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Derivations with annihilator conditions in prime rings

By BASUDEB DHARA (Kharagpur) and R. K. SHARMA (New Delhi)

Abstract. Let R be a prime ring of char R 6= 2 with a derivation d and U a

noncentral Lie ideal. If a ∈ R, such that aus(d(u))nut ∈ Z(R) for all u ∈ U and s(≥ 0),

t(≥ 0), n(≥ 1) fixed positive integers, then either a = 0 or R satisfies S4, the standard

identity in four variables.

1. Introduction

Throughout this paper R always denotes a prime ring with center Z = Z(R),
extended centroid C and Q its two-sided Martindale quotient ring. The Lie
commutator of x, y is denoted by [x, y] and defined by [x, y] = xy − yx for
x, y ∈ R.

In [9], Herstein proved that if d 6= 0 is a derivation of a prime ring R such
that (d(x))n ∈ Z for all x ∈ R, then R satisfies S4, the standard identity in 4
variables. In [1], Bergen and Carini studied the case for a noncentral Lie ideal.
They proved that if R is a prime ring of characteristic not 2 and if d is a nonzero
derivation of R satisfying (d(u))n ∈ Z for all u in some noncentral Lie ideal of R,
then also the same conclusion holds.

Other papers have studied derivations with annihilator conditions. Posner

[16] proved that if R is a prime ring and a ∈ R such that ad(x) = 0 for all x ∈ R

or d(x)a = 0 for all x ∈ R then either a = 0 or d = 0. In [3], Brešar proved that
if R is a semiprime (n− 1)! torsion free ring and if ad(x)n = 0 for all x ∈ R, and
a ∈ R, n a fixed positive integer then ad(R) = 0. In particular, if R is prime then
a = 0 or d = 0. This result was generalized by Lee and Lin [14] for the Lie ideal
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case without considering R to be (n − 1)! torsion free. Lee and Lin’s result for
prime ring case is as follows:

Let R be a prime ring with a derivation d and let U be a Lie ideal of R,
a ∈ R. Suppose that ad(u)n = 0 for all u ∈ U , where n is a fixed integer. Then
ad(U) = 0 unless char R = 2 and dimC RC = 4. In addition if [U,U ] 6= 0, then
ad(R) = 0.

For one-sided ideals, Chang and Lin [4] proved the following:

Let R be a prime ring, ρ a nonzero right ideal of R, d a derivation of R and
n a fixed positive integer. If d(u)un = 0 for all u ∈ ρ, then d(ρ)ρ = 0 and if
und(u) = 0 for all u ∈ ρ, then d = 0 unless R ∼= M2(F ), the 2 × 2 matrices over
a field F of two elements.

Recently we obtained results [17] for a prime ring R with a derivation d and
U a nonzero Lie ideal that if a ∈ R such that a(d(u))num = 0 for all u ∈ U or
aum(d(u))n = 0 for all u ∈ U , m,n are fixed positive integers, then (i) a = 0 or
d(U) = 0 if char R 6= 2 and (ii) a = 0 or d(R) = 0 if [U,U ] 6= 0 and R 6∼= M2(F ).

Here we generalize most of the above results by considering the cases
aus(d(u))nut = 0 for all u ∈ U and aus(d(u))nut ∈ Z(R) for all u ∈ U , a
nonzero Lie ideal of R.

One can find a nonzero derivation d, a nonzero Lie ideal U of R, and a
nonzero a ∈ R such that aus(d(u))nut ∈ Z(R) for all u ∈ U and for suitable
nonnegative integers s, n, t.

Example. Let R = M2(F ), the ring of all 2 × 2 matrices over the field F .
Take U = R as a non-central Lie ideal of R and d(x) = [q, x] as a nonzero inner
derivation induced by some q ∈ R. Then, since [x, y]2 ∈ Z(R) for all x, y ∈ R, we
have for any 0 6= a ∈ Z(R) and s = t = 0, n = 2 that aus(d(u))nut ∈ Z(R) for
all u ∈ U .

2. Main results

First we prove a lemma

Lemma 2.1. Let R = M2(F ), the ring of 2 × 2 matrices over a field F of

characteristic 6= 2. If for some a, b ∈ R, a[x, y]s[b, [x, y]]n[x, y]t = 0 for all x, y ∈ R,

where s(≥ 0), t(≥ 0), n(≥ 1) are fixed integers, then either a = 0 or b ∈ F · I2.
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Proof. Let a = (aij)2×2 and b = (bij)2×2. We choose x = e12, y = e21.
Then the identity a[x, y]s[b, [x, y]]n[x, y]t = 0 gives

0 =





(−1)n/22n(b12b21)n/2

(
a11 (−1)s+ta12

a21 (−1)s+ta22

)
, if n is even

(−1)(n−1)/22n(b12b21)(n−1)/2

(
(−1)sa12b21 (−1)t+1a11b12

(−1)sa22b21 (−1)t+1a21b12

)
, if n is odd.

This implies that if b12 6= 0, b21 6= 0 then a = 0.
Let a 6= 0. Then at least one of b12 and b21 must be zero. So without loss of

generality we assume that b12 = 0. Then assuming x = e11, y = e12 − e21 we get

[b, [x, y]]n =





λn/2I, if n is even

λ(n−1)/2

(
−b21 b11 − b22

−(b11 − b22) b21

)
, if n is odd

where λ = b2
21 − (b11 − b22)2.

If n is even then the identity a[x, y]s[b, [x, y]]n[x, y]t = 0 gives

0 =





λn/2

(
a11 a12

a21 a22

)
, if s + t is even

λn/2

(
a12 a11

a22 a21

)
, if s + t is odd.

which implies that λ = 0, since a 6= 0.
If n is odd then we have

[x, y]s[b, [x, y]]n[x, y]t =





(−1)sλ(n−1)/2

(
−b21 b11 − b22

−(b11 − b22) b21

)
, if s + t is even

(−1)sλ(n−1)/2

(
b11 − b22 −b21

b21 −(b11 − b22)

)
, if s + t is odd.

If n is odd and s + t is even then the identity a[x, y]s[b, [x, y]]n[x, y]t = 0 becomes

(−1)sλ(n−1)/2

(−a11b21 − a12(b11 − b22) a11(b11 − b22) + a12b21

−a21b21 − a22(b11 − b22) a21(b11 − b22) + a22b21

)
= 0.
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If λ 6= 0, then this implies that

−a11b21 − a12(b11 − b22) = 0,

a11(b11 − b22) + a12b21 = 0,

−a21b21 − a22(b11 − b22) = 0,

a21(b11 − b22) + a22b21 = 0.

From these equations we get

a11λ = 0, a22λ = 0,

a12λ = 0, a21λ = 0.

Since λ 6= 0, a = 0, a contradiction.
Thus λ = 0. Similarly, if n is odd and s + t is also odd then it can be proved

that λ = 0.
On the other hand, by choosing x = e11, y = e12 + e21 we obtain in a similar

manner that

µ = b2
21 + (b11 − b22)2 = 0.

Hence 0 = λ±µ leads b21 = 0 and b11 = b22. So b is scalar. Thus we have proved
that either a = 0 or b ∈ F · I2. ¤

Before proving the main theorem, we introduce some remarks.

Remark 1. Denote by T = Q ∗C C{X}, the free product over C of the C-
algebra Q and the free C-algebra C{X}, with X the countable set consisting of
the noncommuting indeterminates x1, x2, . . ..

Elements of T are called generalized polynomials. Nontrivial generalized
polynomial means a nonzero element of T . Any element m ∈ T of the form
m = q0y1q1y2q2 . . . ynqn, where {q0, q1, . . . , qn} ⊆ Q and {y1, y2, . . . , yn} ⊆ X,
is called a monomial and q0, q1, . . . , qn are called the coefficients of m. Each
f ∈ T can be represented as a finite sum of monomials, and such representation
is not unique. Let B be a set of C-independent vectors of Q. A B-monomial
is a monomial of the form q0y1q1y2q2 . . . ynqn, where {q0, q1, . . . , qn} ⊆ B and
{y1, y2, . . . , yn} ⊆ X. Let V = BC, the C-subspace spanned by B. Then f is
called a V -generalized polynomial if and only if f has a presentation with all of
its coefficients in V . Thus any V -generalized polynomial f can be written in the
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form f =
∑

αimi, where αi ∈ C and mi are B-monomials and this representation
is unique. This V -generalized polynomial f =

∑
αimi is trivial i.e., zero element

in T if and only if αi = 0 for each i. For detail study we refer to [5].
This simple criterion will be used in the proof of the theorem to assure that

R satisfies a nontrivial generalized polynomial identity.

Remark 2. It is well known that if U is a noncommutative Lie ideal of a
prime ring R and I is the ideal of R generated by [U,U ], then I ⊆ U + U2 and
[I, I] ⊆ U (see [12, Lemma 2 (i),(ii)]).

Briefly we give its proof. For a, b ∈ U and r ∈ R, we have [a, b]r = [ar, b] −
a[r, b] ∈ U + U2. For s ∈ R, we get commuting both sides by s that s[a, b]r =
[a, b]rs + [[ar, b], s]− [a[r, b], s] ∈ U + U2, since [a[r, b], s] = a[[r, b], s] + [a, s][r, b] ∈
U2. Thus I ⊆ U + U2. Now since [U2, I] ⊆ U holds true by using the identity
[xy, z] = [x, yz] + [y, zx] for x, y ∈ U and z ∈ I, we have [I, I] ⊆ U .

We are now in a position to prove our theorem

Theorem 2.2. Let R be a prime ring with a derivation d and U be a nonzero

Lie ideal. If a ∈ R, such that aus(d(u))nut = 0 for all u ∈ U and s(≥ 0), t(≥ 0),
n(≥ 1) fixed integers, then

(i) a = 0 or d(U) = 0 if U is central,

(ii) a = 0 or d(R) = 0 if char R 6= 2 and U is noncentral,

(iii) a = 0 or d(R) = 0 or char R = 2 and R satisfies S4 if U is noncommutative.

Proof. (i) If U is central i.e., U ⊆ Z then d(U) ⊆ Z, as d(Z) ⊆ Z. Since the
center of a prime ring R contains no zero divisor of R, aus(d(u))nut = 0 implies
that either a = 0 or d(u) = 0.

(ii) Now assume that char R 6= 2 and U is noncentral. Since char R 6= 2, by
[2, Lemma 1] [U,U ] 6= 0 and 0 6= [I, R] ⊆ U , where I is the ideal generated by
[U,U ]. So [I, I] ⊆ U . Hence without loss of generality we can assume U = [I, I].
By our assumption we have,

a[x, y]s(d([x, y]))n[x, y]t = 0 (1)

for all x, y ∈ I, which implies

a[x, y]s([d(x), y] + [x, d(y)])n[x, y]t = 0

for all x, y ∈ I. If d is not Q-inner then by Kharchenko’s theorem [11],

a[x, y]s([u, y] + [x, v])n[x, y]t = 0
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for all x, y, u, v ∈ I.
By Chuang [5, Theorem 2], this generalized polynomial identity (GPI) is

also satisfied by Q and hence by R. In particular for v = 0, u = x, we get

a[x, y]s+n+t = 0 (2)

for all x, y ∈ R. Let w = [x, y]s+n+t. Then aw = 0. From (2) we can write
a[p, wqa]s+n+t = 0 for all p, q ∈ R. Since aw = 0, it reduces to a(pwqa)s+n+t = 0.
This can be written as (wqap)s+n+t+1 = 0 for all p, q ∈ R. By Levitzki’s lemma
[7, Lemma 1.1], wqa = 0 for all q ∈ R. Since R is prime, either a = 0 or w = 0.
If a 6= 0 then w = [x, y]s+n+t = 0 for all x, y ∈ R. Then by Herstein [8,
Theorem 2], R is commutative, contradicting the fact that 0 6= U is noncentral.
Now if d is Q-inner i.e., d(x) = [b, x] for all x ∈ R and for some b ∈ Q, then (1)
becomes

a[x, y]s[b, [x, y]]n[x, y]t = 0

for all x, y ∈ I. By Chuang [5, Theorem 2], this GPI is also satisfied by Q i.e.,

f(x, y) = a[x, y]s[b, [x, y]]n[x, y]t = 0 (3)

for all x, y ∈ Q.
In case the center C of Q is infinite, we have f(x, y) = 0 for all x, y ∈ Q⊗C C,

where C is the algebraic closure of C. Since both Q and Q ⊗C C are prime and
centrally closed [6, Theorem 2.5 and 3.5], we may replace R by Q or Q ⊗C C

according to C finite or infinite. Thus we may assume that R is centrally closed
over C (i.e., RC = R) which is either finite or algebraically closed and f(x, y) = 0
for all x, y ∈ R.

Now consider two cases.

Case I. R satisfies a nontrivial GPI
By Martindale’s theorem [15], R is then a primitive ring having nonzero socle H

with C as the associated division ring. Hence by Jacobson’s theorem [10, p.75]
R is isomorphic to a dense ring of linear transformations of some vector space V

over C, and H consists of the linear transformations in R of finite rank. If V is
a finite dimensional over C then the density of R on V implies that R ∼= Mk(C)
where k = dimC V .

Suppose that dimC V ≥ 3.
We show that for any v ∈ V , v and bv are linearly C-dependent. Suppose

that v and bv are linearly independent for some v ∈ V . Since dimC V ≥ 3, there
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exists w ∈ V such that v, bv, w are linearly independent over C. By density there
exist x, y ∈ R such that

xv = 0, xbv = v, xw = v + 2bv

yv = bv, ybv = w, yw = 0.

Then [x, y]v = (xy − yx)v = v, [x, y]bv = (xy − yx)bv = xw− yv = v + bv and so
[b, [x, y]]nv = (−1)nv. Hence

0 = a[x, y]s[b, [x, y]]n[x, y]tv = (−1)nav.

This implies that if av 6= 0, then v and bv are linearly C-dependent. Now suppose
that av = 0. Since a = 0 finishes the proof of the theorem, we assume a 6= 0.
Since a 6= 0, there exists w ∈ V such that aw 6= 0 and then a(v + w) = aw 6= 0.
By the previous argument we have that w, bw are linearly C-dependent and
(v + w), b(v + w) are also. Thus there exist α, β ∈ C such that bw = wα and
b(v + w) = (v + w)β. Moreover, v and w are clearly C-independent and so by
density there exist x, y ∈ R such that

xw = 0, xv = v + w

yw = v + w, yv = v.

Then we obtain by using av = 0 that

0 = a[x, y]s[b, [x, y]]n[x, y]tw = ±aw(β − α)n.

Since aw 6= 0, α = β and so bv = vα contradicting the independency of v and bv.
Hence for each v ∈ V , bv = vαv for some αv ∈ C. It is very easy to prove that αv

is independent of the choice of v ∈ V . Thus we can write bv = vα for all v ∈ V

and α ∈ C fixed.
Now let r ∈ R, v ∈ V . Since bv = vα,

[b, r]v = (br)v − (rb)v = b(rv)− r(bv) = (rv)α− r(vα) = 0.

Thus [b, r]v = 0 for all v ∈ V i.e., [b, r]V = 0. Since [b, r] acts faithfully as a linear
transformation on the vector space V , [b, r] = 0 for all r ∈ R. Therefore b ∈ Z(R)
implies d = 0, ending the proof of this part.

Now suppose dimC V = 2. Then R ∼= M2(C). Since char R 6= 2, by Lem-
ma 2.1 we have that either a = 0 or b ∈ C · I2. Now b ∈ C · I2 implies d = 0.
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Case II. R does not satisfy any nontrivial GPI
Assume that a 6= 0 and d 6= 0. Since d 6= 0, b /∈ C. Let T = Q ∗C C{x, y}, the
free product of C-algebra Q and C{x, y}, the free C-algebra in noncommuting
indeterminates x and y. By assumption a[x, y]s(b[x, y] − [x, y]b)n[x, y]t is a GPI
for R and so

f(x, y) = a[x, y]s(b[x, y]− [x, y]b)n[x, y]t = 0

in T , since R has no nonzero GPI. Expansion of it yields that if the coefficients
{1, b, b2} are C-independent, then all the monomials in the expansion are basis
monomials in T and thus f(x, y) 6= 0 in T , a contradiction. On the other hand if
b2 ∈ spanC{1, b}, it is true that the basis monomial a[x, y]s(b[x, y])n[x, y]t is not
canceled in the expansion, so again f(x, y) 6= 0 in T , a contradiction.

Thus either a = 0 or d = 0.

(iii) Since U is noncommutative, by [12, Lemma 2], [M,M ] ⊆ U where M is
the ideal generated by [U,U ]. By the similar argument in the proof of part (ii)
we have either a = 0 or d = 0 or char R = 2 and R ⊆ M2(F ) for some field F

i.e., either a = 0 or d = 0 or char R = 2 and R satisfies S4. This completes the
proof of this part. ¤

Theorem 2.3. Let R be a prime ring of char R 6= 2 with a nonzero derivation

d and U be a noncentral Lie ideal. If a ∈ R, such that aus(d(u))nut ∈ Z(R) for

all u ∈ U and s(≥ 0), t(≥ 0) , n(≥ 1) fixed integers, then either a = 0 or R

satisfies S4, the standard identity in four variables.

Proof. Assume that a 6= 0. Since char R 6= 2 and U is noncentral, by [2,
Lemma 1], there exists an ideal I of R such that 0 6= [I, R] ⊆ U and [U,U ] 6= 0.
Let J be any nonzero two-sided ideal of R. Then it is easy to check that V =
[I, J2] ⊆ U is a noncentral Lie ideal of R. If for each v ∈ V , avs(d(v))nvt = 0,
then by Theorem 2.2, d = 0 which contradicts our assumption. Hence for some
v ∈ V , 0 6= avs(d(v))nvt ∈ J ∩ Z(R), since d(V ) ⊆ J . Thus J ∩ Z(R) 6= 0.
Now let K be a nonzero two-sided ideal of RZ , the ring of central quotients of R.
Since K ∩R is a nonzero two-sided ideal of R, (K ∩R)∩Z(R) 6= 0. Therefore, K

contains an invertible element in RZ and so RZ is a simple ring with identity 1.
Moreover, without loss of generality, we may assume that U = [I, I]. Thus I

satisfies the generalized differential identity

[a[x1, x2]s(d[x1, x2])n[x1, x2]t, x3]. (4)

If d is not Q-inner then by Kharchenko’s theorem [11],

[a[x1, x2]s([y1, x2] + [x1, y2])n[x1, x2]t, x3] = 0 (5)
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for all x1, x2, x3, y1, y2 ∈ I. By Chuang [5], this GPI is also satisfied by Q

and hence by R. By localizing R at Z(R), it follows that [a[x1, x2]s([y1, x2] +
[x1, y2])n[x1, x2]t, x3] is also an identity of RZ . Since R and RZ satisfy the same
polynomial identities, in order to prove that R satisfies S4, we may assume that
R is simple ring with 1 and [R, R] ⊆ U . Thus R satisfies the identity (5). Now
putting y1 = [b, x1] = δ(x1) and y2 = [b, x2] = δ(x2) for some b /∈ Z(R), where δ

is an inner derivation induced by some b ∈ R, we obtain that R satisfies

[a[x1, x2]s([y1, x2] + [x1, y2])n[x1, x2]t, x3] = 0.

Thus by Martindale’s theorem [15], R is a primitive ring with minimal right
ideal, whose commuting ring D is a division ring which is finite dimensional over
Z(R). However, since R is simple with 1, R must be Artinian. Hence R = Dk′ ,
the k′ × k′ matrices over D, for some k′ ≥ 1. Again by [13, Lemma 2], it follows
that there exists a field F such that R ⊆ Mk(F ), the ring of k × k matrices over
the field F , and Mk(F ) satisfies

[a[x1, x2]s(δ[x1, x2])n[x1, x2]t, x3] = 0.

If k ≥ 3, then by substituting x1 = e12, x2 = e22 we see that the rank of [x1, x2]
is equal to 1 and thus the rank of a[x1, x2]s(δ[x1, x2])n[x1, x2]t is ≤ 2. Therefore
a[x1, x2]s(δ[x1, x2])n[x1, x2]t = 0 for all x1, x2 ∈ Mk(F ). Since char F 6= 2, by
Theorem 2.2, we get either a = 0 or δ = 0 i.e., b ∈ Z(R). In both cases we have
a contradiction. Thus k = 2, that is, R satisfies S4. ¤

Similar arguments can be adapted to draw the same conclusion in case d is
a Q-inner derivation induced by some b ∈ Q.

Acknowledgment. The authors wish to thank the referees for their valu-
able comments and suggestions for the improvement of this paper.
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