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The unit group of FA4

By R. K. SHARMA (Delhi), J. B. SRIVASTAVA (Delhi)
and MANJU KHAN (Delhi)

Abstract. A complete characterization of the unit group U (FA4) of the group

algebra FA4 of the alternating group of degree 4, A4, over a finite field F has been

obtained.

1. Introduction and result

Let FG be the group algebra of a group G over a field F . For a normal
subgroup H of G, the canonical homomorphism g 7→ gH : G −→ G/H can be
extended to an algebra homomorphism from FG to F [G/H] defined by

∑

g∈G

agg 7→
∑

g∈G

aggH,

for ag ∈ F . The kernel of this homomorphism, denoted by ω(H), is the ideal of
FG generated by {h−1 | h ∈ H}. Thus FG/ω(H) ∼= F [G/H]. The augmentation
ideal ω(FG) of the group algebra FG is defined by

ω(FG) =

{ ∑

g∈G

agg ∈ FG
∣∣∣ ag ∈ F,

∑

g∈G

ag = 0

}
.

Clearly ω(G) = ω(FG). In general, ω(H) = ω(FH)FG = FGω(FH). For
H = G, FG/ω(G) ∼= F , showing Jacobson radical of FG, J(FG), is contained
in ω(FG). It is known that J(FG) = ω(FG) when G is a finite p-group and the
characteristic of F , char(F ), is p.
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The lower central chain of G is given by

G = γ1(G) ⊇ γ2(G) ⊇ · · · ⊇ γm+1(G) ⊇ · · ·

where γm+1(G)=(γm(G), G), for m≥ 1. For g1, g2∈G the commutator (g1, g2)=
g−1
1 g−1

2 g1g2. The group G is said to be nilpotent of class n if γn+1(G) = (1) and
γn(G) 6= (1). In this paper, the work is on the alternating group of degree 4, A4,
whose presentation is given by

A4 =
〈
σ, a | σ3 = a2 = (σa)3 = 1

〉

where σ = (1, 2, 3) and a = (1, 2)(3, 4). Thus, with b = (1, 3)(2, 4) and c =
(1, 4)(2, 3),

A4 =
{
1, a, b, c, σ, σa, σb, σc, σ2, σ2a, σ2b, σ2c

}
.

The distinct conjugacy classes of A4 are C0 = {1}, C1 = {a, b, c}, C2 = {σ, σa,
σb, σc}, C3 = {σ2, σ2a, σ2b, σ2c}. Hence

{
Ĉ0, Ĉ1, Ĉ2, Ĉ3

}
form a basis of the

center Z(FA4) (cf. Lemma 4.1.1 of [4]), where Ĉi denotes the class sum. We
obtain the relations between Ĉ0, Ĉ1, Ĉ2, Ĉ3 given by

Ĉ2

2
= 4Ĉ3, Ĉ2

4
= 43Ĉ2, Ĉ3

2
= 4Ĉ2, Ĉ3

4
= 43Ĉ3,

and Ĉ2

3
= 42(Ĉ0 + Ĉ1) = Ĉ3

3
.

Using these relations one may prove, by induction on r, that for i = 2, 3,

(Ĉi)3r+1 = 43rĈi, for r ≥ 0. (1)

We define a matrix representation of A4,

θ : A4 −→ U (F ⊕M(3, F ))

by the assignment

σ 7→


1,




0 1 0
0 0 1
1 0 0





 and a 7→


1,



−1 0 0
0 −1 0
0 0 1







and can be extended to an algebra homomorphism

θ∗ : FA4 −→ F ⊕M(3, F ),



The unit group of FA4 23

where M(n, F ) denotes the algebra of all n×n matrices over F . We use V1 to de-
note 1+J(FA4), the kernel of the epimorphism from U (FA4) to U (FA4/J(FA4))
which is induced by the canonical homomorphism: FA4 −→ FA4/J(FA4).

Allen and Hobby in [2], also Al-Sohebany in [1] have worked on the
characterization of the unit group U (ZA4), and obtained that the group A4 has
a torsion free normal complement in V (ZA4), the subgroup of the unit group of
augmentation 1. Subsequently, Sharma and Gongopadhaya has given presen-
tations of the torsion free normal complement of A4 in V (ZA4) and of V (ZA4)
in [5], [6]. Conjugacy classes of all elements of finite order in V (ZA4) have been
studied by Allen and Hobby in [3] . However, so far, the structure of the unit
group U (FA4), for char(F ) = p > 0 is not known.

This paper gives a complete characterization of the unit group U (FA4), for
char(F ) = p > 0 by proving the following:

Theorem. Let U (FA4) be the group of units of the group algebra FA4 of

the alternating group of degree 4 over a finite field F of positive characteristic p.

Let F2 be a quadratic extension of the field F and V1 = 1 + J(FA4), where

J(FA4) denotes the Jacobson radical of the group algebra FA4.

(1) If p = 2, then V1 is a nilpotent group of class 2 and U (FA4) is centrally

metabelian, but not metabelian.

(2) If p = 3, then V1 is a central subgroup of exponent |F | and

U (FA4)/V1
∼= F ∗ ×GL(3, F )

(3) If p > 3 and |F | = pn, then

U (FA4) ∼=
{

GL(3, F )× F ∗ × F ∗ × F ∗ if 3 | (p− 1) or n is even;

GL(3, F )× F ∗2 × F ∗ if n is odd.

Here F ∗ = F \ {0} and GL(3, F ) is the general linear group of degree 3 over F .

2. Proof of the theorem

(1) Let char(F ) = 2 with |F | = 2n. Set K4 = {1, a, b, c} so that K4 is a
normal subgroup of A4 and [A4 : K4] = 3. Then, by Theorem 7.2.7 of [4],

J(FA4) = J(FK4)FA4 = ω(FK4)FA4 = ω(K4).



24 R. K. Sharma, J. B. Srivastava and Manju Khan

Hence FA4/J(FA4) ∼= F [A4/K4]. Note that A4/K4 = 〈σ̄ = σK4〉, is a cyclic
group of order 3, say C3. Suppose x = α0 + α1σ̄ + α2σ̄

2 ∈ FC3, for αi ∈ F . If n

is even, then 3 | (2n − 1) and consequently,

x2n

= α0
2n

+ α1
2n

(σ̄)2
n

+ α2
2n

(σ̄2)2
n

= x;

so that o(x) | (2n − 1), when x ∈ U (FC3). Thus FC3
∼= F ⊕ F ⊕ F , if n is even.

When n is odd, 3 - (2n − 1); but 3 | (22n − 1) and as above, x22n

= x, ∀x ∈ FC3.
Hence if n is odd, FC3

∼= F2 ⊕ F .
Now, observe that x(a− 1)y(b− 1) ∈ Z(FA4), ∀x, y ∈ A4, so that ω(K4)2 ⊆

Z(FA4), and consequently, ω(K4)3 = 0. For ξ, η ∈ ω(K4), we have

(1 + ξ, 1 + η) ≡ (1− ξ − η)(1 + ξ + η) ≡ 1 mod Z(FA4).

Thus γ2(V1) ⊆ Z(FA4) and hence γ3(V1) = (1), so that V1 is a nilpotent group
of class 2.

Since U (FA4)/V1 is an Abelian group, we have U (FA4)′ ⊆ V1, therefore
U (FA4)′′ ⊆ V ′

1 ⊆ Z(FA4). Hence U (FA4) is centrally metabelian. But it is not
metabelian because ((u1, u2), (u1, u3)) 6= 1, where

u1 = 1 + σ + σ2a + σ2b + b

u2 = 1 + σ + σ2a + σ2c + b

u3 = 1 + σ2a + σ2b + σ2c + c.

(2) Let char(F ) = 3 and |F | = 3n. Assume x ∈ Ker θ∗ (cf. Introduction
for θ∗) with

x =
∑

(i,t)∈I

αit + αi+1σt + αi+2σ
2t,

for αi ∈ F and I = {(0, 1), (3, a), (6, b), (9, c)}. Then θ∗(x) = 0 gives the following
systems of equations:

11∑

i=0

αi = 0 (2)

αi + αj − αk − αl = 0, (3)

where (i, j, k, l) ∈ {(0, 6, 3, 9), (1, 10, 4, 7), (2, 5, 8, 11), (2, 8, 5, 11), (0, 9, 3, 6),
(1, 4, 7, 10), (1, 7, 4, 10), (2, 11, 5, 8), (0, 3, 6, 9)}. Solving the system over F

we get
αi = αi+3j , for i = 0, 1, 2 and j = 1, 2, 3.
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Further, from equation (2), α0 + α1 + α2 = 0. Hence

Ker θ∗ = {α0(Ĉ0 + Ĉ1) + α1Ĉ2 + α2Ĉ3 | α0 + α1 + α2 = 0}.

Thus x3n

= 0, ∀x ∈ Ker θ∗, so that Ker θ∗ ⊆ J(FA4). Also, since θ∗ is
onto, θ∗(J(FA4)) ⊆ J(F ⊕ M(3, F )) = 0 and so J(FA4) ⊆ Ker θ∗. Hence
Ker θ∗ = J(FA4), therefore

(FA4)/J(FA4) ∼= F ⊕M(3, F ).

Now, since U (FA4)/V1
∼= U (FA4/J(FA4)), we have

U (FA4)/V1
∼= F ∗ ×GL(3, F ).

Since x3n

= 0, for all x ∈ J(FA4), we have V1 is a central subgroup of exponent 3n.

(3) Assume p > 3. Since p - |A4|, by Artin–Wedderburn theorem we have

FA4
∼=M(n1, D1)⊕M(n2, D2)⊕ · · · ⊕M(nr, Dr),

where Di’s are finite dimensional division algebras over F . Thus Di’ s are finite
fields, as F is finite. Since FA4 is noncommutative, there exists a k such that
nk > 1, so that nk will be either 2 or 3. Further, since dimF (Z(FA4)) = 4, we
will get either of the following two possibilities only.

FA4
∼=M(3, F )⊕ F ⊕ F ⊕ F

FA4
∼=M(3, F )⊕ F2 ⊕ F

If 3 | (p − 1), then pn ≡ 1 mod 3, for all n. Using the equation (1) in
Section 1, we compute that

Ĉ2

pn

= Ĉ2

3r+1
= (43r)Ĉ2 = (4pn−1)Ĉ2= Ĉ2.

Similarly, we have Ĉ3

pn

= Ĉ3. Also, note that (Ĉ0+Ĉ1)pn

= Ĉ0+Ĉ1. Thus xpn

= x,
for all x ∈ Z(FA4). In particular, if x ∈ U (Z(FA4)), then o(x) | (pn− 1). Hence
FA4

∼= M(3, F )⊕F⊕F⊕F . Also, when 3 - (p−1) but n is even, then 3 | (pn−1),
so that

FA4
∼=M(3, F )⊕ F ⊕ F ⊕ F.

If 3 - (p−1) and n is odd, we get 3 - (pn−1) and so 3 | (pn+1). Then 3 | (p2n−1),
which implies xp2n

= x for all x ∈ Z(FA4). Thus

FA4
∼=M(3, F )⊕ F2 ⊕ F.
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Hence

U (FA4) ∼=
{

GL(3, F )× F ∗ × F ∗ × F ∗ if 3 | (p− 1) or n is even;

GL(3, F )× F ∗2 × F ∗ if n is odd.

This completes the proof of the Theorem.
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