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Prime ideals and complex ring homomorphisms
on a commutative algebra

By TAKESHI MIURA (Yonezawa), SIN-EI TAKAHASI (Yonezawa)
and NORIO NIWA (Neyagawa)

Abstract. We give a characterization of prime ideals P of a commutative complex

algebra A in order that P be the kernel of some complex ring homomorphism on A. If, in

addition, A is a uniform algebra on an infinite compact metric space, then we show that

there are exactly 2c complex ring homomorphisms on A, whose kernels are non-maximal

prime ideals. Moreover, it turns out that ring homomorphisms on a commutative Banach

algebra are deeply connected with the existence of discontinuous homomorphisms.

1. Introduction and the statement of results

Let A and B be algebras over the complex number field C. We say that a
mapping ρ : A → B is a ring homomorphism, provided that

ρ(f + g) = ρ(f) + ρ(g)

ρ(fg) = ρ(f) ρ(g)

for every f, g ∈ A. Moreover if ρ is homogeneous, that is ρ(λf) = λρ(f) for every
f ∈ A and λ ∈ C, then ρ is an ordinary homomorphism. It is obvious that if
ρ : A → B is a ring homomorphism, then ρ(rf) = rρ(f) for every rational number
r and f ∈ A. If, in addition, ρ is assumed to be continuous, then we see that
ρ is real linear, that is, ρ(tf) = tρ(f) for every real number t and f ∈ A. So,
we consider ring homomorphisms which need not be continuous. The study of
ring homomorphisms between two Banach algebras has a long history. In 1944,
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Arnold [1] proved that a ring isomorphism between the two Banach algebras of
all bounded linear operators on two infinite dimensional Banach spaces is linear
or conjugate linear. Kaplansky [6] generalized this result as follows: If ρ is a
ring isomorphism from one semisimple Banach algebra A onto another, then A is
the direct sum of closed ideals A1, A2 and A3 such that ρ|A1 is linear, ρ|A2 is con-
jugate linear and that A3 is finite dimensional: The finite dimensional part is not
trivial in general. In fact, Kestelman [7] proved that there exists a ring homo-
morphism ρ : C→ C such that ρ is neither linear nor conjugate linear. Moreover,
Charnow [2, Theorem 3] proved that there exist 2]k ring automorphisms for
every algebraically closed field k. Here and after, ]S denotes the cardinal number
of a set S. In particular, there are 2]C ring automorphisms on C. Molnár [10,
Theorem 1] essentially gave a representation of a ring homomorphism between
two commutative C∗-algebras.

Suppose ρ : A → B is a ring homomorphism between two commutative Ba-
nach algebras A and B with the maximal ideal spaces MA and MB , respectively.
When studying such mappings, a natural approach would be to consider ring ho-
momorphisms ϕ ◦ ρ : A → C for every ϕ ∈ MB , and patch them by a continuous
mapping from a suitable subset of MB into MA. Indeed, some representations
of ring homomorphisms, with additional conditions, are proved in this way (cf.
[5, Theorem 2.3], [9, Theorem 2.6], [11, Theorem 5.1, 5.2]). Unfortunately this
approach does not work in general because the kernel ker(ϕ ◦ ρ) need not be a
maximal ideal of A. On the other hand, Molnár [10, Theorem 2] essentially gave
a representation of ring homomorphisms between two commutative C∗-algebras
by another approach. Although we are concerned with ring homomorphism, the
term ideal will mean an algebra ideal. Let C(X) denote the commutative Banach
algebra of all complex valued continuous functions on a compact Hausdorff space
X. Suppose τ : C→C is a ring homomorphism, and suppose x0 ∈X. Šemrl

[11, Example 5.4] considered a complex ring homomorphism ρ : C(X) → C of the
form

ρ(f) = τ(f(x0)) (f ∈ C(X)) (∗)
and gave the following example: If N is the set of all natural numbers and if K is
the closure of {1/n : n ∈ N} with its usual topology, then there is a non-zero ring
homomorphism φ : C(K) → C such that φ is not of the form (∗). In particular,
kerφ is a non-maximal prime ideal of C(K). The first author [9, Lemma 2.1] gave
a characterization of a ring homomorphism ρ between two commutative Banach
algebras in order that ker ρ be a maximal ideal (cf. [5, Lemma 2.2]).

In this note, we are concerned with complex ring homomorphisms ρ on a
commutative complex algebra A. If ρ is non-zero, then it is easy to see that
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ker ρ is a prime ideal of A. Recall that if A is a unital commutative Banach
algebra, then there is a one-to-one correspondence between non-zero complex
homomorphisms on A and maximal ideals of A. With this in mind, one might
expect that there is also a correspondence between complex ring homomorphisms
and prime ideals of a complex commutative algebra A. In this note, we give a
characterization of prime ideals that can be represented as the kernels of some
complex ring homomorphisms. Before we state our main result, we need some
terminology. If A is unital, then we define Ae

def= A; otherwise, Ae denotes the
commutative complex algebra obtained by adjunction of a unit element e to A.
As usual, we may identify f ∈ A with (f, 0) ∈ Ae. Now, we are ready to state
our main result.

Theorem 1.1. Suppose A is a commutative complex algebra and P is a

prime ideal of A. Put c = ]C. Then each of the following four properties implies

the other three:

(a) There exists a non-zero ring homomorphism ρ : A → C such that ker ρ = P.

(b) The quotient algebra A/P has the cardinal number c.

(c) There exists a prime ideal P̃ of Ae such that P = P̃ ∩A and that Ae/P̃ has

the cardinal number c.

(d) There exists a non-zero ring homomorphism ρ̃ : Ae → C such that

A ∩ ker ρ̃ = P.

Let K be the closure of {1/n : n ∈ N} with its usual topology. As stated
above, Šemrl gave a complex ring homomorphism on C(K), whose kernel is a
non-maximal prime ideal. In the following corollary we see that there exist 2c

such mappings. Moreover, the following is true.

Corollary 1.2. If A is a uniform algebra on an infinite compact metric space,

then there are exactly 2c complex ring homomorphisms on A, whose kernels are

non-maximal prime ideals.

2. A proof of results

Recall that an ideal P of a commutative algebra is prime if P is proper and
fg /∈ P whenever f /∈ P and g /∈ P.

It is advisable to note that the quotient field of an integral domain R is well
defined even if R has no unit: If a ∈ R \ {0}, then the “fraction” a/a is a unit,
and we may identify b ∈ R with ab/a.
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Lemma 2.1. Suppose A is a commutative complex algebra and ρ : A → C
is a non-zero ring homomorphism. Then

(a) the kernel ker ρ is a prime ideal of A, and

(b) ρ is of the form ρ = τ ◦ π, where τ is a non-zero field homomorphism on

the quotient field F of A/ ker ρ into C, and π : A → A/ ker ρ is the quotient

mapping.

Proof. Choose a ∈ A such that ρ(a) 6= 0: This is possible since ρ is assumed
to be non-zero. (a) Pick f ∈ ker ρ and λ ∈ C arbitrarily. It follows that

ρ(λf) ρ(a) = ρ(f) ρ(λa) = 0,

and hence λf ∈ ker ρ. We thus obtain that ker ρ is an (algebra) ideal. Now it is
obvious that ker ρ is a prime ideal.

(b) Let F be the quotient field of A/ ker ρ. F is well defined since A/ ker ρ

is an integral domain by (a). We define the mapping τ : F → C by

τ(π(f)/π(g)) =
ρ(f)
ρ(g)

(π(f)/π(g) ∈ F).

A simple calculation shows that τ is a well defined non-zero field homomorphism.
As usual we may identify π(f) ∈ A/ ker ρ with π(fa)/π(a) ∈ F . We get

τ(π(f)) = τ(π(fa)/π(a)) =
ρ(fa)
ρ(a)

= ρ(f) (f ∈ A),

and hence ρ = τ ◦ π. ¤

Lemma 2.2. Suppose A is a commutative complex algebra and P is a prime

ideal of A. Then

(a) c = ]C ≤ ](A/P), and

(b) if a ∈ A \ P, the set Pe
def= {(f, λ) ∈ Ae : fa + λa ∈ P} is a prime ideal of

Ae such that P = Pe ∩ A.

Proof. Pick a ∈ A \ P arbitrarily.

(a) Let π : A → A/P be the quotient mapping. Since a /∈ P and since P is
an ideal, π(λa) = π(µa) implies λ = µ for λ, µ ∈ C. This shows that the mapping
λ 7→ π(λa) is an injection, so that

c = ]C = ]{π(λa) : λ ∈ C} ≤ ](A/P).
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(b) It is easy to see that Pe is a proper ideal of Ae such that P = Pe∩A. To
show that Pe is prime, suppose (f1, λ1)(f2, λ2) ∈ Pe. By definition, this implies
that (f1f2+λ2f1+λ1f2)a+(λ1λ2)a ∈ P , and so we obtain (f1a+λ1a)(f2a+λ2a) ∈
P. Since P is a prime ideal, (f1a+λ1a) or (f2a+λ2a) belongs to P. This implies
(f1, λ1) ∈ Pe or (f2, λ2) ∈ Pe, and hence Pe is prime. ¤

Let K be a transcendental extension field of a commutative field k, and S

a subset of K. We recall that S is said to be algebraically independent over k,
if the set of all finite products of elements of S is linearly independent over k.
A subset T of K is called a transcendence base of K over k, if T is algebraically
independent over k which is maximal with respect to the inclusion ordering. The
existence of a transcendence base of K over k is well known (cf. [8, Theorem 1.1
of Chapter X]). The maximality of T shows that K is algebraic over k(T ), the
field generated by T over k.

Lemma 2.3. Let Q be the rational number field and k a transcendental

extension field of Q such that ]k = c. If T is a transcendence base of k over Q,

then ] T = c.

Proof. Suppose T is a transcendence base of k over Q. Let Q(T ) be the
field generated by T over Q. Since T ⊂ Q(T ) ⊂ k, we obtain ] T ≤ ]{Q(T )} ≤ c.
So, we show that c ≤ ] T . Since k is algebraic over Q(T ), each element of k is
a zero point of some function in ℘, the set of all monic polynomials over Q(T ).
Note that for each monic polynomial, its zero points in k is at most finite. Put
a = ]Q, then we have

c = ] k ≤ (]℘)× a ≤ (]{Q(T )} × a)× a = ]{Q(T )},

and hence c ≤ ]{Q(T )}. We thus obtain

c = ]{Q(T )} ≤ a× ] T. (∗∗)

If T were finite, then we would have ]{Q(T )} = a, in contradiction to ]{Q(T )} = c.
It follows that ] T ≥ a, and so a × ] T = ] T . By (∗∗) we get c ≤ ] T , proving
] T = c. ¤

Proof of Theorem 1.1. Let π : A → A/P be the quotient mapping and
fix a ∈ A \ P.

(a) ⇒ (b) By (a) of Lemma 2.2, we obtain c ≤ ](A/P). To prove the opposite
inequality, let F be the quotient field of A/P. By (b) of Lemma 2.1, we can write
ρ = τ ◦ π, where τ : F → C is a field homomorphism, and hence injective. It
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follows that ]F ≤ ]C = c. If we regard A/P as a subset of F , it follows that
](A/P) ≤ ]F ≤ c, proving ](A/P) = c.

(b) ⇒ (c) Let Pe be the prime ideal of Ae as in (b) of Lemma 2.2. Let
π̃ : Ae → Ae/Pe be the quotient mapping. Identification of f and (f, 0) shows
that π(f) = π(g) if and only if π̃(f, 0) = π̃(g, 0) for f, g ∈ A, and so c = ](A/P) ≤
](Ae/Pe). To show the opposite inequality, we define the mapping ψ : Ae/Pe →
A/P by

ψ(π̃(f, λ)) = π(fa + λa) (π̃(f, λ) ∈ Ae/Pe).

A simple calculation shows that ψ is a well defined injection. Hence ](Ae/Pe) ≤
](A/P) = c, proving ](Ae/Pe) = c.

(c) ⇒ (d) Let F̃ be the quotient field of Ae/P̃. Then

c = ](Ae/P̃) ≤ ]F̃ ≤ ](Ae/P̃)× ](Ae/P̃) = c,

so that F̃ also has the cardinal number c. Note that F̃ is a transcendental
extension of Q since F̃ contains a unital algebra Ae/P̃ ⊃ C.

Let T and T̃ be transcendence bases of C and F̃ over Q, respectively. By
Lemma 2.3, we see that ] T = c = ]T̃ . Thus we can find a bijection θ : T̃ → T .
Since T is algebraically independent over Q, the mapping θ is naturally extended
to a field homomorphism θ̃ : Q(T̃ ) → Q(T ) so that θ̃(r) = r for every r ∈ Q.
Since F̃ is an algebraic extension of Q(T̃ ) and since C is algebraically closed, θ̃

can be extended to a field homomorphism on F̃ into C (cf. [8, Theorem 2.8 of
Chapter VII]), which is also denoted by θ̃. Define ρ̃ = θ̃◦ π̃, where π̃ : Ae → Ae/P̃
is the quotient mapping. Then ρ̃ : Ae → C is a ring homomorphism whose kernel
is equal to P̃, proving A ∩ ker ρ̃ = A ∩ P̃ = P.

(d) ⇒ (a) Put ρ = ρ̃|A. Then ρ : A → C is a non-zero ring homomorphism
such that ker ρ = P. ¤

Proof of Corollary 1.2. Suppose A is a uniform algebra on an infinite
compact metric space X. Let ∆ be the set of all non-maximal prime ideals of A.
It is well known [4, Corollary 1] that there exist exactly 2c non-maximal prime
ideals of A, and hence ]∆ = 2c. Since X is separable, ]A = c: For if X0 is
a countable dense subset of X, then the restriction map f 7→ f |X0 (f ∈ A) is
injective since each element of A is continuous, and hence c ≤ ]A ≤ a × c = c.
So, there exist exactly 2c functions on A into C, which need not be continuous
nor ring homomorphic. This implies that there are at most 2c complex ring
homomorphisms on A.
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Conversely pick P ∈ ∆ arbitrarily. By (a) of Lemma 2.2, we have

c ≤ ](A/P ) ≤ ]A = c,

and hence ](A/P ) = c. So, by Theorem 1.1, to each P ∈ ∆ there corresponds
a complex ring homomorphism ρP : A → C such that ker ρP = P . Suppose
ρP1

= ρP2
for P1, P2 ∈ ∆. It follows from ker ρPj

= Pj for j = 1, 2 that P1 = P2,
and hence the mapping P 7→ ρP is an injection. We conclude that

2c = ]∆ ≤ ]{ρP : P ∈ ∆},

and the proof is complete. ¤

Remark. Let A be a commutative Banach algebra. It is well-known (cf. [3,
Theorem 5.7.32]) that under the continuum hypothesis there is a discontinuous
homomorphism on A into some Banach algebra whenever there is a non-maximal
prime ideal P of A with ](A/P ) = c. It follows from Theorem 1.1 that under
the continuum hypothesis a discontinuous homomorphisms on A exists whenever
there is a non-zero ring homomorphism ρ : A → C such that ker ρ is non-maximal.

Example 2.1. Let D̄ denote the closure of the open unit disk D in C. The
disk algebra A(D̄) is a typical example of uniform algebras. Hatori, Ishii with
the first and second author ([5, Corollary 5.3]) proved that if ρ : A(D̄) → A(D̄)
is a ring homomorphism whose range contains a non-constant function, then ρ is
linear or conjugate linear.

Here, let us consider complex ring homomorphisms on A(D̄), that is, the
range contains only constant functions. It is well known that the set of all non-
zero complex homomorphisms on A(D̄) can be identified with D̄. So, there are
c complex homomorphisms on A(D̄). On the other hand, by Corollary 1.2, we
see that there are 2c ring homomorphisms whose kernels are non-maximal prime
ideals.

Finally, we give a pathological feature of complex ring homomorphisms (cf.
[5, Corollary 5.2]).

Example 2.2. If H(Ω) is the algebra of all analytic functions on a region
Ω ⊂ C, then, as we shall show, H(Ω) is a subring of C. In particular, it will
follow that every subalgebra A of H(Ω), which is with or without unit, is a subring
of C. In fact, the ideal (0) containing only zero is a prime ideal of H(Ω). Moreover
]H(Ω) = c since c = ]C ≤ ] H(Ω) ≤ ] C(Ω) = c, and so by Theorem 1.1 there
exists a non-zero complex ring homomorphism ρ on H(Ω) such that ker ρ = (0).
Therefore, ρ is an injective complex ring homomorphism on H(Ω).
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