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Characteristic classes and Ehresmann connections

for Legendrian foliations

By BENIAMINO CAPPELLETTI MONTANO (Bari)

Abstract. We find a necessary and sufficient condition for the (local) projectabil-

ity of a Legendrian foliation of an almost S-manifold onto a Lagrangian foliation of a

symplectic manifold. In the context of Legendrian foliations, this result will be used

for proving a Darboux theorem and some results about primary and secondary char-

acteristic classes. Finally we show that, under suitable assumptions, every Legendrian

foliation admits an Ehresmann connection.

1. Introduction

In recent years Legendrian foliations have been studied by several authors

([9], [18], [23], [24]) and from various points of view. In [10] the author intro-

duced a linear connection, called bi-Legendrian, which is canonically attached to

any Legendrian foliation of an almost S-manifold (M2n+r, φ, ξα, ηα, g) and satis-

fies very natural properties with respect both to the Legendrian foliation and to

the almost S-structure: it preserves the foliation, and the 1-forms ηα and the fun-

damental 2-form Φ are parallel with respect to this connection. In this paper we

present some applications of bi-Legendrian connections in the context of Legen-

drian foliations. We start with the following question: is it possible to project (of

course, locally) a Legendrian foliation of an almost S-manifold onto a Lagrangian

foliation of a symplectic manifold? We find a necessary and sufficient condition
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in order to have this projection using in the proof the property that the parallel

transport of bi-Legendrian connections preserves the Legendrian foliation in ques-

tion. Then we prove a Darboux theorem for Legendrian foliations. This theorem

was already proved by M. Y. Pang ([24]) for the case r = 1; however our proof

uses completely different methods which are valid also for the case r > 1. Another

consequence of the (local) projectability of Legendrian foliations is the possibility

of characterizing bi-Legendrian connections as the lifts of bi-Lagrangian connec-

tions. We prove this fact in § 4.2 and then we will use it for proving a theorem

which ensures that a Legendrian foliation, under some assumptions, admits an

Ehresmann connection. This result is the analogue of a theorem of R. Wolak

([32]) about Ehresmann connections for Lagrangian foliations. Finally we present

a basic theory of characteristic classes for Legendrian foliations, following the

standard Bott’s methods ([7]). We prove vanishing theorem for primary char-

acteristic classes and then we draw conclusions of these theorems for secondary

characteristic classes in the framework of Lehmann’s theory ([22] or [28]).

2. Preliminaries

2.1. Almost S-structures. An f -structure on a smooth manifold M of dimen-

sion m is defined by a non-vanishing tensor field φ of type (1, 1) and constant

rank 2n which satisfies φ3 + φ = 0. It is well known that T (M) splits into two

complementary subbundles Im(φ) and ker(φ). When 2n < m and ker(φ) is paral-

lelizable we say that we have an f -structure with parallelizable kernel, briefly an

f · pk-structure. In this case there exist global sections ξ1, . . . , ξr of ker(φ) which,

together with their dual 1-forms η1, . . . , ηr, satisfy

φ2 = −I +
r∑

α=1

ηα ⊗ ξα, ηα(ξβ) = δαβ ,

from which it follows that φ(ξα) = 0 and ηα ◦φ = 0 for all α ∈ {1, . . . , r}. Almost

complex and almost contact structures are f · pk-structures according as r = 0

and r = 1, respectively. It is known that, given an f · pk-manifold (M, φ, ξα, ηα),

there exist Riemannian metrics g on M such that

g (φ(V ), φ(W )) = g(V, W ) −
r∑

α=1

ηα(V )ηα(W ) (1)

for all V, W ∈ Γ(T (M)). If g is any metric satisfying (1) we say that (φ, ξα, ηα, g) is

a metric f ·pk-structure. Therefore, the tangent bundle of a metric f ·pk-manifold
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splits as complementary orthogonal sum of its subbundles Im(φ) and ker(φ). We

denote their respective differentiable distributions by H and E. Let Φ be the

2-form defined by Φ(V, W ) = g(V, φ(W )). A metric f · pk-manifold M2n+r with

structure (φ, ξα, ηα, g) is called an almost S-manifold if dη1 = · · · = dηr = Φ.

This definition reduces to that one of contact metric manifold for r = 1. In the

following lemma we recall some properties of an almost S-structure:

Lemma 2.1. Let (M2n+r, φ, ξα, ηα, g) be an almost S-manifold. Then we

have:

(i) Φ(W, ξα) = 0 for all W ∈ Γ(T (M)) and α ∈ {1, . . . , r};

(ii) H =
⋂r

α=1 ker(ηα) and (H, Φ) is a symplectic vector bundle;

(iii) [ξα, ξβ ] = 0 and [Z, ξα] ∈ Γ(H) for all Z ∈ Γ(H) and α, β ∈ {1, . . . , r};

(iv) Lξα
ηβ = Lξα

dηβ = 0, for all α, β ∈ {1, . . . , r};

(v) for each α ∈ {1, . . . , r}, ξα is a Killing vector field if and only if Lξα
φ = 0.

Note that from (iii) it follows easily that the distribution E = span{ξ1, . . . , ξr}

is integrable, hence it defines a flat r-dimensional foliation E of the (2n + r)-

dimensional almost S-manifold M . On the contrary, the 2n-dimensional distri-

bution H is not integrable, since it can be seen that η1 ∧ · · · ∧ ηr ∧ (dηα)n 6= 0.

For the proofs of these properties and more details on almost S-manifolds, good

references are, for instance, [1], [8] and [13].

2.2. Legendrian foliations. Let (M2n+r, φ, ξα, ηα, g) be an almost S-manifold.

A n-dimensional distribution L on M is called Legendrian if L is a subbundle of

H and Φ(X, X ′) = 0 for any X, X ′ ∈ Γ(L). When L is involutive, the foliation F

determined by L is called a Legendrian foliation. We denote by L⊥ the orthogonal

bundle of L. Then, setting Q = H∩L⊥, we obtain another Legendrian distribution

on M such that φ(L) = Q and we get the orthogonal decomposition T (M) =

L⊕Q⊕E1⊕· · ·⊕Er = L⊕Q⊕E, where Eα denotes the line bundle generated by ξα.

Such a Legendrian distribution Q = φ(L) is called the conjugate Legendrian

distribution of L. In general Q is not involutive, even if L is; precisely, for any

Y, Y ′ ∈ Γ(Q), [Y, Y ′] ∈ Γ(H). In [9] there are some results which ensure the

integrability of Q under the assumption that L is integrable. When both L and

Q = φ(L) are integrable, we have an example of a bi-Legendrian structure, that is

a pair of two complementary Legendrian foliations of M . A Legendrian foliation

is said to be flat (respectively, strongly flat) if ξ :=
∑r

α=1 ξα (respectively, each

ξ1, . . . , ξr) is a foliate vector field, i.e. if [X, ξ] ∈ Γ(L) whenever X ∈ Γ(L). In the

sequel we will make use of the following lemma, proven in [9].
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Lemma 2.2. Let (M, φ, ξα, ηα, g) be an almost S-manifold such that each

ξα is a Killing vector field and F a Legendrian foliation on M . If F is strongly

flat then also its conjugate Legendrian distribution is strongly flat.

In [10] it has been proven that, given a pair of two complementary Legen-

drian distributions (L, Q) on the almost S-manifold (M, φ, ξα, ηα, g), there exists

a unique linear connection ∇ on M such that:

(i) ∇L ⊂ L, ∇Q ⊂ Q and, for all α ∈ {1, . . . , r}, ∇Eα ⊂ Eα;

(ii) ∇Φ = 0;

(iii) T (X, Y ) = 2Φ(X, Y )ξ, for all X ∈ Γ(L), Y ∈ Γ(Q),

T (V, ξα)= [ξα, VL]Q+[ξα, VQ]L, for all V ∈Γ(T (M)), α∈{1, . . . , r},

(2)

where T denotes the torsion tensor of ∇ and VL and VQ, respectively, are the

projections of V onto the subbundles L and Q of T (M). Such a connection is

called the bi-Legendrian connection associated to the pair (L, Q). In particular,

to any Legendrian foliation F of M there is a canonically attached bi-Legendrian

connection corresponding to the pair (L, Q), where L = T (F) and Q = φ(L) is the

conjugate Legendrian distribution of F , and the leaves of F are totally geodesic

submanifolds of M with respect to ∇. We recall the definition of this connection:

∇V X := H(VL, X)L + [VQ, X ]L + [VE , X ]L,

∇V Y := H(VQ, Y )Q + [VL, Y ]Q + [VE , Y ]Q,

∇V Z := V (ηα(Z))ξα,

for all V ∈ Γ(T (M)), X ∈ Γ(L), Y ∈ Γ(Q) and Z ∈ Γ(E), where H denotes the

operator such that, for all V, W ∈ Γ(T (M)), H(V, W ) is the unique section of H

satisfying iH(V,W )Φ|H = (LV iW Φ)|H. Furthermore, we have the following results

on the curvature of ∇ ([10]):

Proposition 2.3. Let L and Q be two complementary strongly flat Legen-

drian distributions on the almost S-manifold (M, φ, ξα, ηα, g). Then the curvature

tensor of the bi-Legendrian connection associated to (L, Q) satisfies

R(V, ξα) = 0

for all α ∈ {1, . . . , r} and for all V ∈ Γ(T (M)).

Proposition 2.4. Let (F ,G) be a strongly flat bi-Legendrian structure on

the almost S-manifold (M, φ, ξα, ηα, g). Then the corresponding bi-Legendrian

connection is flat along the leaves of the foliations F and G.
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3. Projections of Legendrian foliations

Unless otherwise stated, (M, φ, ξα, ηα, g), α ∈ {1, . . . , r}, will denote an al-

most S-manifold of dimension 2n+r, N a 2n-dimensional manifold and f : M −→

N a submersion with connected fibers such that E coincides with the foliation de-

termined by the fibers of f . Then we have this first result:

Proposition 3.1. Under the assumptions and the notation above, the 2-

form Φ projects to a symplectic 2-form Ω on N .

Proof. Let X ′, Y ′ ∈ Γ(T (N)) and X, Y ∈ Γ(T (M)) be the basic vector

fields f -related to X ′ and Y ′, respectively. Define

Ω(X ′, Y ′) ◦ f = Φ(X, Y ).

Note that the definition of Ω is well posed, i.e. Φ(X, Y ) is constant on the fiber

f−1(x), x ∈ N . In fact, by by Lemma 2.1, we get ξα(Φ(X, Y )) − Φ([ξα, X ], Y ) −

Φ(X, [ξα, Y ]) = 0, for all α ∈ {1, . . . , r}. Now, since X and Y are basic, [ξα, X ]

and [ξα, Y ] are vertical vector fields, so Φ([ξα, X ], Y ) = Φ(X, [ξα, Y ]) = 0 and we

can conclude that ξα(Φ(X, Y )) = 0, for each α ∈ {1, . . . , r}. From the definition

of Ω, we have that Φ = f∗(Ω) and this implies that Ω is a symplectic form.

Indeed, we have

f∗(dΩ) = d(f∗(Ω)) = dΦ = 0

which implies dΩ = 0. Moreover, f∗(Ωn) = f∗(Ω)n = Φn 6= 0 and then Ωn 6= 0.

�

Therefore the 2-form Φ projects to a symplectic 2-form Ω on N and (N, Ω) is

a symplectic manifold. From the general theory of symplectic manifolds we know

that there exist Riemannian metrics g′ and almost complex structures J on N so

that

g′(X ′, J(Y ′)) = Ω(X ′, Y ′) (3)

for every X ′, Y ′ ∈ Γ(T (N)). Now we want to find g′ and J such that f :

(M, g) −→ (N, g′) becomes a Riemannian submersion. We note that if such

g′ and J exist, then

J ◦ f∗ = f∗ ◦ φ, (4)

i.e. f is a (φ, J)-holomorphic map (cf. [13]). Indeed, take X ′, Y ′ ∈ Γ(T (N)), let

X, Y ∈ Γ(T (M)) be the basic vector fields f -related to X ′ and Y ′, respectively,

and call Z ∈ Γ(T (M)) the basic vector field f -related to J(Y ′). Then, using Φ =

f∗(Ω) and ηα(X) = ηα(Y ) = 0 we have Φ(X, φ(Y )) = −g(X, Y ) = −g′(X ′, Y ′)◦f
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= Ω(X ′, J(Y ′)) ◦ f = f∗(Ω)(X, Y ) = Φ(X, Z), from which Z = φ(Y ) and it

follows

J(f∗(Y )) = J(Y ′) = f∗(Z) = f∗(φ(Y )).

Note that if there exist a Riemannian metric g′ and an almost complex structure

J satisfying (3) and which make f a (φ, J)-holomorphic map, such g′ and J are

unique. Now we are going to construct such g′ and J .

Proposition 3.2. With the notation above, the following statements are

equivalent:

(a) there exist a unique Riemannian metric g′ and a unique almost complex

structure J on N such that Ω(X ′, Y ′) = g′(X ′, J(Y ′)) for every X ′, Y ′ ∈

Γ(T (N)) and f is a (φ, J)-holomorphic Riemannian submersion;

(b) ξ1, . . . , ξr are Killing vector fields.

Moreover, if (a) or, equivalently, (b) holds, then (N, J, g′) is an almost Kählerian

manifold.

Proof. Note that, since E = span{ξ1, . . . , ξr}, the condition (b) is equiva-

lent to require that E is a Riemannian foliation, i.e. that f is a Riemannian sub-

mersion. Hence clearly (a) implies (b). For proving the vice versa we have only to

define the almost complex structure J . Let X ′ ∈ Γ(T (N)) and let X ∈ Γ(T (M))

be the basic vector field f -related to X ′. For any p ∈ M we can define

J
(
X ′

f(p)

)
= f∗p

(
φ(Xp)

)
.

since if p and q are points of M on the same fiber then we have

f∗p

(
φ(Xp)

)
= f∗q

(
φ(Xq)

)
.

Namely, this is equivalent to require that φ|H is “foliated” with respect to the

foliation E , i.e. constant along the leaves of the foliation, and this follows from (b),

applying (v) of Lemma 2.1. �

Now let F be a Legendrian foliation of (M2n+r, φ, ξα, ηα, g). We wonder

whether F projects to a Lagrangian foliation F ′ on the symplectic manifold

(N2n, Ω) under the submersion f .

Theorem 3.3. Let f : M −→ N be a submersion from a (2n+r)-dimensional

almost S-manifold (M, φ, ξα, ηα, g), endowed with a Legendrian distribution L,

onto a 2n-dimensional symplectic manifold (N, Ω), such that Φ = f∗(Ω) and

the foliation determined by the fibers of f coincides with E . Then the following

statements are equivalent:
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(a) L is a strongly flat Legendrian distribution, i.e. for all α ∈ {1, . . . , r} ξα is

an infinitesimal automorphism of the distribution L;

(b) L projects to a distribution L′ on N under the submersion f .

Moreover if (a) or, equivalently, (b) holds, then L′ is a Lagrangian distribution of

the symplectic manifold (N, Ω), and L is integrable if and only if L′ is integrable.

Proof. Suppose that L projects to a distribution L′ on N under the sub-

mersion f . Then there exists a local frame {X1, . . . , Xn, Y1, . . . , Yn, ξ1, . . . , ξr},

defined on an open subset U ⊂ M , where, for any i ∈ {1, . . . , n}, Xi ∈ Γ(L)

are basic vector fields, and, for all i ∈ {1, . . . , n}, f∗([Xi, ξα]) = 0, since they are

both vertical and horizontal vector fields by Lemma 2.1. Now, for a vector field

X ∈ Γ(L), locally written as X |U =
∑n

i=1 fiXi, for some fi ∈ C∞(U), we have

[X, ξα]|U = −
∑n

i=1 ξα(f)Xi ∈ Γ(L), so that L is strongly flat. Now we prove the

converse. Take x ∈ N and let p ∈ M such that x = f(p). Then we can define

L′
x := f∗p(Lp),

since the strongly flatness of L implies that for any p, q ∈ M such that f(p) =

x = f(q), one has

f∗p(Lp) = f∗q(Lq). (5)

Namely, let γ : I −→ M , I an open interval of R containing [0, 1], be a vertical

curve joining p with q, that is γ(0) = p, γ(1) = q and, for all t ∈ I, γ′(t) ∈

Eγ(t). Consider the parallel transport τ along γ with respect to the bi-Legendrian

connection ∇ associated to (L, Q), where Q = φ(L). Then we prove that f∗q ◦τ =

f∗p on Lp. Indeed let v ∈ Lp and let X : I −→ T (M) be the unique vector field

along γ such that ∇γ′X = 0 and X(0) = v. Then X(1) = τ(v). Observe that, in

fact, for all t ∈ I, X(t) ∈ Lγ(t), since τ preserves the distribution L. Let Y ′ be

any vector field on N and Y the corresponding basic vector field on M . Then we

have

d

dt

(
Ω
(
f∗γ(t)

(
X(t), Y ′

f(γ(t))

)))
=

d

dt

(
Φ(X(t), Yγ(t))

)

= Φ(∇γ′X, Y )γ(t) + Φ(X,∇γ′Y )γ(t)

= Φ(X,∇γ′YQ)γ(t)

because X is ∇-parallel and the bi-Legendrian connection preserves the distrib-

utions L and Q. Now, since for all t ∈ I, γ′(t) ∈ Eγ(t), for some functions aα we

have

∇γ′YQ =
r∑

α=1

aα∇ξα
YQ =

r∑

α=1

aα[ξα, YQ]Q
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=

r∑

α=1

aα

(
[ξα, Y ]Q − [ξα, YL]Q − [ξα, YE ]Q

)
=

r∑

α=1

aα[ξα, Y ]Q = 0,

since L is strongly flat and Y is basic. Thus d
dt

(Ω(f∗γ(t)(X(t)), Y ′
f(γ(t)))) = 0

and this implies that Ω(f∗p(X(0)), Y ′
x) = Ω(f∗q(X(1)), Y ′

x), from which f∗p(v) =

f∗p(τ(v)), Y ′ being arbitrary. Now, since τ(Lp) = Lq, we have f∗p(Lp) =

f∗q(τ(Lp)) = f∗p(Lp) and (5) holds. Therefore L projects to a subbundle L′ of

T (N). Now we prove the last part of the theorem, i.e. that L′ defines a foliation on

N if and only if L is integrable. Indeed let X ′, Y ′ ∈ Γ(L′). Then there exist unique

basic vector fields X, Y ∈ Γ(L) such that f∗p(Xp) = X ′
f(p) and f∗p(Yp) = Y ′

f(p)

for all p ∈ M . Since for all p ∈ M , [X ′, Y ′]f(p) = f∗p([X, Y ]p), L is integrable if

and only if L′ is integrable. Finally, to conclude the proof it remains to prove that

L′ = f∗(L) is a Lagrangian distribution of the symplectic manifold (N, Ω). First

of all observe that, for all p ∈ M , dim(L′
f(p)) = dim(Lp) = n = 1

2 dim(Tf(p)N).

Then, let X ′, Y ′ ∈ Γ(L′). Let X, Y ∈ Γ(L) be the unique basic vector fields

on M which project to X ′ and Y ′, respectively. Then, since L is a Legendrian

distribution, we have Ω(X ′, Y ′) ◦ f = Φ(X, Y ) = 0, and L′ is Lagrangian. �

Corollary 3.4. Let f : M2n+r −→ N2n be a submersion from an almost

S-manifold (M2n+r, φ, ξα, ηα, g) onto a symplectic manifold (N2n, Ω), such that

Φ = f∗(Ω) and the foliation determined by the fibers of f coincides with E . Let

(L, Q) be a pair of complementary Legendrian distributions on M (in particular

a bi-Legendrian structure on M). Then the following statements are equivalent:

(a) (L, Q) is strongly flat, that is each ξα is an infinitesimal automorphism with

respect to both L and Q;

(b) (L, Q) projects to a pair of transversal Lagrangian distributions on (N2n, Ω)

(in particular to a bi-Lagrangian structure on (N2n, Ω)).

Corollary 3.5. Suppose that we are under the assumptions of Corollary 3.4

and, moreover, suppose that each ξα is a Killing vector field. Let F be a strongly

flat Legendrian foliation of M and let Q = φ(L), L = T (F), be the conjugate

Legendrian distribution of F . Then the pair (L, Q) projects to a pair (L′, Q′) of

transversal Lagrangian distributions on N2n.

Proof. By Proposition 3.2, for all p, q ∈ M2n+r, we have f∗p(Qp) =

f∗p(φ(Lp)) = J(f∗p(Lp)) = J(f∗q(Lq)) = f∗q(φ(Lq)) = f∗q(Qq) and Q projects

to a Lagrangian distribution on (N2n, Ω). �
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4. Applications

4.1. Darboux theorem for Legendrian foliations. It is known ([3]) that

given an almost S-manifold (M2n+r, φ, ξα, ηα, g) around each point of M it is

possible to find coordinates {x′
1, . . . , x

′
n, y′

1, . . . , y
′
n, z′1, . . . , z

′
r} such that, locally,

ηα = dz′α −
∑n

k=1 y′
kdx′

k for all α ∈ {1, . . . , r}. Moreover, if M is endowed with

a Legendrian foliation F , there exist local coordinates {x′′
1 , . . . , x′′

n, y′′
1 , . . . , y′′

n,

z′′1 , . . . , z′′r } such that F is locally given by the equations {x′′
i = const., z′′α =

const.}. These two kind of coordinate systems, in general, do not coincide, but

they do if all the ξα’s are foliate vector fields, as we prove now.

Theorem 4.1. Let F be a strongly flat Legendrian foliation of an almost

S-manifold (M2n+r, φ, ξα, ηα, g). Then around each point of M there exist local

coordinates {x1, . . . , xn, y1, . . . , yn, z1, . . . , zr} such that locally F is defined by

the equations

{xi = const., zα = const.}

and, for all α ∈ {1, . . . , r}, ηα are given by ηα = dzα −
∑n

i=1 yidxi.

Proof. Since E is a foliation, using the definition of foliations by means of

cocycles, there exist a 2n-dimensional manifold N and a cocycle {Ui, fi, gij}i,j∈I

modelled on N which define the foliation E , that is: (i) {Ui}i∈I is an open covering

of M , (ii) for all i ∈ I, fi : Ui −→ N are submersions with connected fibers which

define E , (iii) for all i, j ∈ I such that Ui∩Uj 6= ∅, gij : fj(Ui∩Uj) −→ fi(Ui∩Uj)

are local diffeomorphisms such that gij ◦ fj = fi on Ui ∩ Uj. Now let p ∈ M .

There exists i ∈ I such that p ∈ Ui. From now on we work always on Ui,

dropping, for simplicity of notation, the index to Ui and to the relative submersion

fi : Ui −→ N . Since F is strongly flat, we can use Theorem 3.3. Therefore the

2-form Φ projects to a symplectic 2-form Ω on N and F projects to a Lagrangian

foliation F ′ on the symplectic manifold (N, Ω). Let x = f(p). By a well-known

theorem about Lagrangian foliations ([29]), around x there exist local coordinates

{x′
1, . . . , x

′
n, y′

1, . . . , y
′
n} such that F ′ is described by the equations {x′

i = const.}

and Ω is given by Ω =
∑n

k=1 dx′
k ∧ dy′

k. As usual, let L = T (F) and L′ = T (F ′)

be the tangent bundles of the foliations F and F ′, respectively. Consider each
∂

∂y′

i

∈ Γ(L′), i ∈ {1, . . . , n}. There exist basic vector fields Y1, . . . , Yn ∈ Γ(L)

such that, for all i ∈ {1, . . . , n}, f∗(Yi) = ∂
∂y′

i

. Analogously there exist basic

vector fields X1, . . . , Xn such that f∗(Xi) = ∂
∂x′

i
, for all i ∈ {1, . . . , n}. Note

that [Xi, ξα] = [Yi, ξα] = 0 because Xi and Yi are basic vector fields. Moreover

f∗([Yi, Yj ]) =
[

∂
∂y′

i

, ∂
∂y′

j

]
= 0, so [Yi, Yj ] is vertical. On the other hand, since L

is integrable, [Yi, Yj ] ∈ Γ(L). Thus [Yi, Yj ] = 0. Finally, we examine the terms
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[Xi, Yj ] and [Xi, Xj ]. For the latter we have f∗([Xi, Xj ]) =
[

∂
∂x′

i
, ∂

∂x′

j

]
= 0, and,

for all α ∈ {1, . . . , r}, since Φ = dηα and Φ = f∗(Ω),

ηα([Xi, Xj ]) = −2Ω

(
∂

∂x′
i

,
∂

∂x′
j

)
◦ f = −2

(
n∑

k=1

dx′
k ∧ dy′

k

)(
∂

∂x′
i

,
∂

∂x′
j

)
◦ f = 0

so [Xi, Xj] is both vertical and horizontal, hence vanishes. For [Xi, Yj ] we have

f∗([Xi, Yj ]) =

[
∂

∂x′
i

,
∂

∂y′
j

]
= 0

and

ηα([Xi, Yj ]) = −2Ω

(
∂

∂x′
i

,
∂

∂y′
j

)
◦ f

= −2

(
n∑

k=1

dx′
k ∧ dy′

k

)(
∂

∂x′
i

,
∂

∂y′
j

)
◦ f = −δij

so [Xi, Yj ] = −
∑r

α=1 δijξα. Thus, we have found 2n + r linearly independent

vector fields X1, . . . , Xn, Y1, . . . , Yn, ξ1, . . . , ξr such that

[Xi, Xj ] = [Yi, Yj ] = [Xi, ξα] = [Yi, ξα] = [ξα, ξβ ] = 0, [Xi, Yj ] = −δij

r∑

α=1

ξα,

i, j ∈ {1, . . . , n}, α, β ∈ {1, . . . , r}. Hence there exist coordinates {x1, . . . , xn,

y1, . . . , yn, z1, . . . , zr} such that

ξα =
∂

∂zα

, Yi =
∂

∂yi

and Xi =
∂

∂xi

+ yi

r∑

α=1

∂

∂zα

,

for all α ∈ {1, . . . , n}, i ∈ {1, . . . , n}. Note that

(f∗(dy′
k))

(
∂

∂xi

)
= dy′

k

(
f∗

(
Xi − yi

r∑

α=1

ξα

))
= dy′

k

(
∂

∂x′
i

)
= 0,

(f∗(dy′
k))

(
∂

∂yi

)
= dy′

k

(
∂

∂y′
i

)
= δki

and

(f∗(dy′
k))

(
∂

∂zα

)
= dy′

k

(
f∗

(
∂

∂zα

))
= 0,
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so, for all k ∈ {1, . . . , n}, f∗(dy′
k) = dyk, and, analogously, we have f∗(dx′

k) =

dxk. Therefore

dηα = f∗(Ω) = f∗

(
n∑

k=1

dx′
k ∧ dy′

k

)
=

n∑

k=1

dxk ∧ dyk.

Thus, for all α ∈ {1, . . . , r}, d
(
ηα +

∑n
k=1 ykdxk

)
= 0, hence ηα = dhα −∑n

k=1 ykdxk for some functions hα. Finally, ηα(Xi) = 0, ηα

(
∂

∂yi

)
= 0, ηα

(
∂

∂zβ

)
=

ηα(ξβ) = δαβ imply ∂hα

∂xi
= 0, ∂hα

∂yi
= 0 and ∂hα

∂zβ
= δαβ , respectively, from which

dhα = dzα follows and so ηα = dzα −
∑n

k=1 ykdxk. �

4.2. An interpretation of bi-Legendrian connections. Now we use the

technique of projections of Legendrian foliations described in § 3 for showing

another way of defining bi-Legendrian connections. As in Proposition 3.1 and

Theorem 3.3, we suppose that there is a submersion f : M −→ N from a (2n+r)-

dimensional almost S-manifold (M, φ, ξα, ηα, g) to a 2n-dimensional manifold N

such that ker(f∗p) = Ep for all p ∈ M . Let (L, Q) be a pair of two complemen-

tary strongly flat Legendrian distributions on M . From Corollary 3.4 it follows

that the 2-form Φ projects to a symplectic 2-form Ω and the Legendrian distri-

butions L, Q onto the transversal Lagrangian distributions L′, Q′, respectively.

Thus, according to [17], there exists a unique linear connection ∇′ on N such that

1. ∇′L′ ⊂ L′, ∇′Q′ ⊂ Q′;

2. ∇′ is symplectic, i.e. ∇′Ω = 0;

3. T ′(X ′, Y ′) = 0 for X ′ ∈ Γ(L′) and Y ′ ∈ Γ(Q′),

where T ′ denotes the torsion tensor field of ∇′. The connection ∇′ is called

the bi-Lagrangian connection associated to the pair (L′, Q′). Now we lift this

connection to a linear connection ∇ on M2n+r as follows. For any basic vector

fields X, Y ∈ Γ(T (M)), f -related to X ′, Y ′ ∈ Γ(T (N)), respectively, we define

∇XY as the unique basic vector field on M f -related to ∇′
X′Y ′, i.e. the unique

horizontal vector field such that

f∗(∇XY ) = ∇′
f∗(X)f∗(Y ); (6)

for each α ∈ {1, . . . , r} and W ∈ Γ(T (M)), we put

∇ξα = 0, ∇ξα
W = [ξα, W ]. (7)

In fact, (7) implies that, for any basic vector field X ∈ Γ(T (M)), f∗(∇Xξα) =

0 = ∇′
f∗(X)f∗(ξα) and f∗(∇ξα

X) = f∗([ξα, X ]) = 0 = ∇′
f∗(ξα)f∗(X).
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Proposition 4.2. The above linear connection ∇ coincides with the bi-

Legendrian connection associated to the pair of strongly flat bi-Legendrian dis-

tributions (L, Q).

Proof. We have to verify the relations in (2). The first property follows

directly by the definition of ∇. Indeed, clearly, from ∇ξα = 0 we have that

∇Eα ⊂ Eα. Next, let X ∈ Γ(L) and Y ∈ Γ(Q). We can suppose that X and Y

are basic vector fields f -related to X ′ ∈ Γ(L′) and Y ′ ∈ Γ(Q′) respectively. Since

∇′L′ ⊂ L′ and ∇′Q′ ⊂ Q′, we have f∗(∇ZX) = ∇′
f∗(Z)f∗(X) = ∇′

f∗(Z)X
′ ∈ Γ(L′)

and f∗(∇ZY ) = ∇′
f∗(Z)f∗(Y ) = ∇′

f∗(Z)Y
′ ∈ Γ(Q′), for any basic vector field Z

on M . Thus ∇ZX ∈ Γ(L) and ∇ZY ∈ Γ(Q). Finally, for all α ∈ {1, . . . , r}, as L

and Q are strongly flat, ∇ξα
X = [ξα, X ] ∈ Γ(L) and ∇ξα

Y = [ξα, Y ] ∈ Γ(Q) for

all X ∈ Γ(L) and Y ∈ Γ(Q). So (i) is verified. Now we can prove (ii). First of

all, for all α ∈ {1, . . . , r}, for all V, W ∈ Γ(T (M))

(∇ξα
Φ)(V, W ) = ξα(Φ(V, W )) − Φ([ξα, V ], W ) − Φ(V, [ξα, W ])

= (Lξα
Φ)(V, W ) = 0

and (∇V Φ)(W, ξα) = V (Φ(W, ξα)) − Φ(∇V W, ξα) − Φ(W,∇V ξα) = 0. It remains

to check that (∇ZΦ)(X, Y ) = 0 for all X ∈ Γ(L), Y ∈ Γ(Q) and Z ∈ Γ(H). It

is sufficient to prove the property for basic vector fields. Assume that X , Y , Z

are basic vector fields f -related to X ′ ∈ Γ(L′), Y ′ ∈ Γ(Q′) and Z ′ ∈ Γ(T (N)),

respectively. Then, since Φ = f∗(Ω), we get easily

(∇ZΦ)(X, Y ) = (∇′
Z′Ω)(X ′, Y ′) ◦ f = 0.

To verify (iii), let V ∈ Γ(T (M)). Then

T (V, ξα) = −[ξα, V ] − [V, ξα] = 0 = [ξα, VL]Q + [ξα, VQ]L

since L and Q are strongly flat. Finally, we prove that

T (X, Y ) = 2Φ(X, Y )ξ (8)

for X ∈ Γ(L) and Y ∈ Γ(Q). As T is a tensor field it is sufficient to prove (8) when

X and Y are basic vector fields. Then, denoting by X ′ ∈ Γ(L′) and Y ′ ∈ Γ(Q′)

the vector fields on N f -related to X and Y , respectively, we have

T (X, Y ) = ∇XY −∇Y X − h[X, Y ] − v[X, Y ]
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where h[X, Y ] and v[X, Y ] denote the horizontal and the vertical component of

[X, Y ]. Since h[X, Y ] is the basic vector field f -related to [X ′, Y ′], we have

f∗(T (X, Y )) = f∗(∇XY −∇Y X − h[X, Y ])

= ∇′
f∗(X)f∗(Y ) −∇′

f∗(Y )f∗(X) − [f∗(X), f∗(Y )]

= ∇′
X′Y ′ −∇′

Y ′X ′ − [X ′, Y ′] = T ′(X ′, Y ′) = 0

by the definition of bi-Lagrangian connections. So T (X, Y ) is vertical. Since

∇H ⊂ H, we get T (X, Y ) = −v[X, Y ] = −
n∑

α=1
ηα([X, Y ]) =

n∑
α=1

2dηα(X, Y )ξα =

2Φ(X, Y )ξ. �

In general, given an almost S-manifold M2n+r, as in Theorem 4.1, since E is a

foliation, there exists a 2n-dimensional manifold N and a cocycle {Ui, fi, gij}i,j∈I

modelled on N which define E . So we can locally construct the connection ∇

as in Proposition 4.2, and then, using the properties of cocycles, define a global

connection on M which, by Proposition 4.2, is just the bi-Legendrian connection

associated to the given pair (L, Q) of strongly flat Legendrian distributions on M .

In more detail, we have the following

Theorem 4.3. Let (L, Q) be a pair of strongly flat Legendrian distributions

on the almost S-manifold (M2n+r, φ, ξα, ηα, g) and {Ui, fi, gij}i,j∈I a cocycle,

modelled on a 2n-dimensional manifold N , defining the foliation E . Then (L, Q)

projects to a pair of transversal Lagrangian distributions on N and the corre-

sponding bi-Lagrangian connection lifts to the bi-Legendrian connection on M

associated to (L, Q).

Proof. From Corollary 3.4 it follows that, for each i ∈ I, the 2-form Φ

projects to a symplectic 2-form Ωi on N , and the pair of Legendrian distributions

(L, Q) projects to a pair of transversal Lagrangian distributions (L′
i, Q

′
i), under

the submersion fi : Ui −→ N . Note that for i, j ∈ I such that Ui ∩ Uj 6= ∅ the

corresponding projections Ωi and Ωj of Φ satisfy

f∗
j (Ωj) = Φ = f∗

i (Ωi) = (gij ◦ fj)
∗(Ωi) = f∗(g∗ij(Ωi))

from which, since fj is a submersion, we get Ωj = g∗ij(Ωi), so gij are local symplec-

tomorphisms between the symplectic manifolds (N, Ωi) and (N, Ωj). Moreover,

L′
i = fi∗(L) = gij∗(fj∗(L)) = gij∗(L

′
j)

and

Q′
i = fi∗(Q) = gij∗(fj∗(Q)) = gij∗(Q

′
j),
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that is (L′
i, Q

′
i) and (L′

j , Q
′
j) are locally equivalent. Now, for each i ∈ I, let ∇′(i)

denote the bi-Lagrangian connection associated to (L′
i, Q

′
i). Then we claim that

gij are affine (local) diffeomorphisms between (N,∇′(j)) and (N,∇′(i)), that is

gij∗

(
∇

′(j)
X′ Y ′

)
= ∇

′(i)
gij∗(X′)gij∗(Y

′).

Indeed, we define a connection ∇̃ on fj(Ui∩Uj) as the pull-back of ∇′(i) by means

of the diffeomorphism gij : fj(Ui ∩ Uj) −→ fi(Ui ∩ Uj), so setting

gij∗

(
∇̃X′Y ′

)
= ∇

′(i)
gij∗(X′)gij∗(Y

′).

If we prove that ∇̃ satisfies all the properties which characterize the bi-Lagrangian

connection associated to (L′
j , Q

′
j), then, from the uniqueness of such a connection,

we conclude that ∇̃ = ∇′
j and so gij are affine. So, first of all, ∇̃Ωj = 0,

because gij are affine symplectomorphisms. Moreover, as ∇′(i) preserves L′
i and

L′
i = gij∗(L

′
j), we have gij∗(∇̃L′

j) = ∇′(i)(gij∗(L
′
j)) = ∇′(i)L′

i ⊂ L′(i), from which

it follows that ∇̃L′
j ⊂ L′

j. Analogously ∇̃Q′
j ⊂ Q′

j . Finally, we prove that

T̃ (X ′, Y ′) = 0 for all X ′ ∈ Γ(L′
j) and Y ′ ∈ Γ(Q′

j). Indeed we get

gij∗(T̃ (X ′, Y ′)) = T ′(i)(gij∗(X
′), gij∗(Y

′)) = 0

because gij∗(X
′) ∈ Γ(L′

i) and gij∗(Y
′) ∈ Γ(L′

j). The last step is to lift the bi-

Lagrangian connection ∇′ on N to a connection ∇ on M . We can do it locally,

on each Ui ⊂ M , using the submersion fi : Ui −→ N . Let Xi, Yi be basic vector

fields on Ui fi-related to X ′, Y ′ ∈ Γ(T (N)), respectively; then we define ∇i
Xi

Yi as

the unique vector field on Ui such that fi∗(∇i
Xi

Yi) = ∇
′(i)
fi∗(Xi)

fi∗(Yi) and we check

that this definition gives rise to a global connection ∇ on M . Indeed, consider

i, j ∈ I such that Ui ∩ Uj 6= ∅. On Ui ∩ Uj we have the connections ∇i and ∇j ,

defined by the formulas

fi∗(∇
i
Xi

Yi) = ∇
′(i)
fi∗(Xi)

fi∗(Yi), fj∗(∇
j
Xj

Yj) = ∇
′(j)
fj∗(Xj)fj∗(Yj).

We prove that, on Ui ∩ Uj, ∇i = ∇j . Note that if Xi is the basic vector field

fi-related to X ′, then Xi is also the basic vector field fj-related to gij∗(X
′). In

fact Xi is horizontal also for fj , as ker(fi∗) = E = ker(fj∗), and

(fj∗)p((Xi)p) = (gij∗)fj(p)(X
′
fj(p)),

since fi(p) = gij(fj(p)) and gij = g−1
ji . Then, we get

fi∗(∇
i
Xi

Yi) = gij∗(fj∗(∇
j
Xi

Yi)) = fi∗(∇
j
Xi

Yi),
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which implies that ∇i
Xi

Yi − ∇j
Xi

Yi is vertical. Since it is also horizontal, we

deduce ∇i
Xi

Yi = ∇j
Xi

Yi. Moreover, clearly, ∇iξα = 0 = ∇jξα and, on Ui ∩ Uj,

∇i
ξα

V = [ξα, X ] = ∇j
ξα

V . So we obtain a global connection ∇ on M which, by

Proposition 4.2, coincides with the bi-Legendrian connection associated to the

pair (L, Q). �

5. Characteristic classes for Legendrian foliations

As usual, given a Lie group G, we will denote by the same symbol Ik(G)

both the algebra of k-multilinear, symmetric, ad(G)-invariant functions on the Lie

algebra g of G and the algebra of ad(G)-invariant polynomials of degree k. Let F

be a Legendrian foliation of the almost S-manifold (M2n+r, φ, ξα, ηα, g) and Q a

Legendrian distribution complementary to L = T (F). This implies a reduction of

the structure group to G = O(n) ×O(n) × Ir . Hence I(G) = I(O(n)) ⊗ I(O(n)).

The algebra I(O(n)) has been computed (see, for example, [20]). It is generated

by the [n
2 ] ad(O(n))-invariant polynomials c′2, c

′
4, . . . , where c′i are given by the

formula

det(B − λIn) =
n∑

i=0

c′i(B)λn−i, B ∈ gl(n, R),

with c′0(B) = 1, c′1(B) = tr(B), . . . , c′n(B) = det(B). Let A ∈ g, A = A1 +

A2, with A1, A2 ∈ o(n). It is easy to see that, for k ∈ {1, . . . , 2n}, ck(A) =∑k
i=0 c′i(A1)c

′
k−i(A2) are the ad(G)-invariant polynomials determined by the for-

mula

det(A − λI2n) =

2n∑

i=0

ck(A)λ2n−k, A ∈ gl(2n, R),

and in particular the products c′i ⊗ c′j are generators for I(G).

5.1. Primary characteristic classes. Let L = T (F), as usual, be the tangent

bundle of the Legendrian foliation F and suppose that (L, Q) is strongly flat.

From Theorem 4.1 it follows that there exist local coordinates such that

(i) L = span
{

∂
∂yj

}
j=1,...,n

,

(ii) Q = span{Xi}i=1,...,n, where Xi = ∂
∂xi

−
∑n

l=1 tli
∂

∂yl
−
∑r

α=1 sα
i

∂
∂zα

, for some

smooth functions tli, s
α
i ,

(iii) ξα = ∂
∂zα

for each α ∈ {1, . . . , r}.

Moreover, with respect to these coordinates, Φ is given by Φ =
∑n

k=1 dxk ∧ dyk.

Consider now the bi-Legendrian connection ∇ associated to (L, Q).
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Proposition 5.1. With respect to the coordinates stated in Theorem 4.1

the bi-Legendrian connection ∇ associated to (L, Q) has the following local ex-

pression:

(a) ∇ ∂
∂yj

∂
∂yi

= 0, ∇ ∂
∂zα

∂
∂yi

= 0, ∇Xj

∂
∂yi

=
∑n

k=1

∂tk
j

∂yi

∂
∂yk

,

(b) ∇ ∂
∂yj

Xi = 0, ∇ ∂
∂zα

Xi = 0, ∇Xj
Xi = −

∑n
k=1

∂ti
j

∂yk
Xk,

(c) ∇ ∂
∂yi

∂
∂zα

= ∇Xi

∂
∂zα

= ∇ ∂
∂zβ

∂
∂zα

= 0,

and the torsion tensor T of ∇ is given by:

T

(
∂

∂yi

,
∂

∂yj

)
= 0, T

(
∂

∂yi

, Xj

)
= −δij

r∑

α=1

∂

∂zα

, T

(
∂

∂yi

,
∂

∂zα

)
= 0,

T

(
Xi,

∂

∂zα

)
= 0, T

(
∂

∂zα

,
∂

∂zβ

)
= 0, T (Xi, Xj) = −

n∑

k=1

τijk

∂

∂yk

,

where

τijk =
∂tki
∂xj

−
∂tkj
∂xi

+

n∑

h=1

thi
∂tkj
∂yh

−
n∑

h=1

thj
∂tki
∂yh

and Q is integrable if and only if τijk ≡ 0.

Proof. Obviously, as ∇ξα = 0, we have (c). Then, by a straightforward

computation we have H
(

∂
∂xi

, ∂
∂xj

)
=H

(
∂

∂yh
, ∂

∂yk

)
=H

(
∂

∂xi
, ∂

∂yh

)
=H

(
∂

∂xi
, ∂

∂zα

)
=

H
(

∂
∂yh

, ∂
∂zα

)
=H

(
∂

∂zα
, ∂

∂zβ

)
=0, for all i, j, h, k∈{1, . . . , n} and α, β ∈{1, . . . , r}.

Then, we have

∇ ∂
∂yj

∂

∂yi

= H

(
∂

∂yj

,
∂

∂yi

)

L

= 0

and, by a long computation,

∇Xj
Xi = H(Xi, Xj)Q = −H

(
tij

∂

∂yi

,
∂

∂xi

)

Q

.

Now we prove

H

(
tij

∂

∂yi

,
∂

∂xi

)

Q

=
n∑

k=1

∂tij
∂yk

Xk (9)

and we get ∇Xj
Xi = −

∑n
k=1

∂ti
j

∂yk
Xk. Indeed, for each h ∈ {1, . . . , n}, we have

Φ

(
n∑

k=1

∂tij
∂yk

Xk,
∂

∂yh

)
=

1

2

∂tij
∂yh

= Φ

(
H

(
tij

∂

∂yi

,
∂

∂xi

)

Q

,
∂

∂yh

)
.
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Since Φ is non-degenerate on H, (9) follows. The other relations are easy to prove.

In fact, since ξα = ∂
∂zα

,

∇ ∂
∂zα

∂

∂yi

=

[
∂

∂zα

,
∂

∂yi

]

L

= 0

and

∇ ∂
∂zα

Xi =

n∑

j=1

(
∂tji
∂zα

∂

∂yi

)

Q

+

r∑

β=1

(
∂sβ

i

∂zα

∂

∂zβ

)

Q

= 0.

Finally,

∇Xj

∂

∂yi

=

n∑

k=1

(
∂tkj
∂yi

∂

∂yk

)

L

+

r∑

α=1

(
∂sα

j

∂yi

∂

∂zα

)

L

=

n∑

k=1

∂tkj
∂yi

∂

∂yk

,

and

∇ ∂
∂yj

Xi = −
n∑

k=1

(
∂tki
∂yj

∂

∂yk

)

Q

−
r∑

α=1

(
∂sα

i

∂yj

∂

∂zα

)

Q

= 0

and this proves the first part of the proposition. Some direct computations, finally,

prove the relations about the torsion tensor. In particular, since T (Y, Y ′) =

−pQ⊥([Y, Y ′]) for Y, Y ′ ∈ Γ(Q) (cf. [10]), it follows that Q is integrable if and

only if the functions τijk vanish identically. �

Concerning the curvature of the bi-Legendrian connection ∇ corresponding

to the pair (L, Q), Proposition 2.3, 2.4 and 5.1 imply the following result.

Proposition 5.2. With respect to the coordinates stated in Theorem 4.1,

the curvature tensor of ∇ has the following local expression:

(i) R
(

∂
∂yi

, ∂
∂yj

)
= 0;

(ii) R
(

∂
∂yi

, Xj

)
∂

∂yk
=

n∑
h=1

∂2th
j

∂yi∂yk

∂
∂yh

, R
(

∂
∂yi

, Xj

)
Xk = −

n∑
h=1

∂2tk
j

∂yi∂yh
Xh,

R
(

∂
∂yi

, Xj

)
∂

∂zα
= 0;

(iii) R(Xi, Xj)
∂

∂yk
= −

n∑
h=1

∂τijk

∂yh

∂
∂yh

, R(Xi, Xj)Xk =
n∑

h=1

∂τijk

∂yh
Xh,

R(Xi, Xj)
∂

∂zα
= 0;

(iv) R
(

∂
∂yi

, ∂
∂zα

)
= R

(
Xi,

∂
∂zα

)
= R

(
∂

∂zα
, ∂

∂zβ

)
= 0.

According to [32] we give the following definition.
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Definition 5.3. Let F be a Legendrian foliation on the almost S-manifold

(M, φ, ξα, ηα, g) and let Q be a Legendrian distribution complementary to L =

T (F). Then the bi-Legendrian connection ∇ associated to (L, Q) is called tan-

gential if, for all X ∈ Γ(L),

(i) R(X, Y ) = 0 for all Y ∈ Γ(Q),

(ii) R(X, ξα) = 0 for all α ∈ {1, . . . , r}.

In particular, when F is strongly flat, the corresponding bi-Lagrangian con-

nection is tangential if and only if R(X, Y ) = 0 for all X ∈ Γ(L), Y ∈ Γ(Q).

When ∇ is tangential, from Proposition 5.2 we deduce that
∂2ti

j

∂yh∂yk
= 0 for all

h, k ∈ {1, . . . , n}, that is tij are leafwise affine functions and, in analogy with

Lagrangian foliations ([26], [27]), we say that Q is a Legendrian affine transversal

distribution for L. When this happens and under the assumption of strong flat-

ness of (L, Q), the curvature 2-form of ∇ has a very simple expression. Indeed

locally

Ω =
∑

1≤i<j≤n

Ωijdxi ∧ dxj +
∑

1≤i≤n
1≤h≤n

Ωihdxi ∧ dyh +
∑

1≤i≤n
1≤α≤r

Ωiαdxi ∧ dzα

+
∑

1≤h<k≤n

Ωhkdyh ∧ dyk +
∑

1≤h≤n
1≤α≤r

Ωhαdyh ∧ dzα +
∑

1≤α<β≤r

Ωαβdzα ∧ dzβ .

(Throughout all this work, if no confusion is feared, we identify forms on M with

their lifts to principal bundle of linear frames L(M).)

Now, the hypothesis of tangentiality and Corollary 5.2 yield

Ωαβ = Ω

(
∂

∂zα

,
∂

∂zβ

)
= 0, Ωhk = Ω

(
∂

∂yh

,
∂

∂yk

)
= 0,

Ωhα = Ω

(
∂

∂yh

,
∂

∂zα

)
= 0,

which imply

Ωih = Ω

(
∂

∂xi

,
∂

∂yh

)
= Ω

(
Xi,

∂

∂yh

)
= 0

and

Ωiα = Ω

(
∂

∂xi

,
∂

∂zα

)
= Ω

(
Xi,

∂

∂zα

)
= 0.

So Ω can be written as

Ω =
∑

1≤i<j≤n

Ωijdxi ∧ dxj ,



Characteristic classes and Ehresmann connections for Legendrian foliations 413

from which we deduce that Ωk vanishes for k >
[

n
2

]
. So, if f ∈ Ik(G) is an ad(G)-

invariant polynomial of degree k, we have that f(Ω) = 0 for k = deg(f) > [n
2 ].

This proves the following strong vanishing theorem for characteristic classes of

Legendrian foliations:

Theorem 5.4. Let F be a strongly flat Legendrian foliation on an almost S-

manifold (M, φ, ξα, ηα, g) of dimension 2n+ r. A necessary condition for F to ad-

mit a strongly flat Legendrian affine transversal distribution is that Pontj(N(F))

vanishes for j > n, where N(F) denotes the normal bundle of the foliation F and

Pont(N(F)) denotes the Pontryagin algebra of the bundle N(F).

This theorem points out an obstruction to the existence of a Legendrian

affine transversal distribution for the strongly flat Legendrian foliation F . In the

general case, when F does not admit such a transversal distribution, the above

arguments allow to get a weaker vanishing theorem:

Theorem 5.5. Let F be a strongly flat Legendrian foliation of the almost

S-manifold (M2n+r, φ, ξα, ηα, g) such that there exists a strongly flat Legendrian

distribution complementary to the tangent bundle of F . Then Pontj(N(F))

vanishes for j > 2n.

Proof. Indeed in this case Ω can be written as

Ω =
∑

1≤i<j≤n

Ωijdxi ∧ dxj +
∑

1≤i≤n,1≤h≤n

Ωihdxi ∧ dyh

hence Ωk vanishes for k > n. �

In particular when all the ξα are Killing vector fields, we get an obstruction

to the existence of a strongly flat Legendrian foliation on (M2n+r, φ, ξα, ηα, g),

because by Lemma 2.2 also Q = φ(L) is strongly flat.

5.2. Secondary characteristic classes. One of the consequences of the vanish-

ing theorems for characteristic classes of foliations is the possibility of constructing

secondary (or exotic) characteristic classes, which we now define. We will assume

definitions and notation of [22]. Let F be a strongly flat Legendrian foliation on

the almost S-manifold (M, φ, ξα, ηα, g) and let Q be a strongly flat Legendrian

distribution complementary to L = T (F). We suppose that the bi-Legendrian

connection ∇ corresponding to (L, Q) is tangential, whereas ∇′ will denote any

metric connection on (M, g).

If ∇ is any connection on M , λ∇ : I(G) −→ Λ(M) will denote the Chern–Weil

homomorphism, defined by λ∇(f) = f(Ω, . . . , Ω) ∈ Λ2k(M), for any f ∈ Ik(G),
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where Ω denotes the curvature 2-form of ∇. λ∇ induces a homomorphism of

graded algebras λ : I(G) −→ H(M, R) which does not depend on the connection,

that is, if ∇
′
is any other connection on M , then, for every f ∈ I(G), λ∇(f) −

λ∇
′(f) is an exact form. In particular this is true for ∇ and ∇′, and for the

construction of secondary characteristic classes it is useful to indicate explicitly

what λ∇(f) − λ∇′(f) is equal to. Namely, let

∫ 1

0

: Λs(M × [0, 1]) −→ Λs−1(M)

be the integration along the fibers of the projection M × [0, 1] −→ M and let

∇̃ denote the connection on M × [0, 1] defined by ∇̃
(

∂
∂t

)
= 0 and ∇̃|M×{t} =

t∇′ + (1 − t)∇. Set ∆∇,∇′ : Ik(G) −→ Λ2k−1(M) be the composition

∆∇,∇′ =

∫ 1

0

◦λe∇.

Actually, it can be shown ([20]) that λ∇′ − λ∇ = d ◦ ∆∇,∇′ .

Now, let J ⊂ I+(G) =
⊕

k≥1 Ik(G) be a homogenous ideal of I(G). We recall

that a connection on M is called a J-connection if λ∇(f) = 0 for every f ∈ J . We

adopt the following notation. If P denotes a property on the degree of homogenous

polynomials on G, we will denote by J(P ) the homogenous ideal generated by

homogenous polynomials whose degree verifies P . Moreover, if f1, . . . , fq are

homogenous polynomials, we will denote by {f1, . . . , fq} the homogenous ideal

generated by f1, . . . , fq. So, in particular, ∇′ is a J ′-connection, where J ′ = {codd}

and ∇ a J
(

>
[

n
2

])
-connection. Consider the quotient algebras I(G)/J

(
>
[

n
2

])

and I(G)/J ′, and denote by f and f the equivalence classes of f ∈ Ik(G) modulo

J
(

>
[

n
2

])
and modulo J ′, respectively. Then the algebra

W
(
J
(
>
[n
2

])
, J ′
)

= I(G)/J
(
>
[n
2

])
⊗R I(G)/J ′ ⊗R Λ(I+(G))

will be called a secondary universal algebra of G. Furthermore, we attribute

degrees to the elements of W
(
J
(

>
[

n
2

])
, J ′
)

setting deg
(
f
)

= deg
(
f
)

= 2k and

deg
(
f̂
)

= 2k − 1, for any f ∈ Ik(G), where f̂ denotes the image of f under the

isomorphism I+(G) −→ Λ1(I+(G)). We define a differentiation by setting df =

df = 0, df̂ = f − f and by their natural algebraic extensions of these operations.

It can be seen that d raises the degrees by 1 and d2 = 0. Thus, W
(
J
(

>
[

n
2

])
, J ′
)

becomes a differential graded algebra, with corresponding cohomology algebra

H
(
W
(
J
(

>
[

n
2

])
, J ′
))

. Now, we can define a homomorphism of graded algebras
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ρ∇,∇′ : W
(
J
(

>
[

n
2

])
, J ′
)
−→ Λ(M) in the following way. For any f ∈ I(G) and

for any f1, . . . , fs ∈ I+(G) we set

ρ∇,∇′

(
f
)

= λ∇(f), ρ∇,∇′

(
f
)

= λ∇′(f)

and ρ∇,∇′ (f1∧· · ·∧fs) = ∆∇,∇′(f1)∧· · ·∧∆∇,∇′(fs). The homomorphism ρ∇,∇′

is called the secondary Chern–Weil homomorphism. It can be easily shown that

the homomorphism ρ∇,∇′ is degree preserving and commutes with the differentials

of the algebras W
(
J
(

>
[

n
2

])
, J ′
)

and Λ(M). Hence it induces a homomorphism

in cohomology ρ∗∇,∇′ , called the cohomological secondary Chern–Weil homomor-

phism.

Definition 5.6. The cohomology classes in Im(ρ∗∇,∇′ ) − Im λ) are called sec-

ondary characteristic classes of (∇,∇′).

Unlike primary characteristic classes, secondary characteristic classes depend

on the connections. However, according to the Lehmann theory, we can state the

following

Theorem 5.7. The cohomological secondary Chern–Weil homomorphism

ρ∗∇,∇′ remains unchanged if the connections ∇, ∇′ are replaced by ∇1, ∇′
1, where

∇ is J
(

>
[

n
2

])
-homotopic to ∇1 and ∇′ is J ′-homotopic to ∇′

1.

We explain the meaning of “J-homotopy” used in the previous theorem. Let

∇0, ∇1 be two J-connections on M . Then ∇0 and ∇1 are said to be differ-

entiably J-homotopic if there exists a J-connection ∇̃ on M × [0, 1] such that

∇̃|M×{0} = ∇0 and ∇̃|M×{1} = ∇1. More generally, ∇0 and ∇1 are said J-

homotopic if there exists a finite sequence ∇0 = ∇s0 ,∇s1 , . . . ,∇sk
= ∇1 of J-

connections such that, for all i ∈ {0, . . . , k − 1}, ∇si
and ∇si+1 are differentiably

J-homotopic. The relation of J-homotopy is an equivalence relation on the set

of the connections on M into disjoint J-homotopy classes of connections. A set

C 6= ∅ of J-connections is said to be J-connected if any two connections of C are

J-homotopic. So Theorem 5.7 says that if ∇ and ∇′ vary, respectively, in two sets

C and C′ which are, respectively, J
(

>
[

n
2

])
-connected and J ′-connected, then

we obtain secondary characteristic classes which do not depend on the choice of

the connection within the sets C and C′. One has the following result:

Proposition 5.8 ([22]). With the notation above, if C∩C′ 6= ∅ all secondary

characteristic classes vanish.

Now we prove that, indeed, our construction of secondary characteristic

classes for Legendrian foliations does not depend on the choice of a metric con-

nection on M . But, before to prove this, we need the following preliminary result:



416 Beniamino Cappelletti Montano

Lemma 5.9. Let (M2n+r, φ, ξα, ηα, g) be an almost S-manifold. Then any

two almost S-structures (φ0, ξα, ηα, g0) and (φ1, ξα, ηα, g1) (same ξα and ηα)

on M2n+r are homotopic, that is they can be joined by a differentiable curve

(φt, ξα, ηα, gt), 0 ≤ t ≤ 1, of almost S-structures on M2n+r.

Proof. We set J0 := φ0|H and J1 := φ1|H, so obtaining two almost complex

structures J0 and J1 on H =
⋂r

α=1 ker(ηα) and by Theorem 3.1.2 of [28] there

exists a homotopy {Jt}0≤t≤1 between J0 and J1. Then define φt putting φt|H :=

Jt and φt(ξ1) = · · · = φt(ξr) = 0. Moreover we define a metric gt putting,

for all Z, Z ′ ∈ Γ(H), gt(Z, Z ′) := −Φ(Z, φt(Z
′)) and gt(V, ξα) := ηα(V ) for all

α ∈ {1, . . . , r} and V ∈ Γ(T (M)). Clearly (φt, ξα, ηα, gt) are almost S-structures

on M2n+r (note that Φt = Φ, where Φt(V, W ) = gt(V, φt(W ))) which realize the

homotopy between (φ0, ξα, ηα, g0) and (φ1, ξα, ηα, g1). �

Proposition 5.10. The set of all connections on M which are metric with

respect to an associated metric is J ′-connected.

Proof. Let ∇0 and ∇1 be two metric connections with respect to the as-

sociated metrics g0 and g1, respectively. By Lemma 5.9 there exists a homo-

topy {gt}t∈[0,1] between g0 and g1. Let g̃ be a metric on M × [0, 1] such that

g̃|M×{t} = gt and let ∇̃ be a connection on M × [0, 1] such that ∇̃g̃ = 0. We

denote by ∇′
t the connection induced by ∇̃ on M ×{t}. Then ∇̃ defines a homo-

topy between ∇′
0 and ∇′

1. So for ending the proof we have to prove that ∇0 is

homotopic to ∇′
0 and ∇1 is homotopic to ∇′

1. Indeed, ∇t := (1− t)∇0 + t∇′
0 is a

homotopy between ∇′
0 and ∇1 and as ∇0g = ∇′

0g = 0, ∇t is a metric connection

with respect to g0 for all t ∈ [0, 1]. The same arguments work for ∇1 and ∇′
1. �

Corollary 5.11. For all α ∈ H(W (J > [n
2 ], J ′)) the cohomology class

ρ∗∇,∇′(α) is independent on the choice of the metric connection ∇′.

Furthermore, from Proposition 5.8 we get an obstruction for the bi-Legendr-

ian connection being a metric connection:

Corollary 5.12. If the bi-Legendrian connection ∇ is a metric connection-

with respect to the associated metric g then all secondary characteristic classes

vanish.

By Vey Theorem (Theorem 6.3 of [22]) cjhi := cj1 · · · cja
⊗ hi1 ∧ · · · ∧ hib

is

a basis for the cohomology complex H(W (J(> [n
2 ]), J ′)), where j and i are any

sequences of integers having the properties

1 ≤ j1 ≤ · · · ≤ ja ≤ 2n, 1 ≤ i1 < · · · < ib < 2n, ik an odd integer,

j1 + · · · + ja + i0 >
[n
2

]
, i0 ≤ j0,
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hq denoting the image of cq under the canonical isomorphism I+(G) → Λ1(I+(G))

and where we set i0 = i1 if i 6= ∅, i0 = +∞ if i = ∅ and j0 = j1 if j 6= ∅, j0 = +∞

if j = ∅. We conclude by formulating the following “rigidity theorem” ([16]).

Theorem 5.13. With the previous notation, if j1 + · · · + ja + i0 > [n
2 ] + 1,

then ρ∗∇,∇′ ([cjhi]) depends only on the arc-component of the connection ∇ in the

space of connections satisfying Ω[ n
2 ]+1 = 0.

6. Ehresmann connections for Legendrian foliations

In this section we will see another application of the projectability of Leg-

endrian foliations. Namely, we will show that, under certain assumptions, every

strongly flat Legendrian foliation admits an Ehresmann connection. We begin

with some preliminaries on Ehresmann connections. Let (M,F) be a foliated man-

ifold and D a distribution on M which is supplementary to the tangent bundle L

of the foliation F . A horizontal curve is a piecewise smooth curve β : [0, b] −→ M ,

b ∈ R, such that β′(t) ∈ Dβ(t) for all t ∈ [0, b]. A vertical curve (or a leaf curve)

is a piecewise smooth curve α : [0, a] −→ M , a ∈ R, which lies entirely in one

leaf of F . A rectangle is a piecewise smooth map σ : [0, a] × [0, b] −→ M such

that for every fixed s ∈ [0, b] the curve σs := σ|[0,a]×{s} is vertical and for every

fixed t ∈ [0, a] the curve σt := σ|{t}×[0,b] is horizontal. The curves σ0 = σ(·, 0),

σb = σ(·, b), σ0 = σ(0, ·) and σa = σ(a, ·) are called, respectively, the initial verti-

cal edge, the final vertical edge, the initial horizontal edge and the final horizontal

edge of σ.

Definition 6.1 ([5]). A complementary distribution D to the foliation F is

called an Ehresmann connection for F if for every vertical curve α and horizontal

curve β with the same initial point, there exists a rectangle whose initial edges

are α and β. This rectangle is unique and is called the rectangle associated to α

and β.

Now we state the main result of the section.

Theorem 6.2. Let F be a strongly flat Legendrian foliation on a compact

connected almost S-manifold. Let Q be a strongly flat Legendrian distribution,

transversal to F , for which the bi-Legendrian connection ∇ is tangential. If the

leaves of F are complete affine manifolds then the subbundle D := Q ⊕ E is an

Ehresmann connection for the foliation F and preserves ∇.
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The last statement of Theorem 6.2 needs some explanations. Given a foliated

manifold (M,F) and a supplementary subbundle D to L = T (F), any horizontal

curve τ : [0, 1] −→ M defines a family of diffeomorphisms (ϕt : V0 −→ Vt)t∈[0,1]

such that

1. each Vt is a neighborhood of τ(t) in the leaf of F through τ(t), for all t ∈ [0, 1],

2. ϕt(τ(0)) = τ(t) for all t ∈ [0, 1],

3. for any fixed p ∈ V0 the curve t 7→ ϕt(p) is horizontal,

4. ϕ0 : V0 −→ V0 is the identity map.

This family of diffeomorphisms is called an element of holonomy along τ ([5]).

It is shown in [19] and in [4] that an element of holonomy along τ exists and

is unique, in the sense that any two elements of holonomy must agree on some

neighborhood of τ(0) in the leaf through τ(0). When the leaves of the foliation

have a geometric structure, we say that D preserves the geometry of the leaves

if the element of holonomy along any horizontal curve is a local isomorphism

of the particular geometric structure. Returning to Theorem 6.2, we say that

D preserves ∇ if the elements of holonomy along horizontal curves are affine

transformations with respect to the connection induced on the leaves by the bi-

Legendrian connection ∇. On a manifold M with a torsion free linear connection

and endowed with a totally geodesic foliation F , Blumenthal and Hebda studied

conditions for a complementary distribution D to be an Ehresmann connection

for F preserving the linear connection on the leaves. Their arguments work also

for bi-Legendrian connections and, in particular, from Proposition 5.3 of [5] we

deduce the following

Proposition 6.3. Let F be a Legendrian foliation on an almost S-manifold

(M, φ, ξα, ηα, g), α ∈ {1, . . . , r}. Let Q be any Legendrian distribution comple-

mentary to F such that the corresponding bi-Legendrian connection ∇ is tangen-

tial. Then the subbundle Q ⊕ E preserves the connection ∇.

Proposition 6.3 proves the last part of Theorem 6.2. Now we need a number

of preliminary lemmas.

Lemma 6.4. Let (M, φ, ξα, ηα, g), α ∈ {1, . . . , r}, be a (2n + r)-dimensional

almost S-manifold endowed with a strongly flat Legendrian foliations F and a

strongly flat Legendrian distribution Q complementary to L = T (F). Denote

by ∇ the bi-Legendrian connection associated to (L, Q) and suppose that there

exists a submersion with connected fibers f : M −→ N defining the foliation E .

Let F ′ and Q′ be the Lagrangian foliation and the Lagrangian distribution on N

which are projections of F and Q, respectively, according to Corollary 3.4. Then
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the corresponding bi-Lagrangian connection ∇′ is tangential if and only if ∇ is

tangential.

Proof. Let X ′ ∈ Γ(L′), Y ′ ∈ Γ(Q′) and Z ′ ∈ Γ(T (N)) and consider the

unique basic vector fields X ∈ Γ(L), Y ∈ Γ(Q) and Z ∈ Γ(T (M)) such that

f∗(X) = X ′, f∗(Y ) = Y ′ and f∗(Z) = Z ′. Then

f∗(R(X, Y )Z) = ∇′
X′f∗(∇Y Z) −∇′

Y ′f∗(∇XZ) − f∗(∇h[Z,Y ]Z)

= R′(X ′, Y ′)Z ′

since ∇v[X,Y ]Z =
∑r

α=1 ηα([X, Y ])[ξα, Z] = 0. Hence one has immediately that

∇ is tangential if and only if ∇′ is tangential. �

Lemma 6.5. Under the same assumptions of Lemma 6.4, if the leaves of

F are complete affine manifolds then also the leaves of F ′ are complete affine

manifolds.

Proof. Suppose that the leaves of F are complete affine manifolds. Let

γ be a geodesic (with respect to the bi-Lagrangian connection ∇′) lying on a

leaf L′ of F ′ and defined by the initial conditions γ(0) = x, γ′(0) = v′ ∈ L′
x,

where, as usual, L′ is the tangent bundle of the foliation F ′. Let p be any point

on the fiber over x and consider the leaf L through p. As f maps leaves of F

onto leaves of F ′, we can lift γ to a geodesic γ lying on L. Indeed, let v be the

unique vector of Lp such that f∗p(v) = v′. Then there exists a unique geodesic

on L, say γ, such that γ(0) = p and γ′(0) = v. Note that, by hypothesis, γ is

defined for all t ∈ R. Consider the projection of γ on L′, γ̃ := f ◦ γ. We prove

that γ̃ is still a geodesic (for the bi-Lagrangian connection ∇′). Indeed ∇′eγ′ γ̃′ =

∇′
f∗eγ′f∗γ̃

′ = f∗(∇γ′γ′) = 0 since γ is a geodesic for the bi-Legendrian connection

∇. Moreover, γ̃(0) = f(γ(0)) = f(p) = x and γ̃′(0) = f∗γ(0)(γ
′(0)) = f∗p(v) = v′.

So for the uniqueness of the geodesic with given initial conditions we get γ = γ̃.

In particular, γ can be extended to a geodesic defined for all t ∈ R. �

Proof of Theorem 6.2. The proof is divided into two steps: firstly we

suppose that there exists a submersion f whose fibers define the foliation E and

then we drop this hypothesis using the definition of E by means of cocycles.

Step 1

Let f : M −→ N be a submersion as in Lemma 6.4. Let α : [0, a] −→ M be a

vertical curve and β : [0, b] −→ M a horizontal curve such that α(0) = β(0). We

look for a map σ : [0, a]× [0, b] −→ M such that:

1. σs : [0, a] −→ M , σs := σ|[0,a]×{s}, is a vertical curve,
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2. σ0 = α,

3. σt : [0, b] −→ M , σt := σ|{t}×[0,a], is a horizontal curve,

4. σ0 = β.

Initially we suppose that α is a geodesic with respect to the bi-Legendrian con-

nection ∇. In this case, α := f ◦α is a geodesic with respect to the bi-Lagrangian

connection ∇′ corresponding to the pair of transversal Lagrangian distributions

(L′, Q′), projection of (L, Q). So, if we set β := f ◦β, we obtain a leaf curve α and

a horizontal curve β such that α(0) = β(0). Note that from Lemma 6.4 it follows

that ∇′ is tangential and, by Lemma 6.5, the leaves of F ′ are complete affine

manifolds. Moreover, N = f(M) is compact and connected. So we can apply the

results of R. Wolak ([32]) and we find a unique rectangle σ : [0, a] × [0, b] −→ N

whose initial vertical edge is α and whose initial horizontal edge is β. Now we

lift this rectangle to a map σ : [0, a] × [0, b] −→ M . More precisely, for any

fixed s ∈ [0, b], consider the leaf curve σs : [0, a] −→ N . We show that σs is

a geodesic. Indeed, consider, for any s ∈ [0, b], the geodesic τs determined by

the initial conditions τ s(0) = σs(0) and τ ′
s(0) = σ′

s(0). As the leaves of F are

affine complete manifolds, applying Lemma 6.5, τ s is defined for all values of the

parameter t and in this way we obtain a rectangle τ : [0, a] × [0, b] −→ N whose

initial vertical edge is α and whose initial horizontal edge is β. By the uniqueness

of such a rectangle, we get σ = τ and so, for all s ∈ [0, b], σs = τ s. Since each

σs is a geodesic, as in Lemma 6.5, we can lift it to a geodesics σs on the corre-

sponding leaf of F , namely the leaf through β(s). In this way we find a rectangle

σ : [0, a] × [0, b] −→ M given by σ(t, s) := σs(t), which is the rectangle we are

looking for. Indeed, by definition each σs is a leaf curve and, since α is a geodesic,

σ0 = α. So conditions (1) and (2) are verified. Then, for every fixed t ∈ [0, a], we

have f∗σt(s)(σ
t′(s)) = σt

′
(s) ∈ Q′

σt(s) = f∗σt(s)(Qσt(s)), from which we have that,

for all s ∈ [0, b], σt′(s) ∈ Qσ′(s) ⊕ Eσt(s), so that each σt is a horizontal curve.

Finally σ0(s) = σs(0) = β(s), and so also (3) and (4) are satisfied.

Now we suppose that α is not a geodesic. As the leaves of F are complete

affine manifolds, there exist ǫ > 0 such that for any p ∈ M the ball B(p, ǫ) is

convex. Thus, since the leaves are totally geodesic, the ǫ-balls BL(p, ǫ) in any

leaf L of F coincide with the corresponding connected component of B(p, ǫ) ∩L.

Therefore there exist ǫ > 0 such that the BL(p, ǫ) are convex. Suppose now that

α : [0, a] −→ M is a vertical curve contained in BL(p, ǫ), with p = α(0). Let αt

denote the geodesic on L joining p with α(t), for any fixed t ∈ [0, a]. Then we

define

σ(t, s) := σαt,β|[0,s]
(t, s),
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for any (t, s) ∈ [0, a] × [0, b], where σαt,β|[0,s]
denotes the rectangle associated to

the curves αt and β|[0,s]. By the first part of the proof, σ is just the rectan-

gle whose initial edges are α and β. Finally, if α is any leaf curve on M , not

necessarily contained in BL(p, ǫ), then we can always find a partition of [0, a],

0 = t0 < t1 < · · · < tm = a, with the property that, for any i ∈ {0, . . . , m − 1},

α(ti), α(ti+1) ∈ B(α(ti), ǫ). Let σ(0) be the rectangle corresponding to α|[0,t1]

and β. The curve β1 := σ(0)|{t1}×[0,b] is horizontal and β1(0) = α(t1), so we can

find a rectangle σ(1) whose edges are α|[t1,t2]
and β1. After m steps we have m

rectangles σ(0), σ(1), . . . , σ(m−1) and we can define σ := σ(0) ∪ σ(1) ∪ · · · ∪ σ(m−1)

obtaining the rectangle whose edges are α and β.

Step 2

In the general case we have a family of submersions (fi : Ui −→ N)i∈I whose

fibers define the foliation E , where {Ui}i∈I is an open covering of M . We can

find Ui0 , . . . , Uim
which cover α and we can choose this covering in such a way

that α(0) ∈ Ui0 . Then let t1 be the infimum of all t ∈ [0, a] such that α(t) does

not belong to Ui0 . Up to renumbering the open sets Uij
, we may suppose that

α(t1) ∈ Ui1 . Then let t2 be infimum of all t ∈ [t1, a] such that α(t) does not

belong to Ui1 . As before we can suppose that α(t2) ∈ Ui2 . After m steps, setting

t0 := 0 and tm := a, we get a partition of [0, a], 0 = t0 < t1 < · · · < tm = a, with

the property that, for each j ∈ {0, . . . , m}, α(tj) ∈ Uij
. Then, for all t ∈ [0, a],

define:

α(t) :=





fi0(α(t)), if t0 ≤ t < t1;

fi1(α(t)), if t1 ≤ t < t2;
...

...

fim
(α(t)), if tm−1 ≤ t ≤ tm.

A similar construction can be repeated for β and we can choose the corresponding

finite covering {Ujk
} of β in such a way that Ui0 = Uj0 . So we have projected α

and β onto two piecewise smooth curves α and β on N such that α is a vertical

curve, β a horizontal curve and α(0) = fi0(α(0)) = fi0(β(0)) = β(0). Using again

[32] we can find a rectangle σ : [0, a]× [0, b] −→ N whose initial edges are α and β

and lifting this rectangle, as we have seen in Step 1, by means of the submersions

fi we obtain a smooth piecewise rectangle σ : [0, a] × [0, b] −→ M whose initial

edges are α and β. �

Now we suppose that the Legendrian foliation F admits the Ehresmann

connection D = Q ⊕ E and examine some consequences of the existence of an

Ehresmann connection for F .
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Corollary 6.6 ([5]). Any two leaves of F can be joined by a horizontal

curve.

Corollary 6.7 ([5]). The universal covers of any two leaves of F are isomor-

phic.

In general, to each leaf L of a foliation admitting an Ehresmann connection

D it is attached a group HD(L, p), p ∈ L, defined as follows ([5]). Let Ωp be

the set of all horizontal curves β : [0, 1] −→ M with starting point p. Then

there is an action of the fundamental group π1(L, p) of L on Ωp given in the

following way: for any δ = [τ ] ∈ π1(L, p) and for any β ∈ Ωp, τ · β is the final

horizontal edge of the rectangle corresponding to τ and β. It can be proved that

this definition does not depend on the vertical loop τ in p representing δ. Let

KD(L, p) = {δ ∈ π1(L, p) : τ · β = β for all β ∈ Ωp}. Then KD(L, p) is a normal

subgroup of π1(L, p) and we define

HD(L, p) := π1(L, p)/KD(L, p).

It is known that HD(L, p) does not depend on the Ehresmann connection D, thus

it is an invariant of the foliation. Concerning this group HD(L, p) for a Legendrian

foliation F admitting the Ehresmann connection D = Q ⊕ E, we can state the

following

Corollary 6.8. If F has a compact leaf L0 with finite HD(L0, p0), then

every leaf L of F is compact with finite HD(L, p).

The proof follows by [6] and by Theorem 6.2. Another consequence of The-

orem 6.2 is the following

Corollary 6.9 ([5]). If Q is integrable (and so, since Q is strongly flat also

D = Q ⊕ E is integrable), then the universal cover M̃ of M is topologically a

product L̃ × D̃, where L̃ is the universal cover of the leaves of F and D̃ the

universal cover of the leaves of the foliation D.

In [33] R. Wolak studied the relations between Ehresmann connections,

vanishing cycles and graphs of a foliation. A vanishing cycle for a foliation F is a

mapping c : S1× [0, 1] −→ M such that for any t ∈ [0, 1] ct = c|S1×{t} is a loop on

a leaf of F and c0 is not homotopic to the constant loop in the leaf but for t > 0

the loops ct are (cf. [25]). Among other things, R. Wolak has demonstrated

that a foliation admitting an Ehresmann connection has no vanishing cycles. In

particular this implies the following
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Corollary 6.10. Let F be a Legendrian foliation of an almost S-manifold

(M, φ, ξα, ηα, g) such that the assumptions of Theorem 6.2 are satisfied. Then F

has no vanishing cycles.

We conclude with another corollary of Theorem 6.2. Recall that the homo-

topy groupoid of a foliation F is the space of equivalence classes of triples (x, α, y),

where x and y are points of the same leaf L of F and α is a path in L linking

x to y. Two triples (x, α, y) and (x′, α′, y′) are equivalent if and only if x = x′,

y = y′ and the leaf curves α and α′ are homotopic relative to their ends in the

corresponding leaf. One of the question about the homotopy groupoid is whether

it is Hausdorff. Indeed, in general, the homotopy groupoid is a manifold, but

not necessarily Hausdorff. In [12] it is proved that the non-existence of vanishing

cycles is equivalent to the Hausdorfness of the homotopy groupoid of the foliation.

This result, together with Corollary 6.10, implies the following

Corollary 6.11. Let F be a Legendrian foliation of an almost S-manifold

(M, φ, ξα, ηα, g) such that the assumptions of Theorem 6.2 are satisfied. Then the

homotopy groupoid of F is a Hausforff manifold.

Acknowledgements. The author wishes to thank Prof. Robert Wolak

and Prof. Anna Maria Pastore for many helpful discussions and suggestions

during the preparation of this paper.

References

[1] D. E. Blair, Geometry of manifolds with structural group U(n)×O(s), J. Diff. Geometry
4 (1970), 155–167.

[2] D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Birkhäuser, 2002.
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