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On Sasakian anti-holomorphic Cauchy–Riemann
submanifolds of locally conformal Kaehler manifolds

By FRANCESCA VERROCA (Bari)

Abstract. We study some properties of the Sasakian anti-holomorphich Cauchy–
Riemann submanifolds in a locally conformal Kaehler manifold.

Introduction

The geometry of the Cauchy–Riemann (C.R.) submanifolds of a lo-
cally conformal Kaehler (l.c.K.) manifold has been studied in the last ten
years, ([B-C], [D1], [D2], [D-V], [I-O], [M], [V]).

The concept of normal C.R. submanifold was introduced by A. Be-
jancu, ([B1]) in analogy with the theory of the normal almost contact
structures, ([B], [H-S]). In [B1] a theory for the normal C.R. submanifolds
in a Kaehler manifold is developed. In particular, a C.R. hypersurface of
a Kaehler manifold is a normal contact hypersurface, ([OM]).

Some properties of the normal C.R. submanifolds of l.c.K. manifolds
have been studied in a former paper, ([V]).

In this paper, we study the Sasakian anti-holomorphic C.R. submani-
folds in a l.c.K. manifold. In the first section, we recall some properties of
the l.c.K. manifolds and of the anti-holomorphic C.R. submanifolds that
are C.R. submanifolds such that the totally real distribution and the nor-
mal bundle have the same dimension. D.E. Blair and B.Y. Chen proved
that the totally real distribution of a C.R. submanifold in a l.c.K. manifold
is integrable, ([B-C]).

On the contrary, in the section 2, we prove that the holomorphich
distribution of a proper contact anti-holomorphic C.R. submanifold in a
l.c.K. manifold cannot be integrable. This generalizes the well known
result which states that the canonical distribution of a contact struc-
ture cannot be integrable, ([B]). In the sections 3 and 4 we consider
C.R. submanifolds that are orthogonal to the lee vector field. When the
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curvature of the normal connection is zero, there exists an orthonormal
and parallel frame {ξi}1≤i≤q in the normal bundle (TM)⊥, ([C]). Putting
Ei = −Jξi, i = 1, . . . , q, then {Ei}1≤i≤q is an orthonomal frame of the
totally real distribution D⊥. The expression of the covariant derivatives
∇E1, i = 1, . . . , q, generalize the formula for the covariant derivative of
the Reeb vector field, ([B]).

Finally, we characterize Sasakian anti-holomorphic C.R. submanifolds
by means of the covariant derivative of the vector valued 1-form P .

§1. Preliminaries

Let
(
M2n, g0, J

)
be a Hermitian manifold of complex dimension n,

with Kaehler 2-form Ω0, i.e. Ω0(X, Y ) = g0(X,JY ), X, Y ∈ TM2n. Then(
M2n, g0, J

)
is a locally conformal Kaehler (l.c.K.) manifold if there exists

a closed 1-form ω0 on M2n such that

(1.1) dΩ0 = ω0 ∧ Ω0.

The 1-form ω0 is called the Lee form, then Lee vector field is the vector
field B0 such that g0 (B0, X) = ω0(X), X ∈ TM2n. If ∇̄ denotes the
Riemannian connection of

(
M2n, g0

)
, then one has:

(1.2)
(∇̄XJ

)
Y =

1
2
{θ0(Y )X − ω0(Y )JX − Ω0(X,Y )B0 − g(X, Y )A0}

for any X, Y ∈ TM2n, where θ0 = ω0 ◦ J is the anti-Lee 1-form and
A0 = −JB0 is the anti-Lee vector field.

We use the notation and the properties stated in [V1], [V2]. A subman-
ifold Mm of M2n is called a Cauchy–Riemann (C.R.) submanifold of M2n

if the tangent bundle TMm is expressed as a direct sum of two distribu-
tions D and D⊥, such that D is holomorphic (i.e. Jx (Dx) = Dx, x ∈ Mm)
and D⊥ is totally real (i.e. Jx(D⊥

x ) ⊂ (TxMm)⊥, x ∈ Mm). Let p be the
complex dimension of the holomorphic distribution D and let q be the
real dimension of the totally real distribution D⊥. If q = 0, Mm is called
holomorphic submanifold; if p = 0, Mm is called totally real submanifold.
In this paper, we examine the case p 6= 0, q 6= 0, that is Mm is a proper
C.R. submanifold, ([B3]).

Let tanx and norx be the projections naturally associated with the
direct sum decomposition TxM2n = TxMm⊕(TxMm)⊥, x ∈ Mm. We put
PX = tan(JX), FX = nor(JX), tξ = tan(Jξ) and fξ = nor(Jξ) for any
X ∈ TMm, ξ ∈ (TMm)⊥. Then, for any X ∈ TMm one has PX ∈ D.
Moreover, the following identities hold: P 2 = −I − tF , f2 = −I − Ft,
FP = 0, fF = 0, tf = 0, Pt = 0, P 3 + P = 0, f3 + f = 0, ([K-Y]). The



On Sasakian anti-holomorphic Cauchy–Riemann submanifolds . . . 305

Gauss and Weingarten formulas are still valid, that is:

(1.3) ∇̄XY = ∇XY + h(X,Y ), ∇̄Xξ = −AξX +∇⊥Xξ

for any X, Y ∈ TMm, ξ ∈ (TMm)⊥, here ∇, h, Aξ and ∇⊥ stand, re-
spectively, for the induced connection, the second foundamental form, the
Weingarten operator

(
associated with ξ ∈ (TMm)⊥

)
and the normal con-

nection in (TMm)⊥. The forms θ, ω and Ω are naturally induced on the
submanifold Mm by θ0, ω0 and Ω0 respectively. One has:

(1.4) θ = ω ◦ P + ω0 ◦ F, Ω(X, Y ) = g(X, PY ), X, Y,∈ TMm.

As a consequence of (1.2) and (1.3) one has:

(∇XP )Y =AFY X + th(X, Y )+(1.5)

+
1
2
{θ(X)Y−ω(Y )PX−Ω(X, Y )B−g(X,Y )A}

(∇XF )Y = fh(X,Y )− h(X,PY )−(1.6)

−1
2

{
ω(Y )FX+Ω(X,Y )B⊥+g(X,Y )A⊥

}

for any X, Y ∈ TMm, where A = tan (A0), B = tan (B0), A⊥ = nor (A0)
and B⊥ = nor (B0). We put:

(1.7) S(X, Y ) = [P, P ](X, Y )− 2t(dF )(X,Y ), X, Y ∈ TMm.

Here [P, P ] is the Nijenhuis torsion of P and dF is the differential of the
vector valued 1-form F , which can be expressed as follows:

(1.8) 2(dF )(X, Y ) = ∇⊥X(FX)−∇⊥Y (FX)− F [X, Y ], X, Y ∈ TMm.

A C.R. submanifold is called normal if S = 0, ([B1]) . The C.R. sub-
manifold Mm is called anti-holomorphic if Jx

(
D⊥

x

)
= (TxMm)⊥ for any

x ∈ Mm.
Let {F1, . . . , Fp, JF1, . . . , JFp} be an orthonormal locally defined

frame of D; then the normal vector field

(1.9) HD =
1
2p

p∑

i=1

{h (Fi, Fi) + h (JFi, JFi)}

is well defined and is called the D-mean curvature vector of Mm. An
anti-holomorphic C.R. submanifold is called contact anti-holomorphic if
HD 6= 0 and

(1.10) (dF )(X,Y ) = −Ω(X,Y )HD, X, Y ∈ TMm.

A normal contact anti-holomorphic C.R. submanifold is called a Sasakian
antiholomorphic C.R. submanifold, ([B1]), ([B3]).
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§2. Non integrability of the holomorphic distribution
on a contact anti-holomorphic C.R. submanifold

D.E. Blair and B.Y. Chen proved that the totally real distribution
D⊥ of a C.R. submanifold is integrable, ([B-C]). In this section, we study
the integrability of the holomorphic distribution D, proving that D cannot
be integrable.

As a consequence of (1.3) one has:

∇̄X(JY ) = ∇X(PY )−AFY X + h(X,PY ) +∇⊥X(FY )(2.1)

J
(∇̄XY

)
= P (∇XY ) + F (∇XY ) + J(h(X, Y ))(2.2)

for any X, Y ∈ TMm. Using (1.2), (2.1) and (2.2), we obtain:

(2.3) ∇⊥X(FX) = F (∇XY )− h(X, PY )−
− 1

2
{ω(Y )FX + Ω(X, Y )B⊥ + g(X,Y )A⊥}, X, Y ∈ TMm.

Moreover, (1.8) and (2.3) imply:

2(dF )(X, Y ) = h(PX, Y )− h(X, PY )+(2.4)

+
1
2
{ω(X)FY − ω(Y )FX} − Ω(X, Y )B⊥

for any X, Y ∈ TMm. From (2.4) we obtain:

(2.5) 2(dF )(X, Y ) = h(PX, Y )− h(X, PY )− Ω(X,Y )B⊥, X, Y ∈ D.

If D is integrable, then one has:

(2.6) g([X,Y ], Z) = 0, X, Y ∈ D, Z ∈ D⊥.

This condition is equivalent to:

(2.7) g0

(
J

(∇̄XY
)− J

(∇̄Y X
)
, JZ

)
= 0, X, Y ∈ D, Z ∈ D⊥.

Then, (2.7), the Gauss formula and (1.2) imply:

(2.8) g
(
h(X, PY )− h(PX, Y ) + Ω(X, Y )B⊥, JZ

)
= 0,

X, Y ∈ D, Z ∈ D⊥.

By means of (2.8), (2.5) and (1.10), we obtain:

(2.9) g0 (HD, JZ)Ω(X, Y ) = 0, X, Y ∈ D, Z ∈ D⊥.
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Since the C.R. submanifold Mm is anti-holomorphic, i.e. (TMm)⊥ =
J

(
D⊥)

, there exists Z0 ∈ D⊥ such that JZ0 = HD. From (2.9) we
obtain, for a given X ∈ D, X 6= 0:

−‖Z0‖2‖X‖2 = g0 (JZ0, JZ0)Ω(X, JX) = 0

which contradicts the hypothesis X 6= 0, Z0 6= 0. In this way the following
result is proved.

Theorem 2.1. If Mm is a proper contact anti-holomorphic C.R. sub-
manifold of the l.c.K. manifold M2n, then the distribution D of Mm is not
integrable.

Corollary 2.1. The contact distribution of a contact metric hyper-
surface of a l.c.K. manifold is not integrable.

Remark. The result of the corollary 2.1 can be also derived from a
remark due to D.E. Blair, ([B]), p. 36).

We recall that a proper C.R. submanifold is called mixed totally geo-
desic if h(X,Y ) = 0 for any X ∈ D, Y ∈ D⊥.

Proposition 2.1. Let Mm be a contact anti-holomorphic C.R. sub-
manifold of the l.c.K. manifold M2n. If Mm is orthogonal to the Lee vector
field B0, then Mm is mixed totally geodesic.

Indeed, one has: Ω(X, Y ) = g(X,JY ) = 0, for any X ∈ D, Y ∈ D⊥.
Since Mm is a contact anti-holomorphic C.R. submanifold, (1.10) implies:
(dF )(X,Y ) = 0, for any X ∈ D, Y ∈ D⊥. Since Mm is orthogonal to
the Lee vector field B0, it follows that ω0(X) = 0, for any X ∈ TMm.
Moreover, (2.4) gives: h(PX, Y ) = 0, for any X ∈ D, Y ∈ D⊥, and so
h(X,Y ) = 0, for any X ∈ D, Y ∈ D⊥; since ImP = D.

§3. Sasakian anti-holomorphic C.R. submanifolds
with flat normal connection

The curvature tensor R⊥ of the normal connection ∇⊥ of a subman-
ifold Mm of M2n is defined by

(3.1) R⊥(X, Y )ξ = ∇⊥X
(∇⊥Y ξ

)−∇⊥Y
(∇⊥Xξ

)−∇⊥[X,Y ]ξ,

X, Y ∈ TMm, ξ ∈ (TMm)⊥.

The normal connection ∇⊥ is flat if R⊥ = 0. The following theorem due
to B.Y. Chen is well known, ([C], p. 99, Proposition 1.1).

Theorem 3.1. Let Mm be a submanifold of a Riemannian manifold
Mr. Then, the normal connection ∇⊥ of Mm in Mr is flat if and only if
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there exist locally r−m mutually orthogonal unit normal vector fields ξi,
i = 1, . . . , r−m, such that each of the ξi is parallel in the normal bundle.

Let Mm be an anti-holomorphic C.R. submanifold of the l.c.K. M2n.
A local orthonormal frame {ξ1, . . . , ξq} of the normal bundle which satisfies
the properties of the theorem 3.1 is called an orthonormal ξ-frame.

We put Ei = −Jξi, i = 1, . . . , q. Then {E1, . . . , Eq} is a local or-
thonormal frame of the totally real distribution D⊥.

Proposition 3.1. Let Mm be a Sasakian anti-holomorphic C.R. sub-
manifold of the l.c.K. manifold M2n. If Mm is orthogonal to the Lee vector
field B0 and the normal connection ∇⊥ is flat then one has:

∇XEi = PAiX − 1
2
θ (Ei)PX(3.2)

P ◦Ai = Ai ◦ P(3.3)

for any X ∈ TMm and for any orthonormal ξ-frame, where A1 = Aξi ,
i = 1, . . . , q.

The proposition 2.1 implies that Mm is mixed totally geodesic. The
formula (3.2) is a consequence of the corollary 2.1 in [V]; moreover (3.3)
follows from the proposition 2.1 of [V].

We recall that in a Sasakian manifold with the contact structure
(φ, ξ, η, g) this formula holds:

(3.4) ∇Xξ = −φX

for any vector field X tangent to the manifold, ([B], p. 74). We want to
generalize (3.4) for the Sasakian anti-holomorphic C.R. submanifolds of a
l.c.K. manifold.

Theorem 3.2. Let Mm be a normal proper anti-holomorphic C.R.
submanifold of the l.c.K. manifold M2n. If Mm is orthogonal to the Lee
vector field B0 and the normal connection ∇⊥ is flat, then the following
statements are equivalent:
a) Mm is a Sasakian submanifold,
b) for any x ∈ Mm there exist a neighborhood U of x and an orthonormal

ξ-frame on U such that

(3.5) ∇XEi = (g0 (HD, ξi)− θ (Ei))PX, X ∈ TMm, i = 1, . . . , q.

Assume that Mm is a Sasakian submanifold. From the proposition
2.1 one has:

g (h(PX, Y ), ξi) = g (AiPX, Y ) =

= g (PAiX, Y ) = −g (AiX, PY ) = −g0 (h(X, PY ), ξi)
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for any X, Y ∈ TMm, i = 1, . . . , q. This implies:
(3.6) h(PX, Y ) = −h(X, PY ), X, Y ∈ TMm.

Moreover, (2.4) and (3.6) imply:

(3.7) 2(dF )(X, Y ) = 2h(PX, Y )− Ω(X,Y )B0, X, Y ∈ TMm.

From the proposition 3.1, (1.10) and (3.7) it follows that:
q∑

i=1

g(∇XEi, Y )ξi =
q∑

i=1

g (PAiX,Y ) ξi − 1
2

q∑

i=1

g (θ (Ei)PX, Y ) ξi =

=
q∑

i=1

g (AiPX, Y ) ξi +
1
2

q∑

i=1

θ (Ei)Ω(X, Y )ξi =

=
q∑

i=1

g0(h(PX, Y ), ξi)ξi +
1
2
Ω(X,Y )

q∑

i=1

g0 (B0, ξi) ξi =

= h(X, PY ) +
1
2
Ω(X, Y )B0 = (dF )(X, Y ) + Ω(X,Y )B0 =

= −Ω(X, Y )HD + Ω(X, Y )B0

for any X, Y ∈ TMm. Therefore, one has:

(3.8)
q∑

i=1

g (∇XEi, Y ) ξi = g(PX, Y )
q∑

i=1

g0 (HD −B0, ξi) ξi

for any X, Y ∈ TMm, and this condition is equivalent to (3.5). Now,
we consider a neighborhood U of a given x ∈ Mm and an orthonormal
ξ-frame {ξ1, . . . , ξq} on U which satisfies (3.5). With the same technique
used before one has:

(dF )(X, Y ) =
q∑

i=1

g (∇XEi, Y ) ξi = Ω(X,Y )B0 =

=
q∑

i=1

g0 (HD, ξi) g(PX, Y )ξi −
q∑

i=1

θ (Ei) g(PX, Y )ξi − Ω(X,Y )B0 =

= −Ω(X, Y )HD

for any X, Y ∈ TMm.
Remark. It is easy to prove that the formula (3.5) is equivalent to:

(3.9) Ai(PX) = g0

(
HD − 1

2
B0, ξi

)
PX

for any X ∈ TMm and for any orthonormal ξ-frame.
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§4. The covariant derivative of the vector valued 1-form P

The following result can be easily obtained by mean of a straightfor-
ward calculation.

Lemma 4.1. Let Mm be a C.R. submanifold of the 1.c.K. manifold
M2n. Then, one has:
(4.1)

2g(∇XP )Y,Z) =

=3(dΩ)(X,PY, PZ)− 3(dΩ)(X, Y, Z) + g([P, P ](Y, Z), PX)+

+ 2g0(dF )(PY,Z), FX) + 2g0((dF )(PY, X), FZ)−
− 2g0(dF )(PZ, X)FY )− 2g0((dF )(PZ, Y ), FX)

for any X, Y, Z ∈ TMm.

Remark. If the manifold M2n is Kaehler, then dΩ = 0 and (4.1) gives
a formula due to A. Bejancu, ([ B3], p. 51, Proposition 3.1).

Proposition 4.1. Let Mm be a Sasakian anti-holomorphic C.R. sub-
manifold of the l.c.K. manifold M2n. If Mm is orthogonal to the Lee vector
field B0 and the normal connection ∇⊥ is flat, then one has:

(4.2) (∇XP )Y = g(PX, PY )JHD + g0 (FY, HD) ιX, X, Y ∈ TMm

where ι : TMm → D denotes the natural projection operator associated
with the holomorphic distribution D.

Since Mm is orthogonal to the Lee vector field B0, Ω is closed. More-
over, by a direct calculation one has:

(4.3) g([P, P ](Y, Z), PX) = 0, X, Y, Z ∈ TMm.

Then, the lemma 4.1 and (4.3) imply:

g ((∇XP )Y, Z) = g0((dF )(PY, Z), FX) + g0((dF )(PY, X), FZ)−
− g0((dF )(PZ, X), FY )− g0((dF )(PZ, Y ), FX) =

=− Ω(PY,Z)g0 (HD, FX)− Ω(PY, X)g0 (HD, FZ)+

+ Ω(PZ, X)g0 (HD, FY ) + Ω(PZ, Y )g0 (HD, FX) =

=− g(PX,PY )g0 (HD, JZ) + g(PZ, PX)g0 (HD, FY ) =

= g(PX, PY )g0 (JHD, Z) + g(Z, ιX)g0 (HD, FY ) =

= g(PX, PY )JHD + g0 (FY, HD) ιX

for any X, Y, Z ∈ TMm.
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Theorem 4.1. Let Mm be a Sasakian anti-holomorphic C.R. subman-
ifold of the l.c.K. manifold M2n. If Mm is orthogonal to the Lee vector
field B0 and the normal connection ∇⊥ is flat, then one has:

(∇XΩ) (Y,Z) = g0 (HD, FZ) g(PX, PY )− g0 (HD, FY ) g(PX, PZ),
X, Y, Z ∈ TMm.

As a consequence of the proposition 4.1 one has:

(∇XΩ) (Y, Z) = g((∇XP )Z, Y ) =

= g0 (HD, FZ) g(ιX, Y ) + g(PX, PZ)g0 (JHD, Y ) =

= g0 (HD, FZ) g(JιX, JY )− g(PX, PZ)g0 (HD, JY ) =

= g0 (HD, FZ) g(PX,PY )− g(PX, PZ)g0 (HD, FY )

for any X, Y, Z ∈ TMm.

Proposition 4.2. Let Mm be a normal anti-holomorphic C.R. sub-
manifold of the l.c.K. manifold M2n. Moreover, Mm is orthogonal to the
Lee vector field B0 and the normal connection ∇⊥ is flat. If one has:

(4.4) (∇XP ) Y = g(PX,PY )JHD + g0 (FY, HD) ιX − θ(Y )X

for any X, Y ∈ TMm, then Mm is a Sasakian submanifold.

Let {ξ1, . . . , ξq} be an orthonormal ξ-frame and X ∈ TMm. Applying
(4.4), we obtain:

∇XEi = −P 2 (∇XEi) = P ((∇XP )Ei) =

= g0 (FEi,HD) PιX − θ (Ei)PX = g0 (HD, ξi)PX − θ (Ei)PX.

The statement follows applying the theorem 3.2.

Corollary 4.1. Let Mm be a normal anti-holomorphic C.R. subman-
ifold of the l.c.K. manifold M2n. Moreover, Mm is orthogonal to the Lee
vector field B0 and the normal connection ∇⊥ is flat. If one has:

(4.4) (∇XP ) Y = g(PX,PY )JHD + g0 (FY, HD) ιX − θ(Y )X

for any X, Y ∈ TMm, then θ = 0.

The statement is a consequence of the propositions 4.1 and 4.2.

Proposition 4.3. Let Mm be a normal anti-holomorphic C.R. sub-
manifold of the l.c.K. manifold M2n. Moreover, Mm is orthogonal to the
Lee vector field B0 and the normal connection ∇⊥ is flat. If one has:

(∇XΩ) (Y,Z) =

= g0 (HD, FZ) g(PX,PY )− g0 (HD, FY ) g(PX, PZ)− θ(Z)g(X, Y )
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for any X, Y, Z ∈ TMm, then Mm is a Sasakian submanifold.

Infact, one has:

g ((∇XP )Z, Y ) = (∇XΩ) (Y, Z) =

= g0 (HD, FZ) g(PX, PY )− g0 (HD, FY ) g(PX, PZ)− θ(Z)g(X,Y ) =

= g0 (HD, FZ) g(ιX, Y )− g0 (HD, JY ) g(PX, PZ)− θ(Z)g(X,Y ) =

= g0 (HD, FZ) g(ιX, Y ) + g0 (JHD, Y ) g(PX, PZ)− θ(Z)g(X,Y ) =

= g (g(PX,PZ)JHD + g0 (HD, FZ) ιX − θ(Z)X,Y )

for any X, Y, Z ∈ TMm. The statement is a consequence of the proposi-
tion 4.2.

Corollary 4.2. Let Mm be a normal anti-holomorphic C.R. subman-
ifold of the l.c.K. manifold M2n. Moreover, Mm is orthogonal to the Lee
vector field B0 and the normal connection ∇⊥ is flat. If one has:

(∇XΩ) (Y,Z) =

= g0 (HD, FZ) g(PX,PY )− g0 (HD, FY ) g(PX, PZ)− θ(Z)g(X, Y )

for any X, Y, Z ∈ TMm, then θ = 0.

The statement is a consequence of the proposition 4.3 and of the
theorem 4.1.
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