characterizes the topological dual B∗(Z) of the Banach
space B(Z).

Lemma 2.1. B∗(Z) ∼= Mba(Z). Stated in words, the topological dual of

B(Z) is isometrically isomorphic to the space of finitely additive bounded mea-

sures on Z.

Proof. See Dunford and Schwartz [8, Theorem IV.5.1, p. 258]. ¤

Let Πba(Z) ⊂ Mba(Z) denote the class of finitely additive probability mea-
sures furnished with the relative topology. Recall that a Banach space X is
said to satisfy Radon–Nikodym property (RNP) if, for every finite measure space
(Ω,B, γ) and every γ continuous bounded vector measure Ξ : B −→ X, there
exists a g ∈ L1(Ω, X) such that

Ξ(Γ) =
∫

Γ

g(ω)γ(dw), ∀ Γ ∈ B.

The Banach space B(Z) and its dualMba(Z) do not satisfy (RNP). Therefore the
dual of L1(I, B(Z)) is not L∞(I,Mba(Z)). However, it follows from the theory
of lifting [11] that the dual is given by Lw

∞(I,Mba(Z)) which consists of weak*
measurable Mba(Z) valued functions in the sense that for every ϕ ∈ B(Z),

t −→ µt(ϕ) ≡
∫

Z

ϕ(ξ)µt(dξ)

is measurable in the Lebesgue sense and the scalar valued function t −→ µt(ϕ) is
essentially bounded in the usual sense. Note that B(Z) is a nonseparable Banach
space.
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We consider the following measure driven Cauchy problem in a Banach space E,

dx(t) = Ax(t)dt + f(t, x(t))dt + g(t, x(t−))ν(dt), t ∈ I ≡ [0, T ],

x(0) = x0 ∈ E, (2)

where A is the generator of a C0-semigroup S(t), t ≥ 0, in E, and f, g are suitable
maps from I × E to E and ν is a signed measure on I.

It is known [1]–[3] that under the assumptions of mere measurability and
local boundedness of {f, g} this equation has finitely additive measure valued
solutions. Let B denote the sigma algebra of Borel subsets of the interval I and
Σ ≡ ΣE an algebra of subsets of the set E generated by closed subsets of E. Our
general assumption is that f , g are B × Σ measurable maps in the sense that for
every Borel set Γ in the range space E,

h−1(Γ) ≡ {(t, ξ) ∈ I × E : h(t, ξ) ∈ Γ} ∈ B × Σ, for h = f, g.

For non impulsive systems with f continuous and bounded on bounded sets, gen-
eral notion of measure solutions was introduced by the author in [4]–[6], where the
natural choice was regular bounded finitely additive measures Mrba(Z) instead
of Mba(Z) ⊃Mrba(Z) ∼= (BC(Z))∗. This is because the vector fields

e −→ h(t, e)

used there were assumed to be continuous from E to E. In [1]–[3], where measur-
able vector fields were admitted (permitting discontinuities), the most appropriate
choice of the space of measures was found to be Mba(Z), and this is what is used
here.

Now we are prepared to introduce the relevant operators required for study
of measure solutions. Let Dφ denote the Frechet derivative of φ ∈ B(E) whenever
it exists and introduce the class of test functions F , given by

F ≡ {φ ∈ B(E) : Dφ exists, Dφ ∈ B(E, E∗)}.

For given {A, f, g, ν}, we introduce the operators A and C as follows. Define the
operator A with domain given by

D(A) ≡ {φ ∈ F : Aφ ∈ B(E)} (3)

where
(Aφ)(t, ξ) = 〈A∗Dφ(ξ), ξ〉E∗,E + 〈Dφ(ξ), f(t, ξ)〉E∗,E (4)
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for φ ∈ D(A). The operator C is given by

(Cφ)(t, ξ) ≡
∫ 1

0

〈Dφ(ξ + θg(t, ξ)ν({t})), g(t, ξ)〉E∗,Edθ. (5)

Clearly if t is not an atom of the measure ν, the operator C reduces to

(Cφ)(t, ξ) = (C(t)φ)(ξ) ≡ 〈Dφ(ξ), g(t, ξ)〉E∗,E . (6)

If ν is absolutely continuous with respect to the Lebesgue measure `, the operator
C will always take this form. These are the appropriate operators arising in the
study of measure valued solutions for systems of the form (2).

For any positive measure β having bounded total variation on the interval I,
we let L1(β,B(E)) denote the Banach space of Lebesgue–Bochner integrable func-
tions on I with values in B(E). For f ∈ L1(β,B(E)) we have

‖f‖L1(β,B(E)) ≡
∫

I

‖f(t)‖B(E)β(dt) < ∞.

Because of the presence of measure ν which may contain atoms, the system (2)
may be subjected to impulsive forces from time to time. Thus we find it necessary
to use the vector space

L1(`, B(E))⊕ L1(|ν|, B(E))

where ` denotes the Lebesgue measure on I and |ν| denotes the positive measure
induced by the variation of the signed measure ν. Since the component spaces are
Banach spaces, this is also a Banach space. It is easy to see that the topological
dual of this space is given by

Lw
∞(`,Mba(E)) ∩ Lw

∞(|ν|,Mba(E)).

We are particularly interested in its subset

Lw
∞(`,Πba(E)) ∩ Lw

∞(|ν|, Πba(E)),

where Πba(E) denotes the space of bounded finitely additive probability measures
on E, or more precisely, on Σ. Now we introduce the following definition.

Definition 2.1. A measure valued function

λ ∈ Lw
∞(`, Πba(E)) ∩ Lw

∞(|ν|, Πba(E))
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is said to be a measure solution (or generalized solution) of equation (2) if, for
every φ ∈ D(A) with Dφ having bounded supports, the following identity holds

λt(φ) = φ(x0) +
∫ t

0

λs(A(s)φ)ds +
∫ t

0

λs−(C(s)φ)ν(ds), t ∈ I,

λ0(φ) = φ(x0), (7)

where
µt(ψ) ≡

∫

E

ψ(ξ)µt(dξ), t ∈ I.

Remark 2.1. In case the initial state x0 has a distribution π ∈ Πba(E), the
first term on the right hand side of the expression (7) of the definition is replaced
by π(φ). By the notation λs− we mean its left hand limit in the sense that for
every test function ϕ, we have λs−(ϕ) ≡ lim

t↑s,t<s
λt(ϕ). If s is not an atom of

the measure ν, we have λs− = λs.

For simplicity of notation we have used D(A) to denote the common domain
of the operators A(t), t ∈ I.

Now we are prepared to present the basic assumptions used in [1]–[3] for the
proof of existence of (measure) solutions of the system (2):

(A1): E is a separable Banach space and A is the infinitesimal generator
of a C0-semigroup of operators S(t), t ≥ 0, in E and ν is a countably additive
bounded signed measure (possessing bounded variation on bounded sets) having
no atom at t = 0.

(A2): the function h : I × E −→ E, (h = f, g) is a locally bounded B × Σ
measurable map satisfying the following approximation properties:

(i) there exists a sequence of locally bounded B × Σ measurable maps {hn}
such that for each n ∈ N , hn(t, x) ∈ D(A) for all (t, x) ∈ I × E, and it is locally
Lipschitz,

‖hn(t, x)− hn(t, y)‖E ≤ αn,r‖x− y‖E , ∀ x, y ∈ Br,

where Br ≡ {ξ ∈ E : ‖ξ‖E ≤ r} and αn,r are finite positive numbers for finite
r ≥ 0 and n ∈ N ;

(ii): hn(t, x)
w/s−→ h(t, x) (weakly for f/strongly for g) for almost all t ∈ I and

uniformly on compact subsets of E.

Remark 2.2. Note that, under the assumption (A2), for every 0 < r < ∞, we
may have limn→∞ αn,r −→ ∞. Sufficient conditions guaranteeing the existence
of such approximating sequence are given in [1, Proposition 3.2].
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Remark 2.3. Also note that under the assumption (A2), f is locally bounded
and hence, for every φ ∈ D(A), we have Dφ(ξ) ∈ D(A∗). This follows from the
fact that if φ ∈ D(A), by definition Aφ ∈ B(E). Thus for any ball Br(E) of E

of radius r, sup{|Aφ(ξ)|, ξ ∈ Br(E)} < ∞. Since f is locally bounded on E, and
Dφ(ξ) ∈ E∗, we also have sup{|〈Dφ(ξ), f(t, ξ)〉E∗,E |, ξ ∈ Br(E)} < ∞. Thus it
follows from the defining relation (4), that sup{|〈A∗Dφ(ξ), ξ〉E∗,E |, ξ ∈ Br(E)} <

∞. This implies that A∗Dφ(ξ) must belong to E∗ for every ξ ∈ Br(E). Since
r(> 0) is arbitrary, this implies that Dφ(ξ) ∈ D(A∗) for every ξ ∈ E.

Theorem 2.2. Suppose {A, f, g, ν} satisfy the assumptions (A1) and (A2)
and that, for each ξ ∈ E, t −→ f(t, ξ) is integrable (in Lebesgue–Bochner sense)

with respect to the Lebesgue measure while t −→ g(t, ξ) is integrable (Lebesgue–

Bochner) with respect to the measure |ν|(·) induced by the variation of the mea-

sure ν. Then for each x0 ∈ E, the evolution equation

dx(t) = Ax(t)dt + f(t, x(t))dt + g(t, x(t−))ν(dt), t ∈ I,

x(0) = x0, (8)

has a measure valued solution λ ∈ Lw
∞(`, Πba(E)) ∩ Lw

∞(|ν|,Πba(E)) in the sense

of Definition 2.1. This assertion remains valid also for L(x0) = π ∈ Πba(E).

Proof. Proof is very similar to that of [1, Theorem 3.1, p. 471] and thus
omitted. ¤

Remark 2.4. In case both f and g are uniformly bounded on I × E, and
{A, ν} satisfy the assumption (A1), and π has bounded support in E, the measure
solution λt has bounded support for all finite t.

3. Differential equations on the space of measures

In view of the Definition 2.1 and the preceding result, we can reformulate
our original Cauchy problem (8), which was defined on the Banach space E, into
a Cauchy problem on the Banach space of finitely additive measures Mba(E) as
follows:

dµt = A∗(t)µtdt + C∗(t)µt−ν(dt), t ≥ s,

µs = π, (9)
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where A∗ and C∗ are the formal duals of the operators A and C respectively. This
is the differential version of the functional equation (7) or equivalently

dµt(ϕ) = µt(A(t)ϕ)dt + µt−(C(t)ϕ)ν(dt), t ≥ s,

µs(ϕ) = π(ϕ), ϕ ∈ D(A). (10)

This of course covers the original Cauchy problem as a special case for s = 0.
According to our existence result (Theorem 2.2), we have seen that this

equation has a solution in the weak sense (Definition 2.1). Hence it follows from
this result that, for each initial state π ∈ Πba(E) ⊂ Mba(E), the evolution
equation (9) has at least one solution µ ∈ Lw

∞(`, Πba(E)) ∩ Lw
∞(|ν|,Πba(E)) ⊂

Lw
∞(`,Mba(E))∩Lw

∞(|ν|,Mba(E)) which is piece wise weak* continuous. Conse-
quently, there exists a piece wise weak* continuous transition operator U∗(t, s),
t ≥ s ≥ 0, which is a family of linear operators on the Banach space Mba(E)
defining the evolution of the measure solution,

µt = U∗(t, s)π. (11)

It is easy to verify that |µt(ϕ)| ≤ ‖ϕ‖B(E) for all ϕ ∈ B(E). Thus the operator
U∗(t, s), 0 ≤ s ≤ t < ∞, is nonexpansive, that is, for arbitrary γ ∈ Mba(E), we
have

‖U∗(t, s)γ‖Mba(E) ≤ ‖γ‖Mba(E), 0 ≤ s ≤ t ≤ T

and so bounded on Mba(E).
So far we have not discussed the question of uniqueness of solutions. In the

time invariant case, a uniqueness result was proved in [1] under the assumption
that A is a spectral operator. This assumption was dispensed with in [14]. Thus
we may assume that the evolution operator U∗(t, s), 0 ≤ s ≤ t < ∞, is unique
implying uniqueness of measure solutions.

Remark 3.1. The jump in the measure solution µ at any atom {t} of the
driving measure ν is given by the signed measure

∆µt ≡ µt − µt− = ν({t})C∗(t)µt−.

If the operator C(t) is taken as that given by (6) which is independent of ν({t}),
the impact is multiplicative only as seen in the above expression; while if (5) is
used the operator itself is dependent on the atom and the impact is two fold one
multiplicative and the other a translation by ν({t})g(t, ·).
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4. Differential inclusions

Results presented above can be extended to differential inclusions of the form:

dx ∈ Axdt + F (t, x)dt + G(t, x)ν(dt),L(x0) = π0 ∈ Πba(E), (12)

where F,G are suitable multi functions. For technical reasons only, here we
restrict ourselves to Borel measurable vector fields and multi functions. Let BI×E

denote the Borel algebra of subsets of the set I × E and BM(I × E,E) denote
the space of bounded BI×E measurable functions from I × E to E in the sense
that the inverse image (with respect to f ∈ BM(I × E, E)) of any Borel set in
the range space E is an element of BI×E . Since E is a Banach space, furnished
with the sup norm topology

sup{‖f(t, x)‖E , (t, x) ∈ I × E},

BM(I ×E, E) is also a Banach space. Let BMM(I ×E, 2E \ ∅) denote the class
of nonempty BI×E measurable multi functions in the sense that for every open
set O ⊂ E, the set

F−(O) ≡ {(t, ξ) ∈ I × E : F (t, ξ) ∩ O 6= ∅} ∈ BI×E ,

and that

‖F (t, ξ)‖o ≡ sup{‖e‖E : e ∈ F (t, ξ)} < ∞ ∀ (t, ξ) ∈ I × E.

We are particularly interested in the following two classes of multi functions,
BMM(I×E,wkc(E)) and BMM(I×E, kc(E)), where wkc(E)

(
kc(E)

)
denotes

the class of nonempty weakly compact (compact) convex subsets of E.

Theorem 4.1. Suppose the following assumptions hold. (a1): E is a sep-

arable Banach space and A is the infinitesimal generator of a C0 semigroup of

operators in E, (a2): F ∈ BMM(I ×E, wkc(E)) and G ∈ BMM(I ×E, kc(E)),
(a3): ν is a bounded signed measure having bounded variation on bounded sets.

Then, for every π0 ∈ Πba(E), the system (12) has a nonempty set of measure

solutions Λ(F, G, π0) ⊂ Lw
∞(`, Πba(E))∩Lw

∞(|ν|, Πba(E)) which is w∗-sequentially

compact.

Proof. Clearly, under the assumption (a2), the multi functions F and G

take values from c(E), the class of nonempty closed subsets of E, and that they
are measurable with respect to the Borel field of sets BI×E . Since (I ×E,BI×E)
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is a measurable space and E a separable Banach space (hence a Polish space), by
the well known Kuratowski–Ryll Nardzewski selection theorem [10, Theorem 2.1,
p. 154], both F and G have BI×E measurable selections. We choose any pair
of such measurable selections {f, g} of the multi functions {F,G}. Then we use
Theorem 2.2 of this paper to conclude that the system

dx = Axdt + f(t, x(t))dt + g(t, x(t−))ν(dt),L(x0) = π0 (13)

has a measure solution λ ≡ λ(f, g) ∈ Lw
∞(`,Πba(E)) ∩ Lw

∞(|ν|, Πba(E)) in the
sense of Definition 2.1. In other words, the evolution equation,

dλt = A∗f (t)λtdt + C∗g (t)λt−ν(dt), λ0 = π0, (14)

has a weak solution λ = λ(f, g) ∈ Lw
∞(`,Πba(E)) ∩ Lw

∞(|ν|, Πba(E)), where the
operators {Af , Cg} are precisely the operators as defined by (4) and (5) corre-
sponding to f and g respectively. In fact, it follows from Theorem 2.2 that every
pair {f, g} of measurable selections of {F,G} determines a unique weak solution
of the evolution equation (14) in the sense of Definition 2.1. Thus the solution set
denoted by Λ(F,G, π0) is a nonempty subset of Lw

∞(`,Πba(E))∩Lw
∞(|ν|, Πba(E)).

Since the set
Lw
∞(`, Πba(E)) ∩ Lw

∞(|ν|,Πba(E))

is a weak* compact subset of Lw
∞(`,Mba(E)) ∩ Lw

∞(|ν|,Mba(E)) we conclude
that the set Λ(F, G, π0) is relatively weak* compact, that is, its weak* closure
is weak* compact. Thus for weak* sequential compactness, it suffices to prove
that Λ(F, G, π0) is weak* sequentially closed. Let {λn} be any sequence from
the set Λ(F,G, π0) and suppose it converges in the weak* topology to an element
λ0 ∈ Lw

∞(`, Πba(E)) ∩ Lw
∞(|ν|, Πba(E)). We must show that λ0 ∈ Λ(F, G, π0).

Since λn ∈ Λ(F,G, π0) there exists a sequence {fn, gn} of BI×E measurable se-
lections of {F, G} so that λn = λ(fn, gn). Again we use the assumption (a2), in
particular the properties that F takes values from wkc(E) and G takes values
from kc(E). Using this we can prove that there exists a subsequence of the se-
quence {fn, gn}, relabeled as the original sequence, and a pair of BI×E measurable
selections {f0, g0} of the multis F and G respectively, so that

fn(t, e) w−→ f0(t, e) in E

gn(t, e) s−→ g0(t, e) in E

point wise on I × E and hence on compact subsets of I × E. Then using the
Definition 2.1, we write equation (14) in its weak form using the pairs of vector
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fields {fn, gn} and {f0, g0} respectively for any choice of ϕ ∈ D(A) with Dϕ

having compact support. Taking the difference of the corresponding expressions
and using the convergence properties stated above, we can then verify relatively
easily that λ0 coincides with the solution λ(f0, g0) of equation (14) correspond-
ing to f = f0 and g = g0 in the weak sense. Thus we have λ0 ∈ Λ(F,G, π0)
thereby proving that the set Λ(F, G, π0) is sequentially weak* closed and hence
sequentially weak* compact. This completes the proof. ¤

The result of Theorem 4.1 has interesting applications. One such application
is given in the following corollary.

Corollary 4.2. Suppose the assumptions of Theorem 4.1 hold. Let t → Γ(t),
considered as the target, be a multi function on I with values in c(E) (class of

nonempty closed subsets of E) and continuous in the Hausdorff metric. Let Ψ
be an upper semi continuous (possibly nonnegative, nondecreasing) real valued

function. Then the functional,

J(λ) ≡
∫

I

Ψ(λt(Γ(t)))dt, (15)

attains its maximum on Λ(F, G, π0).

Proof. Let λn ⊂ Λ(F,G, π0) be a maximizing sequence. Since this set is
weak* sequentially compact, there exists a subnet, relabeled as λn and a λo ∈
Λ(F, G, π0) so that λn w∗−→ λo. By virtue of our assumption that ν has bounded
variation on bounded sets, it has at most a countable set of atoms. Hence both
λn and λo are weak* continuous a.e on I. Thus λn

t (Γ(t)) −→ λo
t (Γ(t)) a.e on I.

Then by upper semi continuity of Ψ we have

lim sup
n→∞

Ψ(λn
t (Γ(t))) ≤ Ψ(λo

t (Γ(t))), a.e on I.

Integrating this over the interval I, it follows from Fatou’s Lemma that

lim sup
n→∞

∫

I

Ψ(λn
t (Γ(t)))dt ≤

∫

I

lim sup
n→∞

Ψ(λn
t (Γ(t)))dt ≤

∫

I

Ψ(λo
t (Γ(t)))dt,

and hence
lim sup

n→∞
J(λn) ≤ J(λo).

Thus J is weak* upper semi continuous on Λ(F,G, π0). Since this set is weak*
sequentially compact, J attains its maximum at λo ∈ Λ(F,G, π0). This completes
the proof. ¤
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Remark 4.1. Note that maximizing the functional (15) can be interpreted in
physical terms as maximizing the probability of close pursuit of the target Γ(t)
during the entire time interval I. In case Γ(t) is considered as a pursuer, one
wants to evade it and the functional (15) must be minimized. In this case Ψ is
assumed to be lower semi continuous and bounded away from −∞. This leads to
the conclusion that the functional (15) attains its minimum.

5. Applications to optimal control

Let Ξ be a real separable Banach space and f : I × E × Ξ −→ E be a Borel
measurable map. Throughout the rest of this section, the vector field f is assumed
to satisfy the following regularity condition:

(A3:) The vector field f : I × E × Ξ −→ E is Borel measurable in the first
two variables and continuous in the third argument.

Consider the control system

dx(t) = Ax(t)dt + f(t, x(t), u)dt + g(t, x(t−))ν(dt), x(0) = x0, (16)

with the control u ∈ Uad where Uad denotes the class of admissible controls as
defined below.

Admissible Controls. Let Ξ be a separable Banach space and BM(I ×
E, Ξ) the vector space of bounded Borel measurable functions defined on I×E and
taking values from the Banach space Ξ. Furnished with the sup norm topology,
this is a Banach space. We give this space a weaker topology. Let τwu denote the
topology of weak convergence in Ξ, uniformly on compact subsets of I ×E. That
is, a sequence {un} from BM(I ×E, Ξ) is τwu convergent to uo ∈ BM(I ×E, Ξ)
written, un τwu−→ uo, if and only if

lim
n→∞

(η(t, ξ), un(t, ξ)− uo(t, ξ))Ξ∗,Ξ = 0

uniformly on I × E, for every η ∈ BM(I × E, Ξ∗) having compact support in
I × E. Let U be a weakly compact subset of Ξ and U : I × E −→ cc(U) a Borel
measurable multi function with nonempty closed convex values. For admissible
controls we take the set Uad given by the family of Borel measurable selections of
the multi function U ,

Uad ≡
{
u ∈ BM(I × E, Ξ) : u(t, x) ∈ U(t, x) ∀ (t, x) ∈ I × E

}
. (17)
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Note that by virtue of Kuratowski–Ryll Nardzewski selection theorem [10, Theo-
rem 2.1, p. 154] this is a nonempty set. We consider Uad to be endowed with the
relative τwu topology.

Let λu denote the measure solution of equation (16) corresponding to an
admissible control u ∈ Uad. The first problem we consider is as described below.

Problem P1. The problem is to find a control that maximizes the proba-
bility of closely following a moving target, Γ(t), t ∈ I. In other words find u that
maximizes the functional

J(u) =
∫

I

Ψ(λu
t (Γ(t)))dt, (18)

where Ψ is any nonnegative nondecreasing real valued function.
Define the multi function

F (t, x) ≡ f(t, x, U(t, x)), (t, x) ∈ I × E.

Since f satisfies assumption (A3) and U is a measurable multi function, the
composition map F is a measurable multi function [15, Theorem 8.2.8, p. 314].
Clearly, the system (16) can be considered as a particular realization of the dif-
ferential inclusion

dx ∈ Axdt + F (t, x)dt + g(t, x−)ν(dt), x(0) = x0. (19)

Since {F, g} are only measurable maps, in view of (14), equation (19) should be
recast as a differential inclusion on the space Mba(E) as follows

dλt ∈ A∗F (t)λtdt + C∗g (t)λt−ν(dt), π0 = δx0 , t ∈ I, (20)

where AF ≡ {Af , f ∈ SF } with SF denoting the set of measurable selections of
the multi function F .

Theorem 5.1. Suppose {A,F, ν} satisfy the assumptions of Theorem 4.1,

{Γ,Ψ} satisfy the assumptions of Corollary 4.2, and g is a single valued locally

bounded Borel measurable map and L(x0) = π0 ∈ Πba(E). Then the optimal

control problem (P1) with the objective functional (18) has a solution.

Proof. Note that the functional (18) is equivalent to (15) written as

J̃(λ) ≡
∫

I

Ψ(λt(Γ(t)))dt (21)

for λ ∈ Λ(F, g, π0). Thus it follows from Corollary 4.2 that there exists a
λo ∈ Λ(F, g, π0) at which (21) attains its maximum. Letting SF denote the Borel
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measurable selections of the multi function F , we conclude that there exists an
fo ∈ SF so that λo = λ(fo, g). Clearly the multi function H given by

H(t, x) ≡ {v ∈ U(t, x) : fo(t, x) = f(t, x, v)}, (t, x) ∈ I × E

is nonempty and it is also measurable since f : I×E×Ξ −→ E satisfies assumption
(A3) and the multi function U is assumed to be measurable with values in cc(E).
Thus the graph of the multi function H given by

Gr(H) ≡ {(t, ξ, v) ∈ Gr(U) : fo(t, ξ) = f(t, ξ, v)}

is an element of BI×E×BΞ. Then it follows from Yankov–Von Neumann–Aumann
[10, Theorem 2.14, p. 158] selection theorem that there exists a measurable se-
lection uo of H such that uo(t, x) ∈ H(t, x) for all (t, x) ∈ I × E. Hence
fo(t, x) = f(t, x, uo(t, x)) for all (t, x) ∈ I × E. Thus we have proved that
J(uo) = J̃(λo). This completes the proof. ¤

Another interesting problem, similar to (P1) arises in applications requiring
obstacle avoidance strategies.

Problem P2. Let Γ(t) ⊂ E be a nonempty possibly closed bounded mea-
surable set valued function. The concern is to stay away from this obstacle as far
as possible. The problem can be formulated as follows: Let d(ξ, Γ(t)) denote the
distance of ξ from the set Γ(t) given by

d(ξ, Γ(t)) ≡ inf
γ∈Γ(t)

‖ξ − γ‖E .

For any positive number r, define the multi function

Qr(t) ≡ {ξ ∈ E : d(ξ, Γ(t)) > r}, t ∈ I,

and, for any Borel measurable set K ⊂ E, let χK denote the characteristic func-
tion of the set K. The problem is to find a control that maximizes the functional

J(u) ≡
∫

I×E

χQr(t)(ξ) λu
t (dξ)dt. (22)

Maximizing this functional is equivalent to avoiding r-neighborhood of the obsta-
cle. In this regard we have the following result.

Theorem 5.2. Suppose {A,F, g, ν} satisfy the assumptions of Theorem 5.1.

Let t −→ Γ(t) be a nonempty measurable set valued function with values in c(E).
Then there exists an optimal control uo ∈ Uad that maximizes the functional (22).
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Proof. Measurability of the multi function Γ implies measurability of the
function t −→ d(ξ, Γ(t)). This in turn implies that Qr is also a measurable multi
function. Thus the function ψ(t, ξ) ≡ χQr(t)(ξ) is a Borel measurable function
and it belongs to L1(I,B(E)). Hence the functional C defined by,

C(λ) ≡
∫

I×E

ψ(t, ξ)λt(dξ)dt,

is a weak* continuous bounded linear functional on Lw
∞(I,Mba(E)). This is pre-

cisely the cost functional given by the expression (22) with λu replaced by λ ∈
Lw
∞(I,Mba(E)). Since Λ(F, g, π0) is a weak* compact subset of Lw

∞(I, Πba(E)),
the functional C as defined above attains its maximum at some point λo ∈
Λ(F, g, π0). The rest of the proof based on measurable selection theorem is en-
tirely similar to that of the preceding theorem. This completes our proof. ¤

Next we consider the Bolza problem.

Problem (P3). Consider the control system

dx = Axdt + f(t, x)dt + K(t, x)u(t, x)dt + g(t, x)ν(dt) (23)

with the cost functional given by

J(u) =
∫ T

0

{`0(t, x(t)) + ρ(t, x(t))|u(t, x(t))|Ξ}dt + Ψ(x(T )), (24)

where {A, f, g, ν} are as before, K ∈ BM(I × E,L(Ξ, E)) and the control u ∈
BM(I ×E, Ξ). The objective is to find a control u that minimizes the functional
(24). Clearly this is how the original problem would be stated though equation
(23) may have no solution in the classical sense (weak, mild, strong). This is be-
cause we admit measurable (non smooth) vector fields and so (23) may not posses
any E-valued path wise solutions x. Thus again the appropriate formulation of
this problem is: find an admissible control that minimizes the functional

J(u) ≡
∫

I×E

{
`0(t, ξ) + ρ(t, ξ)|u(t, ξ)|Ξ

}
λu

t (dξ)dt + λu
T (Ψ), (25)

where λu is the measure solution of equation (23) or equivalently the weak solution
of the evolution equation

dλt = A∗(t)λtdt + B∗u(t)λtdt + C∗(t)λt−ν(dt), λ0 = π0 (26)
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where the operators A and C are as given by the expressions (4) and (5) respec-
tively and the operator Bu is given by

(Buϕ)(t, ξ) ≡ 〈K∗(t, ξ)Dϕ(ξ), u(t, ξ)〉Ξ∗,Ξ.

For admissible controls, we choose a subset Uad of the space BM(I×E, Ξ) which
is endowed with the τwu topology as described above. We prove the following
result.

Theorem 5.3. Consider the control problem (P3) and suppose that Uad is

a τwu compact subset of BM(I × E, Ξ) and the dual Ξ∗ is a uniformly convex

Banach space. Suppose {A, f, g, ν} satisfy the assumptions of Theorem 2.2 with

T /∈ a(ν) and K : I × E −→ L(Ξ, E) is a bounded Borel measurable map. The

function `0 is Borel measurable on I × E bounded from below by an integrable

function and ρ is a nonnegative function having bounded support in E and Ψ is

a Borel measurable function bounded on bounded sets satisfying Ψ(ξ) > −∞ on

E. Then there exists an optimal control for the problem (P3).

Proof. Consider the cost functional J(u) given by (25). If J(u) ≡ +∞
(identically) there is nothing to prove. So we may assume the contrary and,
without loss of generality, we may assume that it is bounded on all of Uad. We
prove that J is τwu lower semi continuous on Uad. Let un τwu−→ uo. Then by
virtue of the assumption on the operator valued function K, it can be shown that
the weak solution {λn}, corresponding to the sequence of controls {un} of the
Cauchy problem (26), has a weak* convergent subnet having the limit λo which
is the unique weak solution of (26) corresponding to the control uo. Clearly by
definition the corresponding cost functional is given by

J(uo) ≡
∫

I×E

{
`0(t, ξ) + ρ(t, ξ)|uo(t, ξ)|Ξ

}
λo

t (dξ)dt + λo
T (Ψ). (27)

Let β : Ξ −→ Ξ∗ denote the normalized duality map, that is, for each z ∈ Ξ,

β(z) ≡ {z∗ ∈ Ξ∗ : (z∗, z) = |z|Ξ}.

By Hahn–Banach theorem this set is nonempty. Since Ξ∗ is uniformly convex,
the duality map is single valued and uniformly continuous. Using this fact we
write

|uo(t, ξ)|Ξ = (β(uo(t, ξ)), uo(t, ξ)) ≡ (ηo(t, ξ), uo(t, ξ)),

where we have defined ηo ≡ β(uo). Since β is continuous and uo is a Borel
measurable Ξ valued function, ηo(t, ξ) is a bounded Ξ∗ valued Borel measurable
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function on I × E satisfying |ηo(t, ξ)|Ξ∗ = 1 for all (t, ξ) ∈ I × E. Using the
function ηo in equation (27), it is easy to verify that for all n ∈ N ,

J(uo) ≤ I1,n + I2,n + J(un). (28)

where

I1,n ≡
∫

I×E

(
`0(t, ξ) + ρ(t, ξ)|uo(t, ξ)|Ξ

)
(λo

t (dξ)− λn
t (dξ))dt + λo

T (Ψ)− λn
T (Ψ),

I2,n ≡
∫

I×E

{
ρ(t, ξ)(ηo(t, ξ), uo(t, ξ)− un(t, ξ))

}
λn

t (dξ)dt.

Since λn converges to λo in the weak* topology of

Lw
∞(`,Mba(E)) ∩ Lw

∞(|ν|,Mba(E)),

the first component of I1,n converges to zero as n −→ ∞. Recall that by our
assumption (A1) of Section 2, ν is a bounded signed measure having bounded
variation on bounded sets. Thus ν can have at most a countable set of atoms
on I and hence the measure solution is piece wise weak* continuous on I with
at most a countable set of discontinuities arising from the atoms a(ν) of the
measure ν. By our assumption T /∈ a(ν) and hence {λn

T , λo
T } are well defined

and λn
T (Ψ) −→ λo

T (Ψ) also. Thus we have limn→∞ I1,n = 0. Recalling that
ρ has compact support, and un τwu−→ uo, it follows from Lebesgue dominated
convergence theorem that the integrand of the second term I2,n converges strongly
in L1(I,B(E)) while λn converges in the weak* topology of its dual. Hence
limn→∞ I2,n = 0 also. Thus it follows from (28) that

J(uo) ≤ lim inf
n→∞

J(un),

proving that J is τwu lower semi continuous on Uad. Since Uad is τwu compact, J

attains its minimum on Uad. This proves the existence of an optimal control. ¤

Remark 5.1. The assumption of uniform convexity of the Banach space Ξ∗

is probably not necessary. All that is required is the existence of a measurable
selection of the multi function (t, ξ) −→ β(uo(t, ξ)). It is easy to verify that the
multi function β : Ξ −→ 2B1(Ξ

∗) \ ∅ is monotone with values from the class of
nonempty weak* compact convex subsets of the unit ball B1(Ξ∗) of the dual Ξ∗.

Remark 5.2. The assumption of ρ having compact support on I × E seems
to be unnatural. This is very much interwound with the topology of the space of
admissible controls. Thus if one is weakened the other must be strengthened. For
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example, if one can accept a stronger topology for the space of controls requiring
weak convergence in Ξ on bounded subsets of I ×E, then ρ can be chosen as any
nonnegative (uniformly) bounded measurable function on I × E.

Control of Uncertain Systems. So far we have not exploited the full po-
tential of Theorem 4.1 in applications. We consider this partially below. Consider
the control system:

dx = Axdt + f(t, x, u)dt + g(t)ν(dt), x(0) = x0, (29)

subject to uncertain impulsive forces. The uncertainty arises from the fact that
the function g is unknown. However it is known that it takes values from the set
of uncertainty determined by the multi function G with values G(t, x(t−)) which
may depend on current time and state. In other words the intensity of impulsive
forces are both time and state dependent. We will assume that G : I × E −→
kc(E), the class of nonempty compact convex subsets of E. The system (29) can
be formulated as a differential inclusion as follows:

dx ∈ Axdt + f(t, x, u)dt + G(t, x)ν(dt), x(0) = x0. (30)

Our problem is to control this system in the presence of uncertainty. Adopting
the pessimistic viewpoint one tries to minimize the maximum risk or losses. Thus
the optimal control problem may be stated as follows:

Problem P4. Let L : I×E×Ξ −→ R and Ψ : E −→ R be Borel measurable
maps satisfying certain properties stated later. The problem is to find uo that
minimizes the functional

J0(u) = sup
{∫

I

L(t, x(t), u)dt + Ψ(x(T )) : x ∈ X (u, x0)
}

, (31)

where X (u, x0) denotes the family of solutions of the differential inclusion (30) for
a given control policy u and initial state x0. In case there is also uncertainty in the
initial state and we know the range of values it may assume, giving x0 ∈ X0 ⊂ E,
the supremum is taken over the set X (u,X0) ≡ {X (u, ξ) : ξ ∈ X0}. This is
how the problem would be stated if the vector fields {f, g} were at least locally
Lipschitz. In our formulation, we do not make such regularity assumptions. Thus
we must use measure formulation as we have done above.

Suppose we know the distribution of the initial state given by L(x0) = π0.
For the contingent function F we take

F (t, ξ) ≡ f(t, ξ, U(t, ξ)), (t, ξ) ∈ I × E. (32)
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Accordingly we reformulate the control problem as follows. The system is gov-
erned by the evolution inclusion

dλt ∈ A∗F (t)λtdt + C∗G(t)λt−ν(dt),

λ0 = π0, t ∈ I, (33)

on the Banach space Mba(E) where AF ≡ {Af , f ∈ SF }, CG ≡ {Cg, g ∈ SG}
with SF , SG denoting the class of Borel measurable selections of the multi func-
tions F and G respectively. The objective functional (31) is replaced by the
following functional

J0(u) = sup
{ ∫

I×E

L(t, ξ, u(t, ξ))λt(dξ)dt

+
∫

E

Ψ(ξ)λT (dξ), λ ∈ Λ(fu, G, π0)
}

(34)

where Λ(fu, G, π0) denotes the set of measure solutions of the system (33) corre-
sponding to a choice of an admissible control u and hence a measurable selection
fu ≡ f(·, ·, u(·, ·)) of F . Given that T /∈ a(ν), there is no particular difficulty
dealing with the terminal cost. Hence we consider only the Lagrange problem

J0(u) = sup
{

C(u, λ) ≡
∫

I×E

L(t, ξ, u(t, ξ))λt(dξ)dt, λ ∈ Λ(fu, G, π0)
}

. (35)

Our objective is to prove the existence of an optimal control for this problem.

Theorem 5.4. Suppose {A,F,G, π0} satisfy the assumptions of Theo-

rem 4.1, the cost integrand L : I×E×Ξ −→ R is Borel measurable and bounded

on bounded sets, and the map

v −→ (L(t, ξ, v), f(t, ξ, v))

is continuous from Ξ to R × E for every (t, ξ) ∈ I × E, and that the set valued

function

Q(t, ξ) ≡ {(z, η) ∈ R× E : z ≥ L(t, ξ, v), η = f(t, ξ, v), v ∈ U(t, ξ)} (36)

defined on I × E is closed convex valued. Further, suppose there exists a ψ ∈
L1(I, B(E)) such that L(t, ξ, v) ≥ ψ(t, ξ) for all v ∈ U(t, ξ). Then there exists a

control uo ∈ Uad such that J0(uo) ≤ J0(u), u ∈ Uad.
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Proof. By theorem 4.1, for every u ∈ Uad the set Λ(fu, G, π0) is weak*
compact. Hence for a fixed but arbitrary u ∈ Uad, the functional λ −→ C(u, λ)
given by the expression within the parenthesis of equation (35) attains its supre-
mum on Λ(fu, G, π0). Thus the functional J0(u) is well defined possibly taking
values from the extended real line. Since ψ ∈ L1(I, B(E)), we have J0(u) > −∞
for all u ∈ Uad. If J0(u) = +∞ for all u ∈ Uad, there is nothing to prove. So we
may assume the contrary. In this case there exists an m ∈ (−∞,+∞) such that

inf{J0(u), u ∈ Uad} = m.

We must prove the existence of at least one admissible control uo at which
J0(uo) = m. Let {un} ⊂ Uad be a minimizing sequence so that

lim
n→∞

J0(un) = m. (37)

Corresponding to the sequence un ∈Uad, define the sequence {`n, fn} by {`n(t, ξ)≡
L(t, ξ, un(t, ξ))}, {fn(t, ξ) ≡ f(t, ξ, un(t, ξ))}. Let λn ∈Λ(fn, G, π0) ⊂ Λ(F,G, π0)
be an element at which the function λ −→ C(un, λ) attains its supremum. Since
the set Λ(fn, G, π0) is weak* compact, the supremum is attained for every n ∈ N .
Thus by construction we have

J0(un) =
∫

I×E

`n(t, ξ)λn
t (dξ)dt (38)

and
(`n(t, ξ), fn(t, ξ)) ∈ Q(t, ξ), (t, ξ) ∈ I × E, (39)

for all n ∈ N . Since L is bounded on bounded sets the function ˆ̀(t, ξ) ≡
sup{L(t, ξ, v), v ∈ U(t, ξ)} is well defined Borel measurable function on I × E.
Thus without any change of the original problem we may replace the multi func-
tion Q by Q̂ given by

Q̂(t, ξ) ≡ {
(z, η) ∈ R× E : ˆ̀(t, ξ) ≥ z ≥ L(t, ξ, v),

η = f(t, ξ, v), v ∈ U(t, ξ)
}
. (40)

By our assumption the multi function F is wkc(E) valued and hence it follows
from (40) that the multi function Q̂ is also wkc(R×E) valued. By Theorem 4.1,
Λ(F, G, π0) is weak* sequentially compact. Thus there exists a subnet of the net
{λn} and a corresponding subnet of the net {`n, fn}, relabeled as the original
nets, and λo ∈ Λ(F, G, π0) and Borel measurable functions {`o, fo} defined on
I × E and taking values from R× E such that

λn w∗−→ λo in Lw
∞(I, Πba(E))
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and
(`n(t, ξ), fn(t, ξ)) w−→ (`o(t, ξ), fo(t, ξ)) in R× E.

In fact this convergence is also uniform on compact subsets of I×E. Since Q(t, ξ)
is closed convex valued we have

(`o(t, ξ), fo(t, ξ)) ∈ Q(t, ξ) for all (t, ξ) ∈ I × E.

Here we have used the well known result (Mazur’s theorem) that states that a
convex set in a locally convex topological vector space is weakly closed if and only
if it is strongly (norm) closed. Define the set valued function B on I × E with
values

B(t, ξ) ≡ {v ∈ U(t, ξ) : `o(t, ξ) ≥ L(t, ξ, v), fo(t, ξ) = f(t, ξ, v)}.

By virtue of measurability of the defining functions, B is a nonempty measurable
multi function. Further, for any fixed (t, ξ) ∈ I × E, it follows from continuity
of the map v −→ (L(t, ξ, v), f(t, ξ, v)) from Ξ to R × E, that B(t, ξ) has closed
values in U ⊂ Ξ. Thus again by Kuratowski–Ryll Nardzewski selection theorem
there exists a measurable selection uo of B such that

`o(t, ξ) ≥ L(t, ξ, uo(t, ξ)) and fo(t, ξ) = f(t, ξ, uo(t, ξ))∀ (t, ξ) ∈ I × E. (41)

Since `n(t, ξ) −→ `o(t, ξ) uniformly on compact subsets of I ×E, for any nonneg-
ative bounded continuous function ρ defined on I × E having compact support
we have `nρ

s−→ `oρ in L1(I,B(E)). Thus for every such ρ

∫

I×E

(`n(t, ξ)ρ(t, ξ))λn
t (dξ)dt −→

∫

I×E

(`o(t, ξ)ρ(t, ξ))λo
t (dξ)dt.

Since this holds for every bounded continuous ρ ≥ 0 having compact support,
where the support may vary with the choice of ρ, and |m| < ∞, we have

m ≡ lim
n→∞

∫

I×E

`n(t, ξ)λn
t (dξ)dt =

∫

I×E

`o(t, ξ)λo
t (dξ)dt.

From this and the first inequality of (41) we may conclude that

m ≥
∫

I×E

`o(t, ξ)λo
t (dξ)dt ≥

∫

I×E

L(t, ξ, uo(t, ξ))λo
t (dξ)dt ≡ J0(uo).

Since m is the infimum of J0(·) on Uad which is closed and uo ∈ Uad, we have
J0(uo) ≥ m. Thus it follows from the above expression that J0(uo) = m proving
the existence of an optimal control. ¤
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Some Comments on Applications. The notion of measure solution is
rather recent and has not yet captured the attention of the main stream control
community. However we have seen some applications of Measure solutions in
Fluid dynamics involving Navier–Stokes equation with boundary controls. Exis-
tence of optimal controls including necessary conditions of optimality have been
developed in [16]. In fact it is believed that the notion of measure solution may
have a significant impact on the study and control of hydro-dynamic turbulence.
Concept of measure solution has also found application in the study of nonlinear
conservation laws [9] and problems in fluid dynamic phase transitions [12]. We
believe that many of the nonlinear wave equations and Schrödinger equations with
potentials having polynomial or even exponential growth which do not admit any
(strong, mild,weak) solution may posses global measure solutions.

Some Open Questions. [1]: It is not necessary to restrict ν to a (scalar
valued) signed measure. In fact the results presented can be easily extended to
vector measure ν with values in another Banach space, say, F . In that case g is
an operator valued map

g : E −→ L(F, E)

and the vector measure ν is a countably additive bounded vector measure having
bounded total variation on I. This requires that g admits an approximating
sequence {gn} such that gn ∈ L(F, [D(A)]) where [D(A)] ⊂ E denotes the Banach
space with respect to the norm topology induced by the graph norm, ‖ξ‖D(A) ≡
‖ξ‖E + ‖Aξ‖E . [2]: For some applications it may be necessary to admit vector
fields {f, g}mapping (E, ΣE) to (E,BE), where ΣE is an algebra rather than Borel
algebra. It is not clear to the author if the selection theorems due to Kuratowski–
Ryll Nardzewski or Yankov–Von Neumann–Aumann hold in this general case?
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