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On weakly symmetric Riemannian manifolds

By ABSOS ALI SHAIKH (Burdwan) and SANJIB KUMAR JANA (Burdwan)

Abstract. The object of the present paper is to study weakly symmetric Rie-

mannian manifolds. Among others it is shown that a conformally flat weakly symmetric

Riemannian manifold is of hyper quasi-constant curvature which generalizes the notion

of quasi-constant curvature and also such a manifold is a quasi-Einstein manifold. Fi-

nally several examples of weakly symmetric manifolds of both zero and non-zero scalar

curvature are obtained.

1. Introduction

In 1989 L. Tamássy and T. Q. Binh [7] introduced the notions of weakly
symmetric and weakly projective symmetric manifolds. A non-flat Riemannian
manifold (Mn, g)(n > 2) is called weakly symmetric if the curvature tensor R of
type (0, 4) satisfies the condition

(∇XR)(Y,Z, U, V ) = A(X)R(Y, Z, U, V ) + B(Y )R(X,Z, U, V )

+ C(Z)R(Y, X,U, V ) + D(U)R(Y, Z, X, V )

+ E(V )R(Y, Z, U,X) (1.1)

for all vector fields X, Y, Z, U, V ∈ χ(Mn), where A, B, C, D and E are 1-
forms(non-zero simultaneously) and ∇ is the operator of covariant differentiation
with respect to the Riemannian metric g. The 1-forms are called the associated
1-forms of the manifold, and an n-dimensional manifold of this kind is denoted
by (WS)n. Then in 1994 M. C. Chaki [2] introduced the notion of a generalized
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pseudo symmetric manifold, whose defining condition is a little stronger than
(WS)n. If in (1.1) the 1-form A is replaced by 2A, and E is replaced by A,
then a (WS)n will be a generalized pseudo symmetric manifold. Since the notion
of (WS)n is weaker than that of a generalized pseudo symmetric manifold, we
confined ourselves to the study of (WS)n. The existence of a (WS)n is proved by
M. Prvanović [6]. Then U. C. De and S. Bandyopadhyay [5] gave an example
of a (WS)n by a suitable metric, and proved that in a (WS)n the associated 1-
forms B = C and D = E. Hence the defining condition of a (WS)n reduces to
the following form:

(∇XR)(Y,Z, U, V ) = A(X)R(Y,Z, U, V ) + B(Y )R(X, Z, U, V )

+ B(Z)R(Y, X, U, V ) + D(U)R(Y,Z, X, V )

+ D(V )R(Y, Z, U,X). (1.2)

Section 2 is concerned with some fundamental results of (WS)n. In Section 3
we study conformally flat (WS)n, and prove that such a manifold of non-zero
constant scalar curvature is of hyper quasi-constant curvature. The last section
deals with some examples of (WS)n. In [5] De and Bandyopadhyay obtained
an example of (WS)n, which is of zero scalar curvature.

As a natural question arises, whether there exists or not (WS)n of non-zero
scalar curvature? The last section provides the answer of this question by several
examples.

2. Fundamental results of a (WS)n (n > 2)

Let {ei : i = 1, . . . , n} be an orthonormal basis of the tangent spaces in a
neighbourhood of a point of the manifold. Then setting Y = V = ei in (1.2), and
taking summation over i, 1 ≤ i ≤ n, we get

(∇XS)(Z, U) = A(X)S(Z,U) + B(Z)S(X, U) + D(U)S(X, Z)

+ B(R(X,Z)U) + D(R(X, U)Z), (2.1)

where S is the Ricci tensor of type (0, 2). From (2.1) it follows that a (WS)n

(n > 2) is weakly Ricci symmetric (briefly(WRS)n (n > 2)) [8] if

B(R(X,Z)U) + D(R(X, U)Z) = 0 (2.2)

for all X, U,Z. This leads to the following:
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Theorem 1. A (WS)n (n > 2) satisfying the condition (2.2) is a (WRS)n.

Again from (2.1) it follows that

dr(X) = rA(X) + 2B(QX) + 2D(QX), (2.3)

where r is the scalar curvature of the manifold, Q is the Ricci-operator i.e.,

g(QX,Y ) = S(X, Y ).

From (2.3), we can state the following:

Theorem 2. If a (WS)n (n > 2) is of non-zero constant scalar curvature,

then the 1-form A can be expressed as

A(X) = −2
r
[B(QX) + D(QX)] (2.4)

for all X.

Also (2.3) leads to the following:

Corollary. If a (WS)n(n > 2) is of zero scalar curvature, then the relation

B(QX) + D(QX) = 0 holds for all X.

Interchanging Z and U in (2.1), and then subtracting the resultant from
(2.1), we obtain by virtue of the Bianchi identity

[B(Z)−D(Z)]S(X, U)− [B(U)−D(U)]S(X, Z)

− [B(R(Z, U)X)−D(R(Z,U)X)] = 0. (2.5)

Replacing X and U by ei, and taking summation over i, 1 ≤ i ≤ n, we get

r[B(Z)−D(Z)] = 2[B(QZ)−D(QZ)]. (2.6)

We define the vector field ρ by T (X) = g(X, ρ) = B(X)−D(X) for all X. Then
(2.6) yields

T (QX) =
r

2
T (X). (2.7)

Hence we can state the following:

Theorem 3. In a (WS)n(n > 2), r/2 is an eigenvalue of the Ricci tensor

corresponding to the eigenvector ρ defined by T (X)= g(X, ρ)= B(X)−D(X) 6=0
for all X.

Again from (2.5) we can state the following:

Theorem 4. In a (WS)n (n > 2) the relation

T (Z)S(X, U)− T (U)S(X, Z)− T (R(Z,U)X) = 0 (2.8)

holds for all vector fields X, Z, U , and T is a 1-form defined by T (X) = B(X)−
D(X) 6= 0 for all X.
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3. Conformally flat (WS)n

Let (Mn, g) (n ≥ 3) be a conformally flat (WS)n. It is known that in a
conformally flat Riemannian manifold (Mn, g) (n ≥ 3) the following relations
hold:

(∇XS)(Y, Z)− (∇ZS)(Y,X)

=
1

2(n− 1)
[g(Y, Z)dr(X)− g(X, Y )dr(Z)].

(3.1)

Interchanging X and U in (2.1), and then subtracting the resultant from (2.1),
we obtain by virtue of (3.1) that

[A(X)−D(X)]S(U,Z)− [A(U)−D(U)]S(X, Z) + B(R(X,U)Z)

+ 2D(R(X, U)Z) =
1

2(n− 1)
[g(Z,U)dr(X)− g(X,Z)dr(U)]. (3.2)

Let ρ1, ρ2, ρ3 be the associated vector fields corresponding to the 1-forms A, B,
D respectively, i.e., g(X, ρ1) = A(X), g(X, ρ2) = B(X) and D(X) = g(X, ρ3).
Substituting U by ρ2 in (3.2), and then using (2.3), we get

[A(X)−D(X)]B(QZ)− [A(ρ2)−D(ρ2)]S(X,Z) + R(X, ρ2, Z, ρ2)

+ 2R(X, ρ2, Z, ρ3) = B(Z)[rA(X) + 2B(QX) + 2D(QX)]

− g(X, Z)[rA(ρ2) + 2B(Qρ2) + 2D(Qρ2)]. (3.3)

If the manifold has non-zero constant scalar curvature, then (3.3) yields by virtue
of (2.4) that

[A(ρ2)−D(ρ2)]S(X,Z)− [A(X)−D(X)]B(QZ)

+ R(ρ2, X, Z, ρ2) + 2R(ρ2, X, Z, ρ3) = 0. (3.4)

Again, since the manifold under consideration is conformally flat, we have

R(X, Y, Z, W ) =
1

n− 2
[S(Y, Z)g(X, W )− S(X, Z)g(Y,W )

+ S(X, W )g(Y,Z)− S(Y, W )g(X, Z)]

+
r

(n− 1)(n− 2)
[g(X, Z)g(Y,W )− g(Y,Z)g(X, W )]. (3.5)

From (3.5), it follows that

R(ρ2, X, Z, ρ2) + 2R(ρ2, X, Z, ρ3) =
1

n− 2
[S(X,Z){B(ρ2) + 2B(ρ3)}

−B(QZ){B(X) + 2D(X)}+ g(X,Z){B(Qρ2) + 2B(Qρ3)}
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−B(Z){B(QX) + 2D(QX)}] +
r

(n− 1)(n− 2)

× [B(Z){B(X) + 2D(X)} − g(X,Z){B(ρ2) + 2B(ρ3)}]. (3.6)

Using (3.6) in (3.4) we obtain

S(X, Z) = αg(X, Z) + α1B(X)B(Z) + α2B(Z)D(X)

+ α3B(X)B̃(Z) + α4B(Z)B̃(X) + α5B(Z)D̃(X)

+ α6B̃(Z)D(X) + α7A(X)B̃(Z), (3.7)

where α, α1, . . . , α7 are scalars in terms of r, B(ρ2) and B(ρ3), and B̃(X) =
B(QX), D̃(X) = D(QX) for all X. This leads to the following:

Theorem 5. In a conformally flat (WS)n (n ≥ 3) of non-zero constant

scalar curvature the Ricci tensor S has the form (3.7).

Again, using (2.4) in (3.7), we have

S(X, Z) = αg(X, Z) + α1B(X)B(Z) + α2B(Z)D(X) + α3B(X)B̃(Z)

+ α4B(Z)B̃(X) + α5B(Z)D̃(X) + α6B̃(Z)D(X)

+ α7

(
−2

r

)
[B̃(X) + D̃(X)]B̃(Z). (3.8)

According to Chen and Yano [4], a Riemannian manifold (Mn, g) (n > 3) is said
to be of quasi-constant curvature if it is conformally flat, and its curvature tensor
R of type (0, 4) has the form

R(X, Y, Z, W ) = a[g(Y,Z)g(X, W )− g(X, Z)g(Y, W )]

+ b[g(X, W )A(Y )A(Z)− g(X, Z)A(Y )A(W )

+ g(Y, Z)A(X)A(W )− g(Y,W )A(X)A(Z)], (3.9)

where A is a 1-form, and a, b are scalars of which b 6= 0.
Generalizing this notion we define the manifold of hyper quasi-constant cur-

vature as follows:
A Riemannian manifold (Mn, g) (n > 3) is said to be of hyper quasi-constant

curvature if it is conformally flat, and its curvature tensor R of type (0, 4) satisfies
the condition

R(X, Y, Z, W ) = a[g(Y,Z)g(X, W )− g(X, Z)g(Y, W )] + g(X, W )P (Y, Z)

− g(X, Z)P (Y, W ) + g(Y, Z)P (X, W )− g(Y, W )P (X, Z), (3.10)
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where

P (Y, Z) = (βBD)(Y,Z) = β1B(Z)D(Y ) + β2B(Z)B(Y ) + β3B̃(Z)B(Y )

+ β4B(Z)B̃(Y ) + β5B(Z)D̃(Y ) + β6B̃(Z)D(Y )

+ β7B̃(Z)B̃(Y ) + β8B̃(Z)D̃(Y ),

and β1, β2, . . . , β8 are non-zero scalars.
Now in view of (3.8) we obtain from (3.5) that

R(X, Y, Z, W ) = a1[g(Y, Z)g(X,W )− g(X, Z)g(Y, W )] + g(X, W )P ′(Y, Z)

− g(X, Z)P ′(Y, W ) + g(Y, Z)P ′(X, W )

− g(Y,W )P ′(X, Z), (3.11)
where

P ′(Y, Z) = (β′BD)(Y, Z) = β′1B(Z)D(Y ) + β′2B(Z)B(Y ) + β′3B̃(Z)B(Y )

+ β′4B(Z)B̃(Y ) + β′5B(Z)D̃(Y ) + β′6B̃(Z)D(Y )

+ β′7B̃(Z)B̃(Y ) + β′8B̃(Z)B̃(Y ),

and β′1, β
′
2, . . . , β

′
8 are non-zero scalars. Comparing (3.10) and (3.11), it follows

that the manifold is of hyper quasi-constant curvature . This leads to the follow-
ing:

Theorem 6. A conformally flat (WS)n (n > 3) of non-zero constant scalar

curvature is a manifold of hyper quasi-constant curvature.

Now putting U = ρ in (2.8), and then using (2.7), we get

(r/2)T (X)T (Z)− T (ρ)S(X,Z) + R(ρ, Z, X, ρ) = 0. (3.12)

Let us now suppose that a (WS)n (n > 3) is conformally flat, and of non-zero
scalar curvature. Then (3.5) yields

R(ρ, Z, X, ρ) =
1

n− 2

[
T (ρ)S(X, Z)− rT (X)T (Z) +

r

2
T (ρ)g(X, Z)

]

+
r

(n− 1)(n− 2)
[T (Z)T (X)− T (ρ)g(X,Z)]. (3.13)

Using (3.13) in (3.12), it follows that

2(n− 1)T (ρ)S(X,Z) = rT (ρ)g(X,Z) + r(n− 2)T (X)T (Z). (3.14)
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We shall now show that T (ρ) 6= 0. For if T (ρ) = 0, then (3.14) implies that

r(n− 2)T (X)T (Z) = 0.

Since T (X) 6= 0 for all X, and n > 3, the above relation yields r = 0, a contra-
diction to the assumption that the manifold is of non-zero scalar curvature. Thus
we have T (ρ) 6= 0. Consequently (3.14) yields

S(X, Z) = αg(X, Z) + βT (X)T (Z), (3.15)

where α, β are non-zero scalars.
Again, according to Chaki and Maity [3], a Riemannian manifold is said

to be quasi-Einstein, if its Ricci tensor is of the form

S = pg + qω ⊗ ω,

where p, q are scalars of which q 6= 0 and ω is a 1-form. This leads to the following:

Theorem 7. A conformally flat (WS)n (n > 3) of non-vanishing scalar

curvature is a quasi-Einstein manifold with respect to the 1-form T defined by

T (X) = B(X)−D(X) 6= 0 for all X.

Again, using (3.15) in (3.5), it follows that

R(X, Y, Z, W ) = γ[g(Y, Z)g(X, W )− g(X,Z)g(Y, W )]

+ δ[g(X, W )T (Y )T (Z)− g(X, Z)T (Y )T (W )

+ g(Y,Z)T (X)T (W )− g(Y, W )T (X)T (Z)], (3.16)

where γ and δ are non-zero scalars. Comparing (3.16) and (3.9), we can state the
following:

Theorem 8. A conformally flat (WS)n (n > 3) of non-vanishing scalar

curvature is a manifold of quasi-constant curvature with respect to the 1-form T

defined by T (X) = B(X)−D(X) 6= 0 for all X.

Using the expression of T in (3.16), it can be easily seen that

R(X, Y, Z, W ) = γ[g(Y, Z)g(X, W )− g(X,Z)g(Y, W )]

+ g(X, W ) {δBD} (Y, Z)− g(X, Z) {δBD} (Y,W )

+ g(Y,Z) {δBD} (X, W )− g(Y, W ) {δBD} (X, Z),

where {δBD} = δ(BB −BD −DB + DD).
Comparing the above relation with (3.10), we can state the following:

Theorem 9. A conformally flat (WS)n (n > 3) of non-zero scalar carvature

is a manifold of hyper quasi-constant curvature.
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4. Some examples of (WS)n

This section deals with several examples of (WS)n. On the real number space
Rn (with co-ordinates x1, x2, . . . , xn) we define a suitable Riemannian metric g

such that Rn becomes a Riemannian manifold (Mn, g). We calculate the compo-
nents of the curvature tensor and its covariant derivative, and then we verify the
defining relation (1.2).

Example 1. We define a Riemannian metric on the 4-dimensional real number
space R4 by the formula

ds2 = gijdxidxj = f(dx1)2 + 2dx1dx2 + (dx3)2 + (x1)2(dx4)2,

(i, j = 1, 2, . . . , 4),
(4.1)

where f = a0 + a1x
3 + a2(x3)2, a0, a1, a2 are non-constant functions of x1 only.

Then the only non-vanishing components of the Christoffel symbols and the cur-
vature tensor are

Γ2
11 =

1
2
f.1, Γ2

13 = −Γ3
11 =

1
2
f.3, Γ4

14 =
1
x1

, Γ2
44 = −x1,

R1331 =
1
2
f.33 = a2 6= 0, (4.2)

and the components which can be obtained from these by the symmetric proper-
ties. Here ‘.’ denotes the partial differentiation with respect to the coordinates.
Using the above relations, it can be easily shown that the scalar curvature of the
manifold is zero. Therefore R4 with the considered metric is a Riemannian man-
ifold M4 whose scalar curvature is zero. The only non-zero covariant derivatives
of R are

R1331,1 =
1
2
f.331 = (a2).1 6= 0, (4.3)

and the components which can be obtained from (4.3) by the symmetric proper-
ties, where ‘,’ denotes the covariant derivative with respect to the metric tensor.
Hence our (M4, g) is neither flat nor locally symmetric. We shall now show that
this M4 is a (WS)4, i.e. it satisfies (1.2). Let us now consider the 1-forms

Ai(x) = −d(x2x3) for i = 1 Bi(x) = d(x2x3) for i = 1

= 0, otherwise = 0, otherwise

Di(x) = d(log a2) for i = 1

= 0, otherwise

(4.4)
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at any point x ∈ M . In our M4 (1.2) reduces with these 1-forms to the following
equations

(i) R1331,1 = A1R1331 + B1R1331 + B3R1131 + D3R1311 + D1R1331

(ii) R1131,3 = A3R1131 + B1R3131 + B1R1331 + D3R1131 + D1R1133

(iii) R1311,3 = A3R1311 + B1R3311 + B3R1311 + D1R1331 + D1R1313,

since for the cases other than (i), (ii) and (iii) the components of each term of
(1.2) vanish identically, and the relation (1.2) holds trivially. Now, from (4.2),
(4.3) and (4.4) we get the following relations for the right hand side (R.H.S.) and
left hand side (L.H.S.) of (i):
R.H.S. of (i) = (A1 + B1 + D1)R1331 = d(log a2)R1331 = (a2).1 = L.H.S. of (i).
Also R.H.S. of

(ii) = −d(x2x3)(R3131 + R1331),

= 0 (by the skew symmetric property ofR)

= L.H.S. of (ii).

By a similar argument as in (ii) it can be shown that the relation (iii) is true.

Hence we can state the following:

Theorem 10. Let (M4, g) be a Riemannian manifold endowed with the

metric

ds2 = gijdxidxj = f(dx1)2 + 2dx1dx2 + (dx3)2 + (x1)2(dx4)2

(i, j = 1, 2, . . . , 4),

where f = a0 + a1x
3 + a2(x3)2, a0, a1, a2 are non-constant functions of x1 only.

Then (M4, g) is a weakly symmetric manifold of vanishing scalar curvature which

is not locally symmetric.

In particular, if we take a2 = ex1
, then (4.2) and (4.3) respectively reduce to

the following:

R1331 = ex1 6= 0 (4.5)

R1331,1 = ex1 6= 0, (4.6)

and hence the manifold under consideration is not locally symmetric. If we con-
sider the 1-forms

Ai(x) =
1
2

for i = 1 Bi(x) = −1
4

for i = 1

= 0, otherwise = 0, otherwise
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Di(x) =
3
4

for i = 1

= 0, otherwise, (4.7)

then proceeding similarly as in the previous case, it can easily be shown that the
manifold under consideration satisfies (i)–(iii), and hence is a (WS)4. Thus we
have the following:

Theorem 11. Let (M4, g) be a Riemannian manifold endowed with the

metric

ds2 = gijdxidxj = f(dx1)2 + 2dx1dx2 + (dx3)2 + (x1)2(dx4)2

(i, j = 1, 2, . . . , 4),

where f = a0 +a1x
3 + ex1

(x3)2, and a0, a1 are non-constant functions of x1 only.

Then (M4, g) is a weakly symmetric manifold with vanishing scalar curvature,

and is not locally symmetric.

Example 2. Let M be an open subset of Rn(n ≥ 4) endowed with the metric

ds2 = gijdxidxj = f(dx1)2 + 2dx1dx2 +
n∑

k=3

(dxk)2,

(i, j = 1, 2, . . . , n),

(4.8)

where f = a0 +a1x
3 +ex1{1

2 (x3)2 + 1
6 (x3)3 + · · ·+ 1

(n−2)(n−3) (x
3)n−2

}
, a0, a1, are

non-constant functions of x1 only, and 0 < x3 < 1. Then the only non-vanishing
components of the Christoffel symbols, the curvature tensor, the Ricci tensor and
their covariant derivatives are

Γ2
11 =

1
2
f.1, Γ2

13 = −Γ3
11 =

1
2
f.3, S11 =

1
2
f.33,

R1331 =
1
2
f.33 =

1
2
ex1

[
1− (x3)n−3

1− x3

]
6= 0,

R1331,1 =
1
2
f.331 =

1
2
ex1

[
1− (x3)n−3

1− x3

]
6= 0

R1331,3 =
1
2
f.333 =

1
2
ex1

[
1− (n− 3)(x3)n−4 + (n− 4)(x3)n−3

(1− x3)2

]

and the components which can be obtained from these by the symmetric proper-
ties, where ‘.’ denotes the partial differentiation, and Sij denotes the components
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of the Ricci tensor. Using the above relations, it can be easily shown that the
scalar curvature of the manifold is zero. Therefore our Mn with the considered
metric is a Riemannian manifold, which is neither locally symmetric nor recurrent.

We shall now show that this Mn is a (WS)n i.e., it satisfies (1.2). If we
consider the 1-forms

Ai(x) =
n− 3

n
for i = 1 Bi(x) =

2
n

for i = 1

= 0, otherwise =
1

1− x2
for i = 3

Di(x) =
1
n

for i = 1 = 0, otherwise

= − (n− 3)(x3)n−4

1− (x3)n−3
for i = 3

= 0, otherwise (4.9)

at any point x ∈ M , then proceeding similarly as in Example 1, it can be shown
that the manifold under consideration is a (WS)n.

Thus we can state the following:

Theorem 12. Let (Mn, g) (n ≥ 4) be a Riemannian manifold endowed

with the metric given in (4.8). Then (Mn, g) is a weakly symmetric manifold

with vanishing scalar curvature, which is neither locally symmetric nor recurrent.

Example 3. Let M be an open subset of R4 endowed with the metric

ds2 = gijdxidxj = ex1
(dx1)2 + ex1

(dx2)2 + ex1
sin2 x2(dx3)2 + ex4

(dx4)2

(i, j = 1, 2, . . . , 4), (4.10)

where 0 < x2 < π/2.

Then the only non-vanishing components of the Christoffel symbols, the cur-
vature tensor and their covariant derivatives are

Γ1
22 = −1

2
, Γ1

33 = −1
2
(sinx2)2, Γ2

33 = − sin x2 cos x2,

Γ3
23 = cot x2, Γ1

11 = Γ2
12 = Γ3

13 = Γ4
44 =

1
2
,

R2332 = −3
4
ex1

(sin x2)2, (4.11)

R2332,1 =
3
4
ex1

(sinx2)2 6= 0, (4.12)
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and the components which can be obtained from these by the symmetric proper-
ties. Here ‘,’ denotes the covariant differentiation. Using the above relations, it
can be easily shown that the scalar curvature r of the manifold is given by

r = −3
2
e−x1 6= 0.

Thus the scalar curvature of the manifold is negative, non-vanishing and non-
constant. Therefore our M4 with the considered metric is a Riemannian manifold,
which is neither locally symmetric nor of vanishing scalar curvature.

We shall now show that this M4 is a (WS)4, i.e. it satisfies (1.2). We consider
the 1-forms

Ai(x) = −x2d(log x2) for i = 1

= d(cos x2 + sin x2) for i = 2

= 0, otherwise

Bi(x) = d(cos x2 − sin x2) for i = 2

= 0, otherwise

Di(x) = −d(2 cos x2) for i = 2

= 0, otherwise

(4.13)

at any point x ∈ M . In our M4 (1.2) reduces with these 1-forms to the following
equations

(i) R2332,1 = A1R2332 + B2R1332 + B3R2132 + D3R2312 + D2R2331

(ii) R2232,3 = A3R2232 + B2R3232 + B2R2332 + D3R2232 + D2R2233

(iii) R2322,3 = A3R2322 + B2R3322 + B3R2322 + D2R2332 + D2R2323,

since for the cases other than (i), (ii) and (iii) the components of each term of (1.2)
vanish identically and the relation (1.2) holds trivially. Now from (4.11)–(4.13)
we get the following relations for the right hand side (R.H.S.) and left hand side
(L.H.S.) of (i):
R.H.S. of (i)= A1R2332 = −x2d(log x2)R2332 = + 3

4ex1
sin2 x2 = L.H.S. of (i).

Also R.H.S. of

(ii) = d(cosx2 − sin x2)(R3232 + R2332)

= 0, by the skew symmetric property of R

= L.H.S. of (ii).

Similarly it can be shown that the relation (iii) is true. Hence we can state the
following:
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Theorem 13. Let (M4, g) be a Riemannian manifold endowed with the

metric

ds2 = gijdxidxj = ex1
(dx1)2 + ex1

(dx2)2 + ex1
(sin x2)2(dx3)2 + ex4

(dx4)2

(i, j = 1, 2, . . . , 4),

where 0 < x2 < π/2 and x1 is finite. Then (M4, g) is a weakly symmetric

manifold with non-vanishing and non-constant scalar curvature, which is neither

locally symmetric nor recurrent.

Example 4. Let M be an open subset of Rn(n ≥ 4) equipped with the metric

ds2 = gijdxidxj = (ex1 − 1)[(dx1)2 + (dx2)2] + (ex1+x2 − 1)(dx3)2

+ (ex4 − 1)(dx4)2 + δijdxidxj , (i, j = 1, 2, . . . , n),

where x1 is finite and δij denotes the Kronecker delta. Then the only non-
vanishing components of the Christoffel symbols, curvature tensor and its co-
variant derivatives are given by

Γ1
11 = −Γ1

22 = Γ3
13 = Γ3

23 = Γ4
44 = Γ2

12 =
1
2
, Γ1

33 = Γ2
33 = −1

2
ex2

,

R2332 =
1
2
ex1+x2

,

R2332,1 = −1
2
ex1+x2 6= 0

and the components which can be obtained from these by the symmetric proper-
ties, where ‘,’ denotes the covariant differentiation. Using the above relations, it
can be easily shown that the scalar curvature r of the manifold is given by

r = e−x1 6= 0 for x1 is finite.

Hence the manifold under the considered metric is of non-zero scalar curvature,
and it is a Riemannian manifold. If we consider the 1-forms

Ai(x) = −x1d(log x1) for i = 1, Bi(x) = d(ex1 − ex2
) for i = 2

= d(ex1
+ ex2

) for i = 2, = 0, otherwise

= 0, otherwise

Di(x) = −d(2ex1
) for i = 2,

= 0, otherwise

at any point x ∈ M , then proceeding similarly as in Example 3, it can be easily
shown that the manifold under consideration is a (WS)n.
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Thus we can state the following:

Theorem 14. Let (Mn, g) (n≥ 4)be a Riemannian manifold equipped with

the metric

ds2 = gijdxidxj = (ex1 − 1)[(dx1)2 + (dx2)2] + (ex1+x2 − 1)(dx3)2

+ (ex4 − 1)(dx4)2 + δijdxidxj (i, j = 1, 2, . . . , n).

Then (Mn, g) is a weakly symmetric manifold of non-zero and non-constant scalar

curvature, which is neither locally symmetric nor recurrent.

Example 5. Let M be an open subset of R4 equipped with the metric

ds2 = gijdxidxj = x3ex1
(dx1)2 + (dx2)2 + (dx3)2 + x4ex1

(dx4)2

(i, j = 1, 2, . . . , 4),

where x3 6= 0, x4 6= 0.
Then the only non-vanishing components of the Christoffel symbols, the cur-

vature tensor and their covariant derivatives are given by

Γ1
11 = Γ4

14 =
1
2
, Γ3

11 = −1
2
ex1

, Γ1
13 =

1
2x3

, Γ1
44 = − x4

2x3
, Γ4

44 =
1

2x4
,

R1331 = − 1
4x3

ex1 6= 0, R1331,3 =
1

2(x3)2
ex1 6= 0

and the components which can be obtained from these by the symmetric proper-
ties. Using the above relations, it can be easily shown that the scalar curvature
r of the manifold is given by

r = −(
2x3)−2 6= 0.

Hence the manifold with the considered metric is a Riemannian manifold of non-
constant negative scalar curvature, which is neither locally symmetric nor recur-
rent.

If we consider the 1-forms

Ai(x) = −2
3

for i = 1, Bi(x) =
2
9

for i = 1,

=
1
x3

for i = 3, =
2
x3

for i = 3,

= 0, otherwise = 0, otherwise

Di(x) =
4
9

for i = 1,

= − 5
x3

for i = 3

= 0, otherwise
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at any point x ∈ M , then proceeding similarly as in the previous examples, it can
easily be shown that the manifold under consideration is weakly symmetric.

Hence we can state the following:

Theorem 15. Let (M4, g) be a Riemannian manifold equipped with the

metric
ds2 = gijdxidxj = x3ex1

(dx1)2 + (dx2)2 + (dx3)2 + x4ex1
(dx4)2

(i, j = 1, 2, . . . , 4),
where x3x4 6= 0.

Then (M4, g) is a weakly symmetric manifold of non-constant and negative
scalar curvature, which is neither locally symmetric nor recurrent.
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