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Classification of Frobenius Lie algebras of dimension ≤ 6

By BALÁZS CSIKÓS (Budapest) and LÁSZLÓ VERHÓCZKI (Budapest)

Abstract. A Lie algebra g over an arbitrary field is a Frobenius Lie algebra if there

is a linear form l ∈ g∗ whose stabilizer with respect to the coadjoint representation of g,

i.e. g(l) = {X ∈ g | l([X, Y ]) = 0 for all Y ∈ g} is trivial. In the present paper we classify

Frobenius Lie algebras of dimension 4 over arbitrary fields of characteristic 6= 2 and 6-

dimensional Frobenius Lie algebras over algebraically closed fields of characteristic 0.

1. Introduction

A real or complex Lie group G and its Lie algebra g are called Frobenius
if the coadjoint representation of G has an open orbit. The Lie algebra of the
stabilizer of l ∈ g∗ is g(l) = {X ∈ g | l([X, Y ]) = 0 for all Y ∈ g}, therefore the
orbit of l is open if and only if g(l) = 0. In general, a Lie algebra over an arbitrary
field is said to be Frobenius if there is a linear form l ∈ g∗ such that g(l) = 0.

The class of Frobenius Lie algebras was first introduced and studied by
A. I. Ooms in [9], [10] and [11] in connection with the problem of Jacobson
on the characterization of Lie algebras having a primitive universal enveloping
algebra. Frobenius Lie groups appear in the theorem of Anh [1], saying that an
exponential Lie group with trivial center has a square integrable representation
if and only if it is a Frobenius Lie group. The study of Frobenius Lie algebras is
motivated also by the fact that they possess a triangular Lie bialgebra structure
and give solutions to the classical Yang–Baxter equation (see [5]).
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There are many interesting examples of Frobenius Lie algebras (see e.g. [6],
[7], [12], [13]). The present paper focuses on the classification of low dimen-
sional Frobenius Lie algebras. Frobenius Lie algebras are always even dimen-
sional. There is a unique 2-dimensional Frobenius Lie algebra, the Lie algebra of
the group of affine transformations of the line. Four-dimensional Frobenius Lie
algebras over algebraically closed fields of characteristic 0 were first listed in [9].
This classification can be obtained from the classification of all 4-dimensional Lie
algebras over algebraically closed fields of characteristic 0 (see [2]). In Section 3
we extend this classification for fields of characteristic 6= 2. In Section 4 we classify
all 6-dimensional Frobenius Lie algebras over algebraically closed fields of charac-
teristic 0. This yields an extension of the work of A. G. Elashvili [7], giving a
list of all 6-dimensional almost algebraic Frobenius Lie algebras over such fields.
Our results are summarized in Section 5. The embedding of A. G. Elashvili’s
list of almost algebraic Frobenius Lie algebras into the list of all Frobenius Lie
algebras is given in Remark 5.3.

2. Definition and some properties of Frobenius Lie algebras

In this section we prove those general theorems on Frobenius Lie algebras that
will be used during the classification process. We mention that in characteristic
zero Propositions 2.1 and 2.3 were already obtained in [9].

Let g be a finite dimensional Lie algebra over an arbitrary field F, g∗ be its
dual space. For l ∈ g∗, denote by Bl : g×g → F, Bl(X, Y ) = l([X, Y ]) the Kirillov
form. The kernel of this form is

g(l) = {X ∈ g | l([X, Y ]) = 0 for all Y ∈ g}.
Since g(l) = {X ∈ g | (ad X)∗l = 0}, g(l) is the stabilizator subalgebra of the
linear form l with respect to the coadjoint representation. Bl induces a symplectic
form on g/g(l) and therefore dim g ≡ dim g(l) (mod 2).

Definition 2.1. The index of a Lie algebra is the number

ind g = min{dim g− rkBl | l ∈ g∗} = min{dim g(l) | l ∈ g∗}.
Linear forms for which dim g(l) = ind g are called regular.

Definition 2.2. Lie algebras of index 0 are called Frobenius Lie algebras.

Let Λ = (X1, . . . , Xn) be a basis of g and consider the skew symmetric matrix
MΛ = ([Xi, Xj ])n

i,j=1. The entries of MΛ are in g which is naturally embedded
into the symmetric algebra S(g) generated by g. Thus we can compute the Pfaffian
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QΛ = Pf MΛ in S(g). If C ∈ GL(g) is an invertible linear transformation of g,
CΛ is the image of the basis Λ under C, CΛ is the matrix of C with respect to
the basis Λ, then MCΛ = CT

Λ MΛCΛ, consequently

QCΛ = Pf(MCΛ) = Pf(CT
Λ MΛCΛ) = det C ·QΛ. (1)

In particular, if C is a Lie algebra automorphism and SC is the induced automor-
phism of the symmetric algebra S(g), then

SC(QΛ) = Pf((C[Xi, Xj ])n
i,j=1) = Pf(([CXi, CXj ])n

i,j=1)

= QCΛ = det C ·QΛ.
(2)

According to (1), QΛ is uniquely determined by g up to a nonzero multiplier. QΛ

(and its nonzero multiples) will be called the Pfaffian(s) of g.
Since the elements of g can be identified with linear functions on g∗, every

element of S(g) yields a polynomial function on g∗ which will be denoted by the
same symbol. Recall that the map from the ring of polynomials onto the space
of polynomial functions on g∗ is always injective on the space of polynomials of
degree < |F|. The determinant of the matrix of Bl with respect to the basis Λ
is det(l([Xi, Xj ]))n

i,j=1 = Q2
Λ(l), in particular, in the case of dim g < 2|F|, g is

Frobenius if and only if the polynomial QΛ 6= 0.
Every derivation δ of the Lie algebra g extends uniquely to a derivation Dδ

of S(g) whose restriction onto F ⊂ S(g) is zero. An element F of S(g) is said to
be a semi-invariant of weight λ ∈ g∗ if Dad X(F ) = λ(X)F for all X ∈ g. F is a
characteristic semi-invariant of weight λ̃ ∈ (Der(g))∗ if we have Dδ(F ) = λ̃(δ)F
for every derivation δ ∈ Der(g).

“Differentiating” equation (2) we obtain the following proposition.

Proposition 2.1. The Pfaffian of a Lie algebra is a characteristic semi-

invariant of weight tr, i.e.

Dδ(QΛ) = tr(δ)QΛ for all δ ∈ Der(g).

If V is a linear space, W ≤ V is a linear subspace, then the symmetric algebra
S(W ) is embedded naturally into S(V ). For any element F of the symmetric
algebra S(V ), there is a minimal subspace W ≤ V for which F ∈ S(W ). W will
be called the support of F and will be denoted by supp F .

The proof of the following proposition is straightforward.

Proposition 2.2. If P ∈ S(g) is a characteristic semi-invariant and either

charF = 0 or deg P < charF, then the support of P is a characteristic ideal

in g. ¤



430 Balázs Csikós and László Verhóczki

Proposition 2.3. If g 6= 0 is a Frobenius Lie algebra and either

dim g < 2 charF or charF = 0, then the weight of the Pfaffian, i.e. the linear form

tr ◦ ad ∈ g∗ is not 0.

Proof. Suppose to the contrary that Dad XQΛ = 0 for all X ∈ g. Choosing a
basis Λ = (X1, . . . , Xn) in g, S(g) can be identified with the algebra of polynomials
F[X1, . . . , Xn]. With this identification, the derivation Dad X can be expressed as

Dad X =
n∑

i=1

[X,Xi]
∂

∂Xi
.

In particular, we have

Dad XP (l) =
n∑

i=1

Bl(X, Xi)
∂P

∂Xi
(l) (3)

for any P ∈ S(g) and l ∈ g∗. Select a regular form l ∈ g∗. Then QΛ(l) 6= 0 and Bl

is non-singular. In view of equation (3), applying equation Dad XQΛ = 0 for the
vectors of the Bl-dual basis of Λ we obtain that ∂QΛ

∂Xi
(l) = 0 for all i. However,

QΛ is a homogeneous polynomial, thus, by Euler’s formula

deg QΛ ·QΛ(l) =
n∑

i=1

l(Xi)
∂QΛ

∂Xi
(l) = 0.

The assumptions on charF guarantee that deg QΛ 6= 0 in F, therefore QΛ(l) = 0
and this contradicts the fact that l is regular. ¤

Corollary 2.1. Under the assumptions of Proposition 2.3, g is not nilpotent

and

supp QΛ E [g, g] 6= g.

Lemma 2.1. Suppose that charF = 0. If a E g is a Frobenius ideal of a Lie

algebra g, then the short exact sequence

0 → a → g → g/a → 0

is splitting, i.e. g is the semidirect product of a and g/a. In particular, g is a

Frobenius Lie algebra if and only if the factor g/a is Frobenius.

Proof. Choose a regular linear form l ∈ g∗ whose restriction m = l|a onto
a is also regular. Denote by b the stabilizator of m in g, that is

b = g(m) = {X ∈ g | l([X,Y ]) = 0 ∀Y ∈ a}.



Classification of Frobenius Lie algebras of dimension ≤ 6 431

Then b is a subalgebra of g; b ∩ a = {0}, since a is Frobenius and m is regular;
and we have dim a ≥ dim g − dim b. From this follows that g is the semidirect
product of a and b ∼= g/a. ¤

Proposition 2.4. Suppose that charF = 0. Let g be a Frobenius Lie algebra,

g1 ≤ g be a subalgebra containing [g, g]. Then

ind g1 = dim g− dim g1.

Proof. Observe first that if g is an arbitrary Lie algebra and g0 ≥ [g, g] is
a proper Lie subalgebra of g, then g0 cannot be Frobenius since in that case the
factor g/g0 should be Frobenius as well by Lemma 2.1, however g/g0 is commu-
tative.

When g is a Frobenius Lie algebra we can find a regular linear form l in g∗

whose restriction onto g1 is also regular on g1. Then Bl is a symplectic form on
g and its restriction onto g1 has corank k = ind g1. This implies the existence
of a k-dimensional linear subspace h in g complementary to g1 such that Bl is a
symplectic form on g0 = g1 ⊕ h. However, in this case g0 ≥ [g, g] is Frobenius,
therefore g0 = g. In particular,

dim g = dim g0 = dim h + dim g1 = ind g1 + dim g1. ¤

Finally, we introduce some terminology and notation.
Every 1-dimensional g-module spanned by a non-zero vector v induces a

unique linear form λ ∈ g∗ such that Xv = λ(X)v for all X ∈ g. λ is called
the weight of the module. Every solvable Lie algebra g has a sequence of ideals
g = nn B nn−1 B · · · B n0 with dim ni = i. The roots of g are the weights of the
1-dimensional g-modules ni/ni−1.

If A is a linear transformation of a linear space V of dimension n, and λ is an
eigenvalue of A, then the generalized eigenspace corresponding to λ is the kernel
of the operator (A− λI)n.

The linear hull of the vectors X1, X2, . . . will be denoted by 〈X1, X2, . . . 〉.

3. Classification of 4-dimensional Frobenius Lie algebras
over fields of characteristic 6= 2

Let g be a 4-dimensional Frobenius Lie algebra over a field F of characteristic
6= 2. The Pfaffian QΛ of g is a quadratic form and thus, choosing a suitable basis
Λ = (X1, X2, X3, X4) it takes the form QΛ = X2

1 +
∑4

i=2 εiX
2
i , where εi ∈ F. It is
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clear that the support of QΛ is the linear space spanned by {X1} ∪ {Xi | εi 6= 0,
i ∈ {2, 3, 4}}. Since supp QΛ 6= g by Corollary 2.1, one of the numbers εi, say ε4

is equal to 0.
Suppose first that ε2 · ε3 6= 0. Then from equation

Dad X1QΛ = 2([X1, X2]ε2X2 + [X1, X3]ε3X3)

we see that Dad X1QΛ = α ·QΛ can hold only if α = 0 and then there is a λ ∈ F
such that

[X1, X2] = λε3X3, [X1, X3] = −λε2X2.

A similar argument for Dad X2QΛ shows that [X2, X3] = λX1.
λ is not zero, since otherwise we would have QΛ = 0. This implies that the

ideal supp QΛ is semisimple. Over fields of characteristic 0 semisimplicity of a
Lie algebra implies that the Lie algebra has no outer derivations, however, this is
not true in general over fields of prime characteristic. Nevertheless, in our special
case, a direct computation shows that if charF 6= 2, then supp QΛ has no outer
derivations. In particular, there is an element X ∈ supp QΛ such that ad X and
adX4 coincide on suppQΛ. However, in that case X −X4 is a non-zero central
element of g contradicting the fact that Frobenius Lie algebras have trivial center.
The contradiction shows that dim supp QΛ is either 1 or 2.

Consider the case when dim supp QΛ = 1. Then the basis Λ can be chosen
in such a way that QΛ = X2

1 , [X2, X1] = [X3, X1] = 0, [X4, X1] = X1. The
commutation table of g with respect to Λ has the form

[ , ] X1 X2 X3 X4

X1 0 0 0 −X1

X2 0 0 [X2, X3] ∗
X3 0 [X3, X2] 0 ∗
X4 X1 ∗ ∗ 0

,

hence X2
1 = QΛ = Pf MΛ = X1[X3, X2] and therefore [X3, X2] = X1. Set

[X4, X2] = αX1 + βX2 + γX3 and [X4, X3] = α′X1 + β′X2 + γ′X3. Replacing X4

by X4 − αX3 + α′X2 we may assume without loss of generality that α = α′ = 0.
Furthermore, the Jacobi identity for the triple (X2, X3, X4) yields the relation
γ′ + β = 1. It is not difficult to check that the determinant

∆ = det

(
β γ

β′ 1− β

)
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is an invariant of the isomorphism class of g. Indeed, ∆ can be derived from the
Lie algebra structure of g in the following natural way. The support g1 of QΛ and
its centralizer g2 are characteristic ideals of g. The adjoint action of g induces
a nontrivial representation ρ of the one-dimensional factor algebra g/g2 on the
2-dimensional factor g2/g1. ∆ can be expressed as ∆ = det(ρ(X))/ tr2(ρ(X)),
where X ∈ g/g2 is an arbitrary nonzero element. If the operator adX4 acts
on the linear subspace 〈X2, X3〉 as a scalar multiplication, then it must be a
multiplication by 1/2 since tr((ad X4)|〈X2,X3〉) = 1. On the other hand, if adX4

is not a scalar multiplication on 〈X2, X3〉, then the basis (X2, X3) of this subspace
can be modified in such a way that X3 = ad X4(X2) takes place. Then the
Cayley–Hamilton theorem gives

[X4, X3] = (ad X4)2X2 = (ad X4 −∆)X2 = X3 −∆X2.

Thus we obtain the following pairwise non-isomorphic Frobenius Lie algebras:

Φ′ :

[ , ] X1 X2 X3 X4

X1 0 0 0 −X1

X2 0 0 −X1 − 1
2X2

X3 0 X1 0 − 1
2X3

X4 X1
1
2X2

1
2X3 0

,

and

Φ′′(∆) :

[ , ] X1 X2 X3 X4

X1 0 0 0 −X1

X2 0 0 −X1 −X3

X3 0 X1 0 −X3 + ∆X2

X4 X1 X3 X3 −∆X2 0

, ∆ ∈ F.

If F is algebraically closed, then it is more natural to transform the matrix
of ad X4|〈X2,X3〉 to a Jordan normal form. This operator is either diagonalizable
with diagonal elements (ξ, 1−ξ), and then g is isomorphic to Φ4,1(ξ) ∼= Φ4,1(1−ξ)
of [9], or it has a 2×2 Jordan cell with eigenvalue 1/2, and then it is isomorphic to
Φ4,2 of [9]. We remark that Φ4,1(ξ) ∼= Φ′′(ξ(1− ξ)) when ξ 6= 1/2, Φ4,1(1/2) ∼= Φ′

and Φ4,2
∼= Φ′′(1/4).

Suppose that dim supp QΛ = 2. Then there is a basis Λ = (X1, . . . , X4) such
that QΛ = X2

1 + εX2
2 , where 0 6= ε ∈ F. Since Dad X1(QΛ) = 2ε[X1, X2]X2 must

be proportional to QΛ, [X1, X2] = 0. Suppose that [X3, X1] = αX1 + βX2 and
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[X3, X2] = γX1 + δX2. Then Dad X3QΛ = 2(αX2
1 + εδX2

2 + (β + εγ)X1X2), and
the semi-invariance of QΛ implies α = δ and β = −εγ. Similarly, [X4, X1] =
α′X1 − γ′εX2 and [X4, X2] = γ′X1 + α′X2 for some α′, γ′ ∈ F. Computing the
Pfaffian of g we obtain X2

1 +εX2
2 = QΛ = (αγ′−γα′)(X2

1 +εX2
2 ), i.e. αγ′−γα′ = 1.

This means that the basis vectors X3, X4 can be modified in such a way that
we have (α, γ) = (1, 0) and (α′, γ′) = (0, 1). Since ad[X3, X4] acts on 〈X1, X2〉
trivially, [X3, X4] must be a linear combination of X1 and X2, say [X3, X4] =
ξ1X1 + ξ2X2. In this case replacing X3 by X3 − (1/ε)ξ2X1 + ξ1X2 we obtain a
basis with respect to which the commutation table has the form

Φ′′′(ε) :

[ , ] X1 X2 X3 X4

X1 0 0 −X1 εX2

X2 0 0 −X2 −X1

X3 X1 X2 0 0
X4 −εX2 X1 0 0

,

where 0 6= ε ∈ F. If 0 6= λ ∈ F, then the commutation table of Φ′′′(ε) with respect
to the basis (X1, X2/λ, X3, λX4) has the same form as the commutation table
defining Φ′′′(ελ2), thus, Φ′′′(ε) is isomorphic to Φ′′′(ελ2). Conversely, if Φ′′′(ε)
and Φ′′′(ε̄) are isomorphic, then both ε and ε̄ can be obtained as the discriminant
of a multiple of the quadratic form QΛ ∈ S(suppQΛ) with respect to a basis of
supp QΛ, therefore ε = ε̄λ2 for some nonzero λ ∈ F. This proves that the Lie
algebras Φ′′′(ε1) and Φ′′′(ε2) corresponding to the nonzero parameters ε1, ε2 ∈ F
are isomorphic if and only if

√
ε1/ε2 ∈ F. In particular, if F is algebraically closed,

then each of these Lie algebras are isomorphic to Φ′′′(1) ∼= aff(1,F)⊕ aff(1,F).

4. Classification of 6-dimensional Frobenius Lie algebras

In this section F is an algebraically closed field of characteristic 0. The clas-
sification of 6-dimensional Frobenius Lie algebras over F goes by the following
scheme. First we consider solvable Frobenius Lie algebras. The nilradical of such
a Lie algebra has dimension ≤ 5. It is known that there is only a finite number
of isomorphism classes of nilpotent Lie algebras of dimension ≤ 6 (see [8]). With
the help of Proposition 2.4, we can select those 6 nilpotent Lie algebras, that
can serve for the nilradical of a Frobenius Lie algebra. After this step, classifi-
cation is split into cases depending on the isomorphism class of the nilradical.
As for the non-solvable case, the semisimple part of a 6-dimensional Frobenius
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Lie algebra can only be sl(2,F), since any other semisimple Lie algebra has too
large dimension. In this case, the 3-dimensional radical is either an irreducible
sl(2,F)-module, or it can be split into the direct sum of a one-dimensional and
a 2-dimensional irreducible submodule. It turns out that only the second case is
possible, therefore, the only nonsolvable Frobenius Lie algebra of dimension 6 is
the Lie algebra aff(2,F) of the group of affine transformations of the plane F2.

Recall the description of the set Nn of the isomorphism classes of nilpotent
Lie algebras of dimension n ≤ 5 (see [4], [8]). The numeration given here is due
to Dixmier [4]. Every such Lie algebra contains a basis {Yi | i = 1, . . . , n} the
elements of which commute according to the rule

[Yi, Yj ] = aijYi+j , (4)

where aij ∈ {0, 1} if i < j and Yi+j = 0 if i + j > n. Thus, the isomorphism class
of such a Lie algebra is uniquely determined by the set of vanishing aij ’s.

Below we give a complete list of the elements of Nn for n ≤ 5. Following the
notation of an isomorphism class, we list in curly brackets those coefficients aij

which have to be made 0 if we want to define the given class with the commutation
rule (4).

N1 : F;

N2 : F2;

N3 : Γ3 {}, F3 {a12};
N4 : Γ4 {}, Γ3 ⊕ F {a12 or a13}, F4 {a12, a13};

N5 contains the decomposable Lie algebras Γ4 ⊕ F, Γ3 ⊕ F2, F5 and the
indecomposable Lie algebras Γ5,1 {a12, a13}, Γ5,2 {a13, a23}, Γ5,3 {a12} or {a13},
Γ5,4 {a14}, Γ5,5 {a23}, Γ5,6 = Γ5 {}.

By Proposition 2.4, if n is the nilradical of the 6-dimensional Frobenius Lie
algebra g, then it satisfies

ind n = 6− dim n. (5)

Among the nilpotent Lie algebras of dimension ≤ 5, the following six Lie algebras
satisfy condition (5):

F3, Γ4, Γ3 ⊕ F, Γ5,1, Γ5,3, Γ5,6. (6)

Case 1: n ∼= F3. Since the nilradical of a solvable Lie algebra is the inter-
section of the kernels of its roots, in our case, g has 3 linearly independent roots,
say λ1, λ2, λ3. Choose an element X̄ ∈ g such that the numbers λ1(X̄), λ2(X̄),
λ3(X̄) are different, and denote by Yi the (unique up to a scalar multiplier) eigen-
vector of the operator ad X̄ corresponding to the eigenvalue λi(X̄). It is clear that
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{Y1, Y2, Y3} is a basis of the nilradical. Since [g, g] ⊂ n and [n, n] = 0, we have

[X̄, [X,Yi]] = [[X̄, X], Yi] + [X, [X̄, Yi]] = λi(X̄)[X, Yi] i = 1, 2, 3, (7)

showing that the vectors Yi are eigenvectors for the operator ad X for any X ∈ g.
Now choose linearly independent vectors {X ′

1, X
′
2, X

′
3} in a subspace complemen-

tary to n such that λi(X ′
j) = δij for 1 ≤ i, j ≤ 3, (where δij is the Kronecker δ),

then set X ′ = X ′
1 + X ′

2 + X ′
3 and Xi = X ′

i − [X ′, X ′
i], (i = 1, 2, 3). Since

[X ′, Yi] = Yi, ad X ′|n = idn and the vectors Xi, Yi obey the following commuta-
tion rules:

[Yi, Yj ] = 0;

[Xi, Yj ] = λj(Xi)Yj = λj(X ′
i − [X ′, X ′

i])Yj = λj(X ′
i)Yj = δijYj ;

[Xi, Xj ] = [X ′
i − [X ′, X ′

i], X
′
j − [X ′, X ′

j ]]

= [X ′
i, X

′
j ]− [[X ′, X ′

i], X
′
j ]− [X ′

i, [X
′, X ′

j ]]

= [X ′
i, X

′
j ]− adX ′([X ′

i, X
′
j ]) = 0.

This implies that g is the direct sum of three copies of the Lie algebra aff(1,F),
i.e.

g ∼= aff(1,F)⊕ aff(1,F)⊕ aff(1,F). (8)

Case 2: n ∼= Γ4. We have the following chain of characteristic ideals in the
Lie algebra Γ4:

Γ4 B z̄ B [Γ4,Γ4] B z, (9)

where z is the center of Γ4, z̄ is the centralizer of the commutator algebra [Γ4,Γ4].
It is easy to check that if we denote by α and β the roots of the Lie algebra g

induced on the 1-dimensional g-modules Γ4/z̄ and z̄/[Γ4, Γ4], respectively, then
the 1-dimensional g-modules [Γ4, Γ4]/z and z induce the roots α + β and 2α + β,
respectively. Since the nilradical of g has codimension 2, α and β are linearly
independent. Thus, one can find an element X ∈ g such that α(X) = 1 and
β(X) = 2. The restriction of the operator adX onto the kernel of α has eigen-
values 0, 1, 2, 3, 4. Let X ′, Y1, Y2, Y3, Y4 be the eigenvectors corresponding to
these eigenvalues. The commutator [Yi, Yj ] is either 0 or an eigenvector of ad X

with eigenvalue i + j, therefore

[Yi, Yj ] =

{
aijYi+j if (i, j) = (1, 3) or (1, 2),

0 otherwise.
(10)
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Since the commutator algebra [Γ4, Γ4] is 2-dimensional, the coefficients a12 and
a13 are different from zero, therefore, by a suitable choice of the eigenvectors Y1,
Y2, Y3, Y4 they will be equal to 1. If we choose a basis {X1, X2} in the linear hull
of the vectors X and X ′ such that α(X1) = β(X2) = 1 and α(X2) = β(X1) = 0,
then the commutation table of g with respect to the basis {X1, X2, Y1, Y2, Y3, Y4}
takes the form

[ , ] X1 X2 Y1 Y2 Y3 Y4

X1 0 0 Y1 0 Y3 2Y4

X2 0 0 0 Y2 Y3 Y4

Y1 −Y1 0 0 Y3 Y4 0
Y2 0 −Y2 −Y3 0 0 0
Y3 −Y3 −Y3 −Y4 0 0 0
Y4 −2Y4 −Y4 0 0 0 0

.

It is not difficult to check that the obtained Lie algebra Φ6,1 is the Borel
subalgebra of the simple Lie algebra of type B2.

Case 3: n ∼= Γ3 ⊕ F. The Lie algebra n = Γ3 ⊕ F has two characteristic
ideals: the 2-dimensional center z and the 1-dimensional commutator subalgebra
[n, n]. Let α1, α2 be the roots of g induced on the g-module n/z and β be the
root induced on the g-module z/[n, n]. Then the 1-dimensional g-module [n, n]
induces the root α1 +α2. The geometric picture of the roots is an invariant of the
isomorphism class of g, therefore, we have to consider all possible arrangements of
the roots α1, α2, β satisfying the condition that they span a 2-dimensional linear
space.

Case 3.1: Assume that α1 and α2 are linearly independent. Then the pair of
numbers {λ, µ} for which β = λα1 + µα2 is an invariant of the isomorphism class
of g.

Case 3.1.1: Suppose that β /∈ {0, α1, α2, α1 + α2}. Under this assumption,
we can choose X ∈ g such that the numbers 0, α1(X), α2(X), α1(X) + α2(X) are
different eigenvalues of the restriction of the operator ad X onto the kernel of
α1. Let X ′, Y1, Y2, Y3, Y4 be the corresponding (unique up to scalar multiplier)
eigenvectors of the restricted operator. Since [X, X ′] = 0, Y1, Y2, Y3, Y4 are
eigenvectors of the operator ad X ′ as well. Y3 spans [n, n], while Y3 and Y4 span
the center z. This means that the only nonzero Lie bracket of the form [Yi, Yj ],
i < j is [Y1, Y2] which gives Y3 if we choose a suitable normalization of the
eigenvector Y3. Let X1 and X2 be the linear combinations of the vectors X, X ′

characterized by the equations αi(Xj) = δij , 1 ≤ i, j ≤ 2. Then the commutation
table of the Lie algebra g with respect to the basis {X1, X2, Y1, Y2, Y3, Y4} takes
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the form
[ , ] X1 X2 Y1 Y2 Y3 Y4

X1 0 0 Y1 0 Y3 λY4

X2 0 0 0 Y2 Y3 µY4

Y1 −Y1 0 0 Y3 0 0
Y2 0 −Y2 −Y3 0 0 0
Y3 −Y3 −Y3 0 0 0 0
Y4 −λY4 −µY4 0 0 0 0

.

Let us denote the isomorphism class of the Lie algebra given by this table of
commutators by Φ6,2{λ, µ} ∼= Φ6,2{µ, λ}. Computing the Pfaffian of Φ6,2{λ, µ}
we can see that Φ6,2{λ, µ} is a Frobenius Lie algebra if and only if λ 6= µ.

Case 3.1.2: β = α1 + α2. Choose a basis {Y3, Y4} in z such that Y3 spans
[n, n]. With respect to this basis, the representation of g on z corresponds to the
matrix representation

X 7→
(

(α1 + α2)(X) 0
θ(X) (α1 + α2)(X)

)
, (11)

where θ is a linear form on g, the kernel of which contains n, consequently, θ =
µ1α1 + µ2α2 for some µ1, µ2 ∈ F. Since θ(X) = 0 if and only if the operator
adX|z is semisimple, the pair of ratios {{µ1 : µ2}, {µ2 : µ1}} is an invariant
of the isomorphism class of g. Choose an element X ∈ g for which α1(X) = 1,
α2(X) = 2, and let X ′, Y1, Y2 be the eigenvectors of the restriction of the operator
adX onto the kernel of α1. Then Y1 and Y2 are eigenvectors of the operator ad X ′

as well, and the only nonzero commutator of the form [Yi, Yj ] is [Y1, Y2], which
is equal to Y3 under a suitable normalization of the vectors Yi. Defining X1, X2

just as in the case 3.1.1, we see, that the commutation table of g with respect to
the basis {X1, X2, Y1, Y2, Y3, Y4} is the following:

[ , ] X1 X2 Y1 Y2 Y3 Y4

X1 0 0 Y1 0 Y3 Y4 + µ1Y3

X2 0 0 0 Y2 Y3 Y4 + µ2Y3

Y1 −Y1 0 0 Y3 0 0
Y2 0 −Y2 −Y3 0 0 0
Y3 −Y3 −Y3 0 0 0 0
Y4 −Y4 − µ1Y3 −Y4 − µ2Y3 0 0 0 0

.

Let Φ6,3{µ1 : µ2} be the isomorphism class of the Lie algebra given by this
table. This class depends only on the ratio between the numbers µ1 and µ2
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since replacing the basis vector Y4 with λY4 (0 6= λ ∈ F) the commutation table
preserves its form, but µ1 and µ2 change for λµ1 and λµ2 respectively. Computing
the commutation table of Φ6,3{µ1 : µ2} with respect to the basis (X2, X1, Y2, Y1,
−Y3, −Y4) we see immediately that Φ6,3{µ1 : µ2} ∼= Φ6,3{µ2 : µ1}. Φ6,3{µ1 : µ2}
is a Frobenius Lie algebra if and only if (µ1 : µ2) 6= (1 : 1).

Case 3.1.3: β = α1. This case can be treated in the same manner as the pre-
vious one. Beside Lie algebras of the type Φ6,2{1, 0}, we obtain a one-parameter
family of Frobenius Lie algebras parameterized by the ratio between two num-
bers, that is, by a point of the projective line. Elements of this family will be
denoted by Φ6,4(µ1 : µ2). With respect to a suitable basis, they can be given by
the commutation table

[ , ] X1 X2 Y1 Y2 Y3 Y4

X1 0 0 Y1 + µ1Y4 0 Y3 Y4

X2 0 0 µ2Y4 Y2 Y3 0
Y1 −Y1 − µ1Y4 −µ2Y4 0 Y3 0 0
Y2 0 −Y2 −Y3 0 0 0
Y3 −Y3 −Y3 0 0 0 0
Y4 −Y4 0 0 0 0 0

.

Case 3.1.4. Finally, we show that β = 0 is not possible. Indeed, β = 0 would
imply that the action of the commutative Lie algebra g/n on the center z of the
nilradical would be diagonalizable, since then the weights α1 + α2 and β = 0 of
this representation would be different. However, in that case, the one-dimensional
submodule corresponding to the weight β = 0 would lie in the center of the Lie
algebra g contradicting the fact that Frobenius Lie algebras have trivial center.

Case 3.2. When α1 and α2 are proportional, α1 + α2 and β must be linearly
independent. In this case we can find a pair of numbers {a, 1 − a}, such that
α1 = a(α1 +α2) and α2 = (1−a)(α1 +α2), and it is clear that the pair {a, 1−a}
is an invariant of the isomorphism class of the Lie algebra g.

Case 3.2.1: Suppose that a is not in the set {0, 1/2, 1}. Then there is an
element X ∈ g such that the eigenvalues of the restriction of ad X onto the kernel
of α1 + α2, that is the numbers 0, α1(X), α2(X), β(X) and α1(X) + α2(X) are
distinct. Let X ′, Y1, Y2, Y3, Y4 be the eigenvectors of ad X corresponding to
these eigenvalues. Then Y1, Y2, Y3, Y4 are also eigenvectors of the operator ad X ′.
Since Y3 spans [n, n], the only non-zero commutator of the form [Yi, Yj ], i < j is
[Y1, Y2], which equals Y3 if the vectors are normalized properly. Let X1 and X2

be those linear combinations of X and X ′, for which (α1 + α2)(X1) = β(X2) = 1
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and (α1 + α2)(X2) = β(X1) = 0. Then the commutation table of g with respect
to the basis X1, X2, Y1, Y2, Y3, Y4 has the following form

[ , ] X1 X2 Y1 Y2 Y3 Y4

X1 0 0 aY1 (1− a)Y2 Y3 0
X2 0 0 0 0 0 Y4

Y1 −aY1 0 0 Y3 0 0
Y2 (a− 1)Y2 0 −Y3 0 0 0
Y3 −Y3 0 0 0 0 0
Y4 0 −Y4 0 0 0 0

. (12)

This shows that g ∼= Φ4,1(a)⊕ aff(1,F).
Case 3.2.2: a = 0. Choose X ∈ g such that (α1 + α2)(X) = 1, β(X) = 2,

and let ker(α1 + α2) = a0⊕ a1⊕ a2 be the decomposition of the kernel of α1 + α2

into generalized eigensubspaces of the operator ad X, i.e.

aα = {Y ∈ g | (adX − α idg)dim gY = 0}.

Choose linearly independent vectors X ′, Y1 ∈ a0; Y2, Y3 ∈ a1 and Y4 ∈ a2 in such
a way that β(X ′) = 1; Y1 ∈ a0 ∩ n; Y3 ∈ [n, n] ⊂ a1. Y3 and Y4 belong to the
center of the nilradical, therefore [Y1, Y2] 6= 0, consequently, Y3 can be chosen to
be [Y1, Y2]. The first two rows of the commutation table of g with respect to the
basis X, X ′, Y1, Y2, Y3, Y4 has the form

[ , ] X X ′ Y1 Y2 Y3 Y4

X 0 µY1 0 Y2 + ρY3 Y3 2Y4

X ′ −µY1 0 0 ρ′Y3 0 Y4

,

where µ, ρ, ρ′ ∈ F.
The Jacobi identity for the triple X, X ′, Y2 yields µ = 0 immediately. If we

set X1 = X−2X ′− (ρ− 2ρ′)Y1 and X2 = X ′−ρ′Y1, then the commutation table
of g with respect to the basis X1, X2, Y1, Y2, Y3, Y4 will get the form (12) with
a = 0, thus g is isomorphic to Φ4,1(0)⊕ aff(1,F).

Case 3.2.3: Assume a = 1/2. In this case, the representation of g on the
factor space n/z with respect to the basis Y1, Y2 has the form

X 7→
(

α1(X) µ1(α1 + α2)(X) + µ2β(X)
0 α1(X)

)
.
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Just as in case 3.1.2, the ratio (µ1 : µ2) is an invariant of the isomorphism class
of g. Using the same methods as in the previous cases the commutation table of g

can be brought to the form

[ , ] X1 X2 Y1 Y2 Y3 Y4

X1 0 0 1
2Y1 + µ1Y2

1
2Y2 Y3 0

X2 0 0 µ2Y2 0 0 Y4

Y1 − 1
2Y1 − µ1Y2 −µ2Y2 0 Y3 0 0

Y2 − 1
2Y2 0 −Y3 0 0 0

Y3 −Y3 0 0 0 0 0
Y4 0 −Y4 0 0 0 0

.

Denote by Φ6,5(µ1 : µ2) the isomorphism class of this Lie algebra.
Φ6,5(µ1 : µ2) cannot be decomposed into a direct sum of smaller dimensional

Lie algebras except for Φ6,5(1 : 0) ∼= Φ4,2 ⊕ aff(1,F) and Φ6,5(0 : 0) which is
isomorphic to Φ4,1(1/2)⊕ aff(1,F).

Case 4: n = Γ5,6. We have the following chain of characteristic ideals in n

n B zn(n3) B n2 = [n, n] B n3 = [n, n2] B zn,

where zn(n3) is the centralizer of n3 in n. If the root induced on the 1-dimensional
g-module n/zn(n3) is λ, then the roots induced on the 1-dimensional factors of the
consecutive ideals of this chain are λ, 2λ, 3λ, 4λ, 5λ respectively. g is a Frobenius
Lie algebra if and only if λ 6= 0. Choose X ∈ g such that λ(X) = 1 and let
Y1, Y2, Y3, Y4, Y5 ∈ n be eigenvectors of the operator ad X, for which [X,Yi] = iYi.
Choosing a suitable normalization of these vectors the commutation table of g

with respect to the basis X, Y1, Y2, Y3, Y4, Y5 will have the form

[ , ] X Y1 Y2 Y3 Y4 Y5

X 0 Y1 2Y2 3Y3 4Y4 5Y5

Y1 −Y1 0 Y3 Y4 Y5 0
Y2 −2Y2 −Y3 0 Y5 0 0
Y3 −3Y3 −Y4 −Y5 0 0 0
Y4 −4Y4 −Y5 0 0 0 0
Y5 −5Y5 0 0 0 0 0

,

consequently, the case n = Γ5,6 corresponds to a unique isomorphism class of
Frobenius Lie algebras which we denote by Φ6,6.
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Case 5: n = Γ5,3. The nilradical n has the following characteristic ideals

n B zn(n2) B z̃ B n2 B zn,

where z̃ = {X ∈ n | [X, n] ⊂ zn}. Denote by λ the root of g induced on the
1-dimensional g-module zn. Let aλ (a ∈ F) be the root of g induced on the factor
n/zn(n2). It can be shown that in this case the roots induced on the factors
zn(n2)/z̃, z̃/n2 and n2/zn are (1− 2a)λ, 2aλ and (1− a)λ respectively. It is clear
that a ∈ F is an invariant of the isomorphism class of g.

Case 5.1: a /∈ {0, 1, 1/2, 1/3, 1/4}. In this case, if X ∈ g is an element with
λ(X) = 1, then the eigenvalues of the operator ad X are distinct. Let Y1, Y2,
Y3, Y4, Y5 be the eigenvectors of ad X corresponding to the eigenvalues a, 2a,
1 − 2a, 1 − a, 1 respectively. Renormalizing these eigenvectors if necessary, the
commutator table will be the following:

[ , ] X Y1 Y2 Y3 Y4 Y5

X 0 aY1 2aY2 (1− 2a)Y3 (1− a)Y4 Y5

Y1 −aY1 0 0 Y4 Y5 0
Y2 −2aY2 0 0 Y5 0 0
Y3 −(1− 2a)Y3 −Y4 −Y5 0 0 0
Y4 −(1− a)Y4 −Y5 0 0 0 0
Y5 −Y5 0 0 0 0 0

.

Denote the obtained one-parameter family of Frobenius Lie algebras by Φ6,7(a)
(a ∈ F).

Case 5.2: a = 0. Let n = a1+a2 be the splitting of the nilradical into the sum
of generalized eigenspaces of ad X. Choose a basis Y1, Y2 ∈ a0; Y3, Y4, Y5 ∈ a1 in
such a way that Y2 ∈ a0 ∩ z̃, Y4 ∈ n2, Y5 ∈ zn. Then the commutation table with
respect to this basis must have the form

[ , ] X Y1 Y2 Y3 Y4 Y5

X 0 αY2 0 Y3 + βY4 + γY5 Y4 + δY5 Y5

Y1 ∗ 0 0 ζY4 + ηY5 θY5 0
Y2 ∗ ∗ 0 ιY5 0 0
Y3 ∗ ∗ ∗ 0 0 0
Y4 ∗ ∗ ∗ ∗ 0 0
Y5 ∗ ∗ ∗ ∗ ∗ 0

.

Since g is Frobenius, ι and θ are different from 0, therefore, we may assume that
ι = θ = 1. Subtracting suitable multiples of Y2 from X, Y1 and that of Y1 from X
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we can eliminate the coefficients γ, η and δ. ζ is not zero, since dim n2 = 2, thus
we can assume ζ = 1. With these simplifications only two parameters remain, α

and β. They are not independent as the Jacobi identity for the triple X, Y1, Y3

implies α + β = 0.
If α = β = 0, i.e. if the action of g on n/n2 is diagonalizable, then g belongs

to the class Φ6,7(0). When α = −β 6= 0, then α can be made equal to 1 by a
renormalization of the basis Y1, . . . , Y5 and the isomorphism class of g, which we
denote by Φ6,8, is given by the following commutation table:

[ , ] X Y1 Y2 Y3 Y4 Y5

X 0 Y2 0 Y3 − Y4 Y4 Y5

Y1 −Y2 0 0 Y4 Y5 0
Y2 0 0 0 Y5 0 0
Y3 Y4 − Y3 −Y4 −Y5 0 0 0
Y4 −Y4 −Y5 0 0 0 0
Y5 −Y5 0 0 0 0 0

.

Case 5.3. If a = 1, then the restriction of the operator adX onto n has
eigenvalues 1, 2,−1, 0, 1 and we can choose a basis Y1, . . . , Y5 in n in such a way
that Y2, Y3 and Y4 are eigenvectors of the operator ad X with eigenvalues 2, −1
and 0 respectively, while Y1 and Y5 ∈ zn generate the generalized eigensubspace
of ad X corresponding to the eigenvalue 1. If the operator ad X is diagonalizable,
then g belongs to the class Φ6,7(1), and this can always be achieved by adding
a multiple of Y4 to X. Indeed, Y4 commutes with the vectors Y2, Y3, Y5 and
[Y1, Y4] = αY5 with a nonzero α, while the commutator [X, Y1] has the form
Y1 + βY5, consequently, if X is replaced by X + β

αY4, then β will be cancelled,
while the remaining commutation relations do not change.

Case 5.4. An analogous argument shows that if a = 1
2 and λ(X) = 1, then

the set X +n = {X ′ ∈ g | λ(X ′) = 1} contains an element X ′ with diagonalizable
adX ′ and using this element one can prove that g belongs to the class Φ6,7

(
1
2

)
.

Cases 5.5, 5.6. When a is equal to 1
3 or 1

4 , then it may happen that the set
{adX | X ∈ g, λ(X) = 1} does not contain any diagonalizable element. These
cases yield two isomorphism classes Φ6,9 and Φ6,10 of Frobenius Lie algebras which
can be defined by the following commutation tables with respect to a suitable
basis:

Φ6,9 :
[ , ] X Y1 Y2 Y3 Y4 Y5

X 0 1
3Y1 + Y3

2
3Y2 + Y4

1
3Y3

2
3Y4 Y5

Y1 − 1
3Y1 − Y3 0 0 Y4 Y5 0



444 Balázs Csikós and László Verhóczki

Φ6,9 :

[ , ] X Y1 Y2 Y3 Y4 Y5

Y2 − 2
3Y2 − Y4 0 0 Y5 0 0

Y3 − 1
3Y3 −Y4 −Y5 0 0 0

Y4 − 2
3Y4 −Y5 0 0 0 0

Y5 −Y5 0 0 0 0 0

,

Φ6,10 :

[ , ] X Y1 Y2 Y3 Y4 Y5

X 0 1
4Y1

1
2Y2

1
2Y3 + Y2

3
4Y4 Y5

Y1 − 1
4Y1 0 0 Y4 Y5 0

Y2 − 1
2Y2 0 0 Y5 0 0

Y3 − 1
2Y3 − Y2 −Y4 −Y5 0 0 0

Y4 − 3
4Y4 −Y5 0 0 0 0

Y5 −Y5 0 0 0 0 0

.

Case 6: n = Γ5,1. The structure of the nilradical n can be described in the
following way. n has a 1-dimensional center z and if we fix a basis vector Y5 of z,
then there is a skew symmetric bilinear form 〈 , 〉 on n such that the Lie bracket
on n has the form

[Y, Y ′] = 〈Y, Y ′〉Y5.

The kernel of the form 〈 , 〉 is the center of n. Denote by λ the root of g induced
on the g-module z.

Lemma 4.1. There is an element X ∈ g such that n can be decomposed

into the direct sum of ad X-invariant subspaces V and z.

Proof. Fix a decomposition n = V ⊕ z and an element X̃ ∈ g having the
property λ(X̃) = 1. The action of the operator ad X̃ on V is described by the
formula

ad X̃(v) = v′ ⊕ φ(v)Y5,

where v, v′ ∈ V and φ ∈ V ∗. Since 〈 , 〉 is nondegenerate on V , there is an
element v0 ∈ V for which 〈v0, v〉 = φ(v) for all v ∈ V . Setting X = X̃ − v0 we
have λ(X) = 1 and adX(V ) ⊂ V . ¤

Let X and V be chosen as in Lemma 4.1. Denote by Vξ the generalized
eigensubspace of the operator adX|V corresponding to the number ξ ∈ F. Then
Vξ and Vη are orthogonal with respect to 〈 , 〉 if ξ + η 6= 1, while 〈 , 〉 is a non-
degenerate pairing on the pairs Vξ, V1−ξ. Thus, we have the following possibilities:

Case 6.1. V = Vξ ⊕ Vη ⊕ V1−ξ ⊕ V1−η, where ξ 6= η; ξ, η 6= 1
2 ; ξ 6= 1− η;
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Case 6.2. V = Vξ ⊕ V1−ξ ⊕ V 1
2
, where ξ 6= 1

2 and dim V 1
2

= 2;
Case 6.3. V = Vξ ⊕ V1−ξ, where ξ 6= 1

2 and dim Vξ = dim V1−ξ = 2;
Case 6.4. V = V 1

2
.

In those cases, when ad X is diagonalizable, e.g. in case 6.1, g belongs to the
2-parameter family of Frobenius Lie algebras Φ6,11{ξ, η} defined by the commu-
tation table

[ , ] X Y1 Y2 Y3 Y4 Y5

X 0 ξY1 ηY2 (1− η)Y3 (1− ξ)Y4 Y5

Y1 −ξY1 0 0 0 Y5 0
Y2 −ηY2 0 0 Y5 0 0
Y3 −(1− η)Y3 0 −Y5 0 0 0
Y4 −(1− ξ)Y4 −Y5 0 0 0 0
Y5 −Y5 0 0 0 0 0

.

Lie algebras belonging to case 6.2 with non-diagonalizable ad X form a 1-
parameter family Φ6,12(ξ) of Frobenius Lie algebras given by the commutation
table

[ , ] X Y1 Y2 Y3 Y4 Y5

X 0 ξY1
1
2Y2 + Y3

1
2Y3 (1− ξ)Y4 Y5

Y1 −ξY1 0 0 0 Y5 0
Y2 − 1

2Y2 − Y3 0 0 Y5 0 0
Y3 − 1

2Y3 0 −Y5 0 0 0
Y4 −(1− ξ)Y4 −Y5 0 0 0 0
Y5 −Y5 0 0 0 0 0

.

Consider case 6.3 assuming that ad X is not diagonalizable say on Vξ. Then
there is a basis {Y1, Y2} in Vξ such that [X, Y2] = ξY2, [X, Y1] = ξY1 + Y2. Let
Y4 ∈ V1−ξ be an eigenvector of ad X. Then Y2 and Y4 commute. Indeed,

[Y1, Y4] = [X, [Y1, Y4]] = [[X,Y1], Y4] + [Y1, [X, Y4]]

= [ξY1 + Y2, Y4] + [Y1, (1− ξ)Y4] = [Y1, Y4] + [Y2, Y4].

Thus, V1−ξ contains a basis {Y3, Y4} such that [X, Y4] = (1 − ξ)Y4, [Y1, Y4] =
[Y2, Y3] = Y5, [Y1, Y3] = [Y2, Y4] = 0, and then [X, Y3] = (1 − ξ)Y3 + αY4. The
following computation shows that α must be −1.

0 = [Y1, Y3] = [X, [Y1, Y3]] = [[X,Y1], Y3] + [Y1, [X,Y3]]

= [Y1, (1− ξ)Y3 + αY4] = (1 + α)Y5.
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Thus, case 6.3 with nondiagonalizable ad X yields a one-parameter family Φ6,13(ξ)
of Frobenius Lie algebras.

In case 6.4, choose a basis E1, E2, E3, E4 in V = V 1
2

in which the operator
adX|V has Jordan normal form. Corresponding to the possible sizes of the Jordan
cells, we have five subcases (4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1).

Case 6.4.1. If the Jordan normal form of ad X is one single Jordan cell,
then [X, Ei] = 1

2Ei + Ei+1 for i = 1, 2, 3 and [X,E4] = 1
2E4. Since [Ei, Ej ] is a

multiple of Y5, we have [X, [Ei, Ej ]] = [Ei, Ej ]. Thus, Jacobi identities for the
triples {X, Ei, Ej} reduce to

[E1, E3] = [E2, E3] + [E1, E4] = [E2, E4] = [E3, E4] = 0.

Set [E1, E2] = αY5 and [E2, E3] = βY5. It is clear that β 6= 0, and we can define
a new basis Y1, . . . , Y4 in V by

Y1 =
1√
β

(
E1 +

√
−α/βE2

)
; Y2 =

1√
β

(
E2 +

√
−α/βE3

)
;

Y3 =
1√
β

(
E3 +

√
−α/βE4

)
; Y4 = − 1√

β
E4.

The commutation table of the basis vectors X,Y1, . . . , Y5 is equal to

[ , ] X Y1 Y2 Y3 Y4 Y5

X 0 1
2Y1 + Y2

1
2Y2 + Y3

1
2Y3 − Y4

1
2Y4 Y5

Y1 − 1
2Y1 − Y2 0 0 0 Y5 0

Y2 − 1
2Y2 − Y3 0 0 Y5 0 0

Y3 − 1
2Y3 + Y4 0 −Y5 0 0 0

Y4 − 1
2Y4 −Y5 0 0 0 0

Y5 −Y5 0 0 0 0 0

.

The isomorphism class of this Lie algebra is denoted by Φ6,14.
Case 6.4.2. If the Jordan normal form of adX|V has Jordan blocks of sizes

3 × 3 and 1 × 1, then [X, Ei] = 1
2Ei + Ei+1 for i = 1, 2, and [X,Ei] = 1

2Ei for
i = 3, 4. Applying the Jacobi identity for the triples {X, Ei, Ej} as in the previous
subcase we obtain [E1, E3] = [E2, E3] = [E2, E4] = [E3, E4] = 0, however, this
is impossible, since maximal isotropic subspaces of V with respect to 〈 , 〉 have
dimension two, while E2, E3, E4 span an isotropic subspace.

Case 6.4.3. If the Jordan normal form of ad X|V has two 2 × 2 Jordan
blocks, then [X, Ei] = 1

2Ei + Ei+1 for i = 1, 3, and [X,Ei] = 1
2Ei for i = 2, 4

and the Jacobi identity for the triples {X,Ei, Ej} yields [E2, E3] + [E1, E4] =
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[E2, E4] = 0. If the commutator [[X, Y ], Y ] is identically equal to 0 for X ∈ g

and Y ∈ n, then, similarly to case 6.3, we can show that the Lie algebra belongs
to the class Φ6,13

(
1
2

)
. On the other hand, if [[X,Y ], Y ] is not identically 0 for

(X, Y ) ∈ g × n, then the vectors E1, . . . , E4 can be chosen also in such a way
that [E1, E2] = Y5 = [E3, E4] and [E1, E3] = [E1, E4] = [E2, E3] = [E2, E4] = 0.
Thus, we obtain a unique isomorphism class Φ6,15 whose commutation table with
respect to the basis {X, Y1 = E1, Y2 = E3, Y3 = E4, Y4 = E2, Y5} is the following

[ , ] X Y1 Y2 Y3 Y4 Y5

X 0 1
2Y1 + Y4

1
2Y2 + Y3

1
2Y3

1
2Y4 Y5

Y1 − 1
2Y1 − Y4 0 0 0 Y5 0

Y2 − 1
2Y2 − Y3 0 0 Y5 0 0

Y3 − 1
2Y3 0 −Y5 0 0 0

Y4 − 1
2Y4 −Y5 0 0 0 0

Y5 −Y5 0 0 0 0 0

.

Case 6.5.4. If [X,E1] = 1
2E1 + E2 and [X,Ei] = 1

2Ei for i = 2, 3, 4, then
[E2, E3] = [E2, E4] = 0 follows from the Jacobi identity for {X, Ei, Ej}. Conse-
quently, [E1, E2] 6= 0, thus, subtracting suitable multiples of E2 from E3 and E4

we may assume that [E1, E3] = [E1, E4] = 0. Then repeating the ideas used in
case 6.3 we can show that g belongs to Φ6,12

(
1
2

)
.

Case 6.5.5. Finally, if ad X|V is diagonalizable, then g is in Φ6,11

{
1
2 , 1

2

}
.

This completes the classification of solvable 6-dimensional Frobenius Lie al-
gebras.

Assume that g is a non-solvable Frobenius Lie algebra with Levi–Malcev
decomposition g = r o s, where r is the radical of g, s is the semisimple part.
Since s 6= 0 is a semisimple Lie algebra of dimension less than 6, s ∼= sl(2,F). It
is known that finite dimensional s-modules are completely reducible, and that up
to isomorphism, there is a unique irreducible sl(2,F)-module V n of dimension n

for any n ∈ N. Consider the s-module r.
The representation of s on r cannot be trivial, because in that case we would

have g ∼= r× s and ind g = ind r + ind s > 0.
On the other hand, r must contain a 1-dimensional s-submodule, otherwise

we would have

[g, g] ⊃ [s, s⊕ V 3] = [s, s] + [s, V 3] = s + V 3 = g,

since [s, s] = s and sV n = V n for n > 1, and this would contradict Corollary 2.1.
We conclude that r ∼= V 1 ⊕ V 2 as an s-module. Then [g, g] = s + V 2,

[r, r] ⊂ r∩[g, g] = V 2. Since [r, r] is an s-submodule in V 2 and [r, r] 6= 0 (otherwise g
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were not Frobenius), therefore, [r, r] = V 2. [V 2, V 2] is also an s-submodule of V 2

and [V 2, V 2] 6= V 2, consequently V 2 is commutative.
V 1 acts on V 2 and its action commutes with that of s, thus, by Schur’s

lemma, V 1 acts by scalar multiplications.
This information determines the Lie algebra structure of g uniquely up to iso-

morphism, so there is only one non-solvable Frobenius Lie algebra of dimension 6,
aff(2,F), the Lie algebra of the group of affine transformations of the plane.

5. Summary

In the tables below we describe Lie algebras by listing the nonzero elements
above the diagonal of their commutation tables with respect to an ordered basis.
In the four-dimensional case, basis vectors are denoted by X1, X2, X3, X4. In
the 6-dimensional case, we use bases of the form X1, . . . , Xm, Y1, . . . , Y6−m and
when m = 1, X1 is denoted by X.

We proved the following two classification theorems.

Theorem 5.1. Isomorphism classes of Frobenius Lie algebras of dimension 4
over a field of characteristic 6= 2 are listed in the following table.

Φ′ [X1, X4] = [X2, X3] = −X1, [X2, X4] = −X2/2,

[X3, X4] = −X3/2.

Φ′′(∆), ∆ ∈ F [X1, X4] = [X2, X3] = −X1, [X2, X4] = −X3,

[X3, X4] = −X3 + ∆X2.

Φ′′′(ε), 0 6= ε ∈ F [X1, X3] = [X2, X4] = −X1, [X1, X4] = εX2,

[X2, X3] = −X2.

Φ′′′(ε1) ∼= Φ′′′(ε2) if and only if the quotient ε1/ε2 is the square of an element of

F, any other pairs of Lie algebras of the table are non-isomorphic. The only de-

composable 4-dimensional Frobenius Lie algebra aff(1,F)⊕aff(1,F) is isomorphic

to Φ′′′(−1).

Theorem 5.2. Isomorphism classes of non-decomposable Frobenius Lie al-

gebras of dimension 6 over an algebraically closed field F of characteristic 0 are

listed in the following table.

[X1, Y1] = Y1, [X1, Y3] = Y3, [X1, Y4] = 2Y4,

Φ6,1 [X2, Y2] = Y2, [X2, Y3] = Y3, [X2, Y4] = Y4,

[Y1, Y2] = Y3, [Y1, Y3] = Y4.
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Φ6,2{ξ, η} [X1, Y1] = Y1, [X1, Y3] = Y3, [X1, Y4] = ξY4,

ξ 6= η [X2, Y2] = Y2, [X2, Y3] = Y3, [X2, Y4] = ηY4,

[Y1, Y2] = Y3.

Φ6,3{ξ : η} [X1, Y1] = Y1, [X1, Y3] = Y3, [X1, Y4] = Y4 + ξY3,

(ξ : η) 6= (1 : 1) [X2, Y2] = Y2, [X2, Y3] = Y3, [X2, Y4] = Y4 + ηY3,

[Y1, Y2] = Y3.

Φ6,4(ξ : η) [X1, Y1] = Y1 + ξY4, [X1, Y3] = Y3, [X1, Y4] = Y4,

(ξ : η) 6= (0 : 0) [X2, Y1] = ηY4, [X2, Y2] = Y2, [X2, Y3] = Y3,

[Y1, Y2] = Y3.

Φ6,5(ξ : η) [X1, Y1] = Y1/2 + ξY2, [X1, Y2] = Y2/2, [X1, Y3] = Y3,

η 6= 0 [X2, Y1] = ηY2, [X2, Y4] = Y4, [Y1, Y2] = Y3.

[X, Y1] = Y1, [X, Y2] = 2Y2, [X,Y3] = 3Y3,

Φ6,6 [X, Y4] = 4Y4, [X, Y5] = 5Y5, [Y1, Y2] = Y3,

[Y1, Y3] = Y4, [Y1, Y4] = Y5, [Y2, Y3] = Y5.

[X, Y1] = ξY1, [X, Y2] = 2ξY2, [X,Y3] = (1− 2ξ)Y3,

Φ6,7(ξ) [X, Y4] = (1− ξ)Y4, [X, Y5] = Y5, [Y1, Y3] = Y4,

[Y1, Y4] = [Y2, Y3] = Y5.

Φ6,8 [X, Y1] = Y2, [X, Y3] = Y3 − Y4, [X, Y4] = Y4,

[X, Y5] = Y5, [Y1, Y3] = Y4, [Y1, Y4] = [Y2, Y3] = Y5.

[X, Y1] = Y1/3 + Y3, [X, Y2] = 2Y2/3 + Y4,

Φ6,9 [X, Y3] = Y3/3, [X, Y4] = 2Y4/3, [X,Y5] = Y5,

[Y1, Y3] = Y4, [Y1, Y4] = [Y2, Y3] = Y5.

[X, Y1] = Y1/4, [X, Y2] = Y2/2, [X,Y3] = Y3/2 + Y2,

Φ6,10 [X, Y4] = 3Y4/4, [X, Y5] = Y5, [Y1, Y3] = Y4,

[Y1, Y4] = [Y2, Y3] = Y5.

Φ6,11{ξ, η} [X, Y1] = ξY1, [X, Y2] = ηY2, [X, Y3] = (1− η)Y3,

[X, Y4] = (1− ξ)Y4, [X, Y5] = [Y1, Y4] = [Y2, Y3] = Y5.

Φ6,12(ξ) [X, Y1] = ξY1, [X, Y2] = Y2/2 + Y3, [X, Y3] = Y3/2,
∼= Φ6,12(1− ξ) [X, Y4] = (1− ξ)Y4, [X, Y5] = [Y1, Y4] = [Y2, Y3] = Y5.

Φ6,13(ξ) [X, Y1] = ξY1 + Y2, [X,Y2] = ξY2,
∼= Φ6,13(1− ξ) [X, Y3] = (1− ξ)Y3 − Y4, [X,Y4] = (1− ξ)Y4,

[X, Y5] = [Y1, Y4] = [Y2, Y3] = Y5.

[X, Y1] = Y1/2 + Y2, [X, Y2] = Y2/2 + Y3,

Φ6,14 [X, Y3] = Y3/2− Y4,[X, Y4] = Y4/2,

[X, Y5] = [Y1, Y4] = [Y2, Y3] = Y5.

[X, Y1] = Y1/2 + Y4, [X, Y2] = Y2/2 + Y3,

Φ6,15 [X, Y3] = Y3/2, [X, Y4] = Y4/2,

[X, Y5] = [Y1, Y4] = [Y2, Y3] = Y5.

aff(2,F)
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When the parameters ξ, η ∈ F are separated by a colon, the isomorphism class

does not change if both parameters are multiplied by a non-zero number. We

put curly brackets around the parameters when the isomorphism class does not

depend on the order of them. Φ6,11{ξ, η} depends only on the set {ξ, 1−ξ, η, 1−η}.
Except for these isomorphisms, the isomorphism classes of the table are pairwise

distinct.

Remark 5.3. Irreducible almost algebraic Frobenius Lie algebras were de-
noted by L6,1, L6,2(a1, a2), L6,3(a), L6,4 and L6,5 in the list of A. G. Elashvili in
[7]. These Lie algebras are isomorphic to the following Lie algebras of our list:
L6,1

∼= aff(2,F), L6,2(a1, a2) ∼= Φ6,11(a1, a2), L6,3(a) ∼= Φ6,7(a), L6,4
∼= Φ6,6 and

L6,5
∼= Φ6,1. (The commutation table of L6,3(a) contains some misprints in [7].)
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