The maximal operator of the Fejér means of the character system of the *p*-series field in the Kaczmarz rearrangement

By USHANGI GOGINAVA (Tbilisi)

Abstract. The main aim of this paper is to prove that the maximal operator $\sigma^{*\chi}$ of the Fejér means of the character system of the *p*-series field in the Kaczmarz rearrangement is bounded from the Hardy space $H_{1/2}$ to the space weak- $L_{1/2}$ and is not bounded from the Hardy space $H_{1/2}(G_p)$ to the space $L_{1/2}(G_p)$.

1. Introduction

The first result with respect to the a.e. convergence of the Walsh–Fejér means $\sigma_n f$ is due to Fine [1]. Later, Schipp [5] showed that the maximal operator $\sigma^* f$ is of weak type (1,1), from which the a.e. convergence follows by standard argument. Schipp's result implies by interpolation also the boundedness of σ^* : $L_{\alpha} \to L_{\alpha}$ (1 < $\alpha \le \infty$). This fails to hold for $\alpha = 1$ but Fujii [2] proved that σ^* is bounded from the dyadic Hardy space H_1 to the space L_1 (see also Simon [6]). Fujii's theorem was extened by Weisz [10]. Namely, he proved that the maximal operator of the Fejér means of the one-dimensional Walsh–Fourier series is bounded from the martingale Hardy space $H_{\alpha}(I)$ to the space $L_{\alpha}(I)$ for $\alpha > 1/2$. Simon [7] gave a counterexample, which shows that this boundedness does not hold for $0 < \alpha < 1/2$. In the endpoint case $\alpha = 1/2$ Weisz [13] proved that σ^* is bounded from the Hardy space $H_{1/2}(I)$ to the space weak- $L_{1/2}(I)$.

If the Walsh system is taken in the Kaczmarz ordening, the analogue of the statement of Schipp [5] is due to Gát [3]. Moreover he proved an (H_1, L_1) -type estimation. Gát's result was extended to the Hardy space by Simon [8], who

Mathematics Subject Classification: 42C10.

Key words and phrases: character system, weak type inequality.

proved that σ^* is of type (H_{α}, L_{α}) for $\alpha > 1/2$. WEISZ [13] showed that in the endpoint case $\alpha = 1/2$ the maximal operator is of weak type $(H_{1/2}, L_{1/2})$.

GÁT and NAGY [4] proved the a.e. convergence $\sigma_n^{\chi} f \to f$ $(n \to \infty)$ for an integrable function $f \in L_1(G_p)$, where $\sigma_n f$ is the Fejér means of the function f with respect to the character system in the Kaczmarz rearrangement. They also proved that the maximal operator $\sigma^{*\chi}$ is of type (α, α) for all $1 < \alpha \le +\infty$, of weak type (1,1) and $\|\sigma^* f\|_1 \le c \|f\|_{H_1}$.

The main aim of this paper is to generalize the results of GÁT and NAGY [4] and we prove that the maximal operator $\sigma^{*\chi}$ of the Fejér means of the character system of the *p*-series field in the Kaczmarz rearrangement is bounded from the Hardy space $H_{1/2}(G_p)$ to the space weak- $L_{1/2}(G_p)$ and is not bounded from the Hardy space $H_{1/2}(G_p)$ to the space $L_{1/2}(G_p)$.

2. Definitions and notation

Let \mathbb{P} denote the set of positive integers, $\mathbb{N} := \mathbb{P} \cup \{0\}$. Let $2 \leq p \in \mathbb{N}$ and denote by \mathbb{Z}_p the pth cyclic group, that is, \mathbb{Z}_p can be represented by the set $\{0, 1, \ldots, p-1\}$, where the group operation is mod p addition and every subset is open. The Haar measure on \mathbb{Z}_p is given so that

$$\mu_k\left(\{j\}\right) := \frac{1}{j} \quad (j \in \mathbb{Z}).$$

The group operation on G_p is coordinate-wise addition, the normalized Haar measure μ is the product measure. The topology on G_p is the product topology, a base for the neighborhoods of G_p can be given thus:

$$I_0(x) := G_p, \quad I_n(x) := \{ y \in G_p : y = (x_0, \dots, x_{n-1}, y_n, y_{n+1}, \dots) \},$$

$$(x \in G_p, \ n \in \mathbb{N}).$$

Let $0 = (0 : i \in \mathbb{N}) \in G_p$ denote the null element of G_p , $I_n := I_n(0)$ $(n \in \mathbb{N})$. Let

$$\Delta := \{ I_n(x) : x \in G_n, \ n \in \mathbb{N} \}.$$

The elements of Δ are intervals of G_p . Set $e_i := (0, \dots, 0, 1, 0, \dots) \in G_p$ the *i*th coordinate of which is 1, the rest are zeros.

The norm (or quasinorm) of the space $L_{\alpha}(G_p)$ is defined by

$$||f||_{\alpha} := \left(\int_{G_p} |f(x)|^{\alpha} d\mu(x) \right)^{1/\alpha} \quad (0 < \alpha < +\infty).$$

Let $\Gamma(p)$ denote the character group of G_p . We arrange the elements of $\Gamma(p)$ as follows: For $k \in \mathbb{N}$ and $x \in G_p$ denote by r_k the k-th generalized Rademacher function:

$$r_k(x) := \exp\left(\frac{2\pi i x_k}{p}\right) \quad (i := \sqrt{-1}, \ x \in G_p, \ k \in \mathbb{N}).$$

Let $n \in \mathbb{N}$. Then

$$n = \sum_{i=0}^{\infty} n_i p^i$$
, where $0 \le n_i < p$ $(n_i, i \in \mathbb{N})$,

where n is expressed in the number system with base p. Put

$$|n| := \max(j \in \mathbb{N} : n_j \neq 0)$$
 i.e., $p^{|n|} \le n < p^{|n|+1}$.

Now we define the sequence of functions $\psi := (\psi_n : n \in \mathbb{N})$ by

$$\psi_n(x) := \prod_{k=0}^{\infty} (r_k(x))^{n_k} \quad (x \in G_p, \ n \in \mathbb{N}).$$

We remark that $\Gamma(p) = \{\psi_n : n \in \mathbb{N}\}$ is a complete orthogonal system with respect to the normalized Haar measure on G_p .

The character group $\Gamma(p)$ can be given in the Kaczmarz rearrangement as follows: $\Gamma(p) = \{\chi_n : n \in \mathbb{N}\}$, where

$$\chi_n(x) := r_{|n|}^{n_{|n|}}(x) \prod_{k=0}^{|n|-1} \left(r_{|n|-1-k}(x) \right)^{n_k} \quad (x \in G_p, \ n \in \mathbb{P}),$$

$$\chi_0(x) = 1 \quad (x \in G_p).$$

Let the transformation $\tau_A: G_p \to G_p$ be defined as follows:

$$\tau_A(x) := (x_{A-1}, x_{A-2}, \dots, x_0, x_A, x_{A+1}, \dots).$$

The transformation is measure-preserving and $\tau_A(\tau_A(x)) = x$. By the definition of τ_A , we have

$$\chi_n(x) = r_{|n|}^{n_{|n|}}(x)\psi_{n-n_{|n|}p^n}(\tau_{|n|}(x)) \quad (n \in \mathbb{N}, \ x \in G_p).$$

For a function f in $L_1(G_p)$ the Fourier coefficients, the partial sums of Fourier series, the Dirichlet kernels, the Fejér means and the Fejér kernels are defined as follows:

$$\hat{f}^{\gamma}(n) := \int_{G_p} f \gamma_n, \quad S_n^{\gamma}(f, x) := \sum_{k=0}^{n-1} \hat{f}^{\gamma}(k) \gamma_k(x), \quad D_n^{\gamma} := \sum_{k=0}^{n-1} \gamma_k,$$

$$\sigma_n^{\gamma}(f) := \frac{1}{n} \sum_{k=1}^n S_k^{\gamma}(f), \quad K_n^{\gamma} := \frac{1}{n} \sum_{k=1}^n D_k^{\gamma \alpha}(x),$$

where $\gamma_n = \psi_n$ or χ_n .

Let

$$K_{a,b} := \sum_{j=a}^{a+b-1} D_j^{\gamma} \quad (a, b \in \mathbb{N}),$$

and

$$n^{(s)} := \sum_{i=s}^{\infty} n_i p^i \quad (n, s \in \mathbb{N}).$$

By a simple calculation we get

$$nK_n^{\gamma} = \sum_{s=0}^{|n|} \sum_{l=0}^{n_s - 1} K_{n^{(s+1)} + lp^s, p^s}^{\gamma} + D_n^{\gamma}.$$
(1)

The p^n th Dirichlet kernels have a closed form:

$$D_{p^n}^{\psi}(x) = D_{p^n}^{\chi}(x) = \begin{cases} p^n & \text{if } x \in I_n, \\ 0 & \text{if } x \notin I_n, \end{cases} \text{ where } x \in G_p.$$
 (2)

We define the maximal operator

$$\sigma^{*\gamma}f := \sup_{n \in \mathbb{P}} |\sigma_n^{\gamma}f| \quad (f \in L_1(G_p).$$

The space weak- $L_{\alpha}\left(G_{p}\right)$ consists of all measurable functions f for which

$$||f||_{\operatorname{weak}-L_{\alpha}(G_{p})} := \sup_{\rho>0} \rho \mu \left(|f| > \rho\right)^{1/\alpha} < +\infty.$$

The σ -algebra generated by the intervals I_k of length p^{-k} will be denoted by F_k $(k \in N)$.

Denote by $f=\left(f^{(n)},\ n\in\mathbb{N}\right)$ the one-parameter martingale with respect to $(F_n,\ n\in N)$ (for details see, e.g., [9]–[12]) The maximal function of a martingale f is defined by

$$f^* = \sup_{n \in N} |f^{(n)}|.$$

In case $f \in L_1(G_p)$, the maximal function can also be given by

$$f^*(x) = \sup_{n \ge 1} \frac{1}{\mu(I_n(x))} \Big| \int_{I_n(x)} f(u) d\mu(u) \Big|, \quad x \in G_p.$$

For $0<\alpha\leq\infty$ the Hardy martingale space $H_p(G_p)$ consists all martingales for which

$$||f||_{H_{\alpha}} := ||f^*||_{\alpha} < \infty.$$

If $f \in L_1(G_p)$ then it is easy to show that the sequence $(S_{p^n}(f) : n \in \mathbb{N})$ is a martingale. If f is a martingale, that is $f = (f^{(0)}, f^{(1)}, \dots)$, then the Fourier coefficients must be defined in a slightly different way:

$$\widehat{f}(j) = \lim_{k \to \infty} \int_{G_p} f^{(k)}(x) \gamma_j(x) dx.$$

The Fourier coefficients of $f \in L_1(G_p)$ are the same as those of the martingale $(S_{p^n}(f) : n \in \mathbb{N})$ obtained from f.

A bounded measurable function a is an $\alpha\text{-atom},$ if there exists an interval I, such that

- a) $\int_I a d\mu = 0$;
- b) $||a||_{\infty} \le \mu(I)^{-1/\alpha};$
- c) supp $a \subset I$.

3. Formulation of the main results

Theorem 1. The maximal operator $\sigma^{*\chi}$ is bounded from the Hardy space $H_{1/2}(G_p)$ to the space weak- $L_{1/2}(G_p)$.

Theorem 2. The maximal operator $\sigma^{*\chi}$ is not bounded from the Hardy space $H_{1/2}(G_p)$ to the space $L_{1/2}(G_p)$.

4. Auxiliary propositions

We shall need the following lemmas (see [4], [13]).

Lemma 1 (Weisz). Suppose that an operator V is sublinear, and for some $0 < \alpha < 1$

$$\sup_{\rho>0} \rho^{\alpha} \, \mu \, \{x \in C_p \backslash I : |Va(x)| > \rho\} \le c_{\alpha} < \infty$$

for every α -atom a, where I denotes the support of the atom. If V is bounded from L_{α_1} to L_{α_1} for a fixed $1 < \alpha_1 \le \infty$, then

$$||Vf||_{\text{weak-}L_{\alpha}(G_p)} \le c_{\alpha}||f||_{H_{\alpha}}.$$

Lemma 2 (Gát, Nagy). Suppose that $s,b,n \in \mathbb{N}$ and $x \in I_b \setminus I_{b+1}$. If $s \leq b \leq |n|$, then

$$|K_{n^{(s+1)}+lp^s,p^s}^{\psi}(x)| \le cp^{s+b},$$

while if $b < s \le |n|$, then

$$K_{n^{(s+1)}+lp^{s},p^{s}}^{\psi}(x) = \begin{cases} 0 & \text{if } x - x_{b}e_{b} \notin I_{s}, \\ \omega_{n^{(s+1)}}(x)p^{s+b-1} & \text{if } x - x_{b}e_{b} \in I_{s}. \end{cases}$$

Lemma 3 (Gát, Nagy). Let $A \in \mathbb{N}$ and $n := n_A p^A + n_{A-1} p^{A-1} + \dots + n_0 p^0$. Then

$$\begin{split} nK_{n}^{\chi}(x) &= 1 + \sum_{j=0}^{A-1} \sum_{i=1}^{p-1} r_{j}^{i}(x) p^{j} K_{p^{j}}^{\psi}\left(\tau_{j}(x)\right) + \sum_{j=0}^{A-1} p^{j} D_{p^{j}}^{\psi}(x) \sum_{l=1}^{p-1} \sum_{i=0}^{l-1} r_{j}^{l}(x) \\ &+ p^{A} \sum_{l=1}^{n_{A}-1} r_{A}^{l}(x) K_{p^{A}}^{\psi}(\tau_{A}(x)) + r_{A}^{n_{A}}(x) (n - n_{A} p^{A}) K_{n - n_{A} p^{A}}^{\psi}(\tau_{A}(x)) \\ &+ \left(n - n_{A} p^{A}\right) \sum_{i=0}^{n_{A}-1} r_{A}^{i}(x) D_{p^{A}}^{\psi}(x) + p^{A} \sum_{i=1}^{n_{A}-1} \sum_{i=0}^{j-1} r_{A}^{i}(x) D_{p^{A}}^{\psi}(x). \end{split}$$

Corollary 1. We have

$$\sup_{n} \int_{G_p} |K_n^{\chi}(x)| \, d\mu(x) < +\infty.$$

Lemma 4. Let $n < p^{A+1}$, A > N and $x \in I_N$ $(x_0, \ldots, x_m \neq 0, 0, \ldots, 0, x_l \neq 0, 0, \ldots, 0)$, $m = -1, 0, \ldots, l-1, l = 0, \ldots, N-1$. Then

$$\int_{I_N} n \left| K_n^w \left(\tau_A(x-t) \right) \right| d\mu(t) \le c \frac{p^A}{p^{m+l}},$$

where

$$I_N(x_0, \dots, x_m \neq 0, 0, \dots, 0, x_l \neq 0, 0, \dots, 0)$$

:= $I_N(0, \dots, 0, x_l \neq 0, 0, \dots, 0)$, for $m = -1$.

PROOF. It is evident that for $x \in I_N$ $(x_0, \ldots, x_m \neq 0, 0, \ldots, 0, x_l \neq 0, 0, \ldots, 0)$ we have

$$\int_{I_N} |D_n^{\chi}(x-t)| \, d\mu(t) \le c \sum_{j=0}^A \int_{I_N} |D_{p^j}^{\psi}(\tau_A(x-t))| d\mu(t) \le c \sum_{j=0}^{A-l} \frac{p^j}{p^A} \le \frac{c}{p^l}.$$
 (3)

From Lemma 2 we obtain that $K_{n^{(s+1)}+lp^s,p^s}^w\left(\tau_A(x-t)\right)=0$ for $s\geq A-m$. Hence we can suppose that s< A-m.

Using Lemma 2 $K_{n^{(s+1)}+ln^s,n^s}^w(\tau_A(x-t)) \neq 0$ implies that

1)
$$t \in I_N(0, \dots, 0, x_N, \dots, x_{A-1})$$
 if $0 \le s < A - m$;

2)
$$t \in I_A(0, \dots, 0, x_N, \dots, x_{q-1}, t_q \neq x_q, x_{q+1}, \dots, x_{A-1})$$

if $A - N < s < A - l$;

3)
$$t \in I_A(0, \dots, 0, t_N, \dots, t_{A-s-1}, x_{A-s}, \dots, x_{q-1}, t_q \neq x_q, x_{q+1}, \dots, x_{A-1})$$

if $1 < s < A - N$:

4)
$$t \in I_A(0, \dots, 0, t_N, \dots, t_{q-1}, t_q \neq x_q, x_{q+1}, \dots, x_{A-s}, \dots, x_{A-1})$$

if $1 < s < A - N$:

consequently, from (1) and (3) we can write

$$\begin{split} &\int_{I_{N}} n \left| K_{n}^{w} \left(\tau_{A}(x-t) \right) \right| d\mu(t) \\ &\leq \sum_{s=0}^{A-m} \sum_{l=0}^{n_{s}-1} \int_{I_{N}} \left| K_{n^{(s+1)}+lp^{s},p^{s}}^{w} \left(\tau_{A}(x-t) \right) \right| d\mu(t) + \int_{I_{N}} \left| D_{n}^{\chi}(x-t) \right| d\mu(t) \\ &\leq c \left\{ \sum_{s=0}^{A-m} \frac{p^{s+A-l}}{p^{A}} + \sum_{s=A-N}^{A-l} \sum_{q=N}^{A} \frac{p^{s+A-q}}{p^{A}} \right. \\ &\quad + \sum_{s=0}^{A-N} \sum_{q=A-s}^{A} \frac{p^{s+A-q}p^{A-s-N}}{p^{A}} + \sum_{s=0}^{A-N} \sum_{q=N}^{A-s} \frac{p^{s+A-q}p^{q-N}}{p^{A}} \right\} \\ &\leq c \left\{ \frac{p^{A}}{p^{m+l}} + \frac{p^{A}}{p^{N+l}} + \frac{p^{A}}{p^{2N}} + \sum_{s=0}^{A-N} \frac{p^{s} \left(A-s-N+1 \right)}{p^{2N}} \right\} \leq c \frac{p^{A}}{p^{m+l}}. \end{split}$$

Lemma 4 is proved.

Lemma 5. Let $n \in \mathbb{N}$. Then

$$\int_{G_n} \max_{1 \le N \le 2^n} \left(N \left| K_N^{\psi}(\tau_n(x)) \right| \right)^{1/2} d\mu(x) \ge c \frac{n+1}{\log(n+2)}.$$

PROOF. It is evident that

$$\int_{G_p} D_j^{\psi} \left(\tau_n(x) \right) D_i^{\psi} \left(\tau_n(x) \right) d\mu(x) = \int_{G_p} D_j^{\psi}(x) D_i^{\psi}(x) d\mu(x) = \min\{i,j\}.$$

Then we can write

$$\int_{G_p} \left(\sum_{j=1}^N D_j^{\psi} \left(\tau_n(x) \right) \right)^2 d\mu(x) = \sum_{j=1}^N \sum_{i=1}^N \int_{G_p} D_j^{\psi} \left(\tau_n(x) \right) D_i^{\psi} \left(\tau_n(x) \right) d\mu(x)
= \sum_{j=1}^N \sum_{i=1}^N \min\{i, j\} \ge c_0 N^3.$$
(4)

It is well-known that

$$\int_{G_p} \left| K_N^{\psi}(\tau_n(x)) \right| d\mu(x) \le c_1 < \infty, \quad N = 1, 2, \dots, p^n, \ n = 0, 1, \dots$$
 (5)

Denote

$$A_{N_i} := \left\{ x \in G_p : \left| K_{N_i}^{\psi} \left(\tau_n(x) \right) \right| \le \frac{c_0}{2c_1} N_i \right\}$$

and

$$B_{N_i} := G_p \backslash A_{N_i},$$

where

$$N_i := \frac{p^n}{n^{3i}}, \quad i = 1, 2, \dots, \left[\frac{n}{3\log_2 n}\right], \ n \ge 2.$$

By (5) and from the fact that $|K_{N_i}^{\psi}(\tau_n(x))| = O(N_i)$ we can write

$$\begin{split} c_0 N^3 & \leq \int_{G_p} \left(N_i \big| K_{N_i}^{\psi}(\tau_n(x)) \big| \right)^2 d\mu(x) = \int_{A_{N_i}} \left(N_i \big| K_{N_i}^{\psi}(\tau_n(x)) \big| \right)^2 d\mu(x) \\ & + \int_{B_{N_i}} \left(N_i \big| K_{N_i}^{\psi}(\tau_n(x)) \big| \right)^2 d\mu(x) \leq \frac{c_0}{2c_1} N_i^3 \int_{A_{N_i}} \big| K_{N_i}^{\psi}(\tau_n(x)) \big| d\mu(x) \\ & + \int_{B_{N_i}} \left(N_i \big| K_{N_i}^{\psi}(\tau_n(x)) \big| \right)^{3/2} \left(N_i \big| K_{N_i}^{\psi}(\tau_n(x)) \big| \right)^{1/2} d\mu(x) \\ & \leq \frac{c_0}{2} N_i^3 + c_2 N_i^3 \int_{B_{N_i}} \left(N_i \big| K_{N_i}^{\psi}(\tau_n(x)) \big| \right)^{1/2} d\mu(x), \end{split}$$

consequently

$$\int_{B_{N_i}} \left(N_i |K_{N_i}^{\psi}(\tau_n(x))| \right)^{1/2} d\mu(x) \ge c_3 > 0.$$
 (6)

Denote

$$C_{N_i} := B_{N_i} \setminus \bigcup_{j=1}^{i-1} B_{N_j}.$$

From the definition of the set B_{N_i} we obtain

$$\frac{c_0}{2c_1} N_i \mu \left(B_{N_j} \right) < \int_{B_{N_i}} \big| K_{N_i}^{\psi}(\tau_n(x)) \big| d\mu(x) \leq \int_{G_p} \big| K_{N_i}^{\psi}(\tau_n(x)) \big| d\mu(x) \leq c_1,$$

hence

$$\mu\left(B_{N_j}\right) \le \frac{c_4}{N_i}.\tag{7}$$

Combining (6) and (7) we get

$$\int_{C_{N_i}} \left(N_i \big| K_{N_i}^{\psi}(\tau_n(x)) \big| \right)^{1/2} d\mu(x) \ge \int_{B_{N_i}} \left(N_i \big| K_{N_i}^{\psi}(\tau_n(x)) \big| \right)^{1/2} d\mu(x)$$

$$- \sum_{j=1}^{i-1} \int_{C_{N_j}} \left(N_i \big| K_{N_i}^{\psi}(\tau_n(x)) \big| \right)^{1/2} d\mu(x) \ge c_3 - c_4 N_i \sum_{j=1}^{i-1} \operatorname{mes} \left(C_{N_j} \right)$$

$$\ge c_3 - c_5 N_i \sum_{j=1}^{i-1} \frac{1}{N_j} \ge c_3 - \frac{c_6}{n^3} \ge c_7, \quad \text{for } n \ge n_0.$$

Consequently we can write

$$\begin{split} & \int_{G_p} \max_{1 \leq N \leq 2^n} \left(N \big| K_N^{\psi}(\tau_n(x)) \big| \right)^{1/2} d\mu(x) \\ & \geq \sum_{j=1}^{[n/(3\log n)]} \int_{C_{N_i}} \max_{1 \leq N \leq 2^n} \left(N \big| K_N^{\psi}(\tau_n(x)) \big| \right)^{1/2} d\mu(x) \\ & \geq \sum_{j=1}^{[n/(3\log n)]} \left(N_i \big| K_{N_i}^{\psi}(\tau_n(x)) \big| \right)^{1/2} d\mu(x) \geq c_8 \frac{n}{\log n}, \end{split}$$

which completes the proof of Lemma 5.

5. Proofs of the main results

PROOF OF THEOREM 1. Let a be an arbitrary atom with support I and $\mu(I) = p^{-N}$. We may assume that $I = I_N$. It is easy to see that $\sigma_n(a) = 0$ if $n \leq p^N$. Therefore we can suppose that $n > p^N$.

From Lemma 3 and (2) we write

$$\sigma_n^{\chi} a(x) = \int_{G_n} a(t) K_n^{\chi}(x-t) d\mu(t) = \int_{I_N} a(t) K_n^{\chi}(x-t) d\mu(t)$$

$$= \frac{1}{n} \sum_{j=N+1}^{A-1} p^{j} \sum_{l=1}^{p-1} \int_{I_{N}} a(t) r_{j}^{l}(x-t) K_{p^{j}}^{\psi}(\tau_{j}(x-t)) d\mu(t)$$

$$+ \frac{p^{A}}{n} \sum_{l=1}^{n_{A}-1} \int_{I_{N}} a(t) r_{j}^{l}(x-t) K_{p^{A}}^{\psi}(\tau_{A}(x-t)) d\mu(t)$$

$$+ \frac{1}{n} \int_{I_{N}} a(t) r_{A}^{n_{A}}(x-t) n^{(A-1)} K_{n^{(A-1)}}^{\psi}(\tau_{A}(x-t)) d\mu(t)$$

$$= \sigma_{n}^{1,\chi} a(x) + \sigma_{n}^{2,\chi} a(x) + \sigma_{n}^{3,\chi} a(x). \tag{8}$$

Since $|a| \le cp^{N/\alpha}$, we have

$$\left|\sigma_n^{1,\chi} a(x) + \sigma_n^{2,\chi} a(x)\right| \le \frac{cp^{N/\alpha}}{n} \sum_{j=N+1}^A p^j \int_{I_N} \left|K_{p^j}^{\psi}(\tau_j(x-t))\right| d\mu(t).$$
 (9)

Let

$$x \in I_N (x_0, \dots, x_m \neq 0, 0, \dots, 0, x_l \neq 0, 0, \dots, 0)$$

for some
$$m = -1, 0, \dots, l-1, l = 0, \dots, N-1$$
.

Then using Lemma 2 $K_{p^{j}}^{\psi}\left(\tau_{j}\left(x-t\right)\right)\neq0$ implies that

$$t \in I_i(0, \dots, 0, x_N, \dots, x_{i-1}), \quad m = l, \ x_0 = \dots = x_{m-1} = 0.$$

Consequently we can write

$$\left|\sigma_{n}^{1,\chi}a(x) + \sigma_{n}^{2,\chi}a(x)\right| \leq \frac{cp^{N/\alpha}}{p^{A}} \sum_{j=N+1}^{A} p^{j} \frac{p^{j-l}}{p^{j}} \mathbf{1}_{I_{N}(0,\dots,0,x_{l}\neq0,0,\dots,0)}(x)$$

$$\leq \frac{cp^{N/\alpha}}{p^{l}} \mathbf{1}_{I_{N}(0,\dots,0,x_{l}\neq0,0,\dots,0)}(x). \tag{10}$$

From Lemma 4 we have

$$\left|\sigma_{n}^{3,\chi}a(x)\right| \leq \frac{cp^{N/\alpha}}{p^{A}} \int_{I_{N}} \left(n - n_{A}p^{A}\right) \left|K_{n-n_{A}p^{A}}^{\psi}\left(\tau_{A}(x-t)\right)\right| d\mu(t)$$

$$\leq \frac{cp^{N/\alpha}}{p^{A}} \frac{p^{A}}{p^{m+l}} \leq \frac{cp^{N/\alpha}}{p^{m+l}}.$$
(11)

Combining (8)–(11) we get

$$\sigma^{*\chi} a(x) \le \frac{cp^{N/\alpha}}{p^l} \mathbf{1}_{I_N(0,\dots,0,x_l \ne 0,0,\dots,0)} (x) + \frac{cp^{N/\alpha}}{p^{m+l}}$$
 (12)

for

$$x \in I_N (x_0, \dots, x_m \neq 0, 0, \dots, 0, x_l \neq 0, 0, \dots, 0),$$

 $m = -1, 0, \dots, l-1, l = 0, \dots, N-1.$

Now we apply Lemma 1. We may suppose that $a \in L_{\infty}(G_p)$ is a 1/2-atom with respect to $I_N(n \in \mathbb{N})$. Denote

$$I_N^{m,l} := I_N (x_0, \dots, x_m \neq 0, 0, \dots, 0, x_l \neq 0, 0, \dots, 0),$$

 $m = -1, 0, \dots, l-1, l = 0, \dots, N-1.$

Then it is evident that

$$G_p \setminus I_N = \bigcup_{l=0}^{N-1} \bigcup_{m=-1}^{l-1} \bigcup_{x_0=0}^{p-1} \cdots \bigcup_{x_{m-1}=0}^{p-1} \bigcup_{x_m=1}^{p-1} \bigcup_{x_l=1}^{p-1} I_N^{m,l}.$$

Suppose that $\rho = cp^{\lambda}$ for some $\lambda \in \mathbb{N}$. Then from (10) we have

$$p^{\lambda/2}\mu\bigg\{x\in G_p\backslash I_N: \sup_n \left|\sigma_n^{1,\chi}a(x) + \sigma_n^{2,\chi}a(x)\right| > cp^\lambda\bigg\} = 0$$

for $\lambda > 2N - l$. Hence we can suppose that $\lambda \leq 2N - l$ and $x \in I_N$ $(0, \dots, x_l \neq 0, 0, \dots, 0)$ for some $l = 0, \dots, N - 1$. Now we get

$$p^{\lambda/2}\mu\left\{x\in G_p\backslash I_N: \sup_n\left|\sigma_n^{1,\chi}a(x) + \sigma_n^{2,\chi}a(x)\right| > p^{\lambda}\right\}$$

$$\leq cp^{\lambda/2}\sum_{l=0}^{2N-\lambda}\sum_{x=1}^{p-1}\frac{1}{p^N}\leq c\frac{N-\lambda/2}{p^{N-\lambda/2}}\leq c<\infty.$$

Using the estimation (11) we have

$$p^{\lambda/2}\mu\left\{x\in G_p\backslash I_N: \sup_n\left|\sigma_n^{3,\chi}a(x)\right|>cp^{\lambda}\right\}=0$$

for $\lambda > 2N-m-l$. Therefore we can suppose that $\lambda \leq 2N-m-l$. Then we obtain

$$\begin{split} p^{\lambda/2} \mu \left\{ x \in G_p \backslash I_N : \sup_n \left| \sigma_n^{3,\chi} a(x) \right| > c p^{\lambda} \right\} \\ & \leq c p^{\lambda/2} \sum_{l=0}^{N-1} \sum_{m=-1}^{l-1} \sum_{x_0=0}^{p-1} \dots \sum_{x_{m-1}=0}^{p-1} \sum_{x_m=1}^{p-1} \sum_{x_l=1}^{p-1} \mu \left\{ x \in I_N^{m,l} : \sup_n \left| \sigma_n^{3,\chi} a(x) \right| > c p^{\lambda} \right\} \\ & \leq c p^{\lambda/2} \left\{ \sum_{l=0}^{N-\lambda/2} \sum_{m=0}^{l} \frac{p^m}{p^N} + \sum_{l=N-\lambda/2}^{2N-\lambda} \sum_{m=0}^{2N-\lambda-l} \frac{p^m}{p^N} \right\} \leq c < \infty. \end{split}$$

Theorem 1 is proved.

PROOF OF THEOREM 2. Let $n \in \mathbb{P}$ and

$$f_n(x) := D_{n^{n+1}}^{\chi}(x) - D_{p^n}^{\chi}(x) = D_{p^{n+1}}^{\psi}(x) - D_{p^n}^{\psi}(x).$$

It is evident that

$$\widehat{f}_{n}^{\chi}\left(v\right) = \begin{cases} 1 & \text{if } v = p^{n}, \dots, p^{n+1} - 1, \\ 0 & \text{otherwise.} \end{cases}$$

Now we can write that

$$S_k^{\chi}(f_n; x) = \begin{cases} 0, & \text{if } k = 0, \dots, p^n, \\ D_k^{\chi}(x) - D_{p^n}^{\chi}(x), & \text{if } k = p^n + 1, \dots, p^{n+1} - 1, \\ f_n(x), & \text{if } k \ge p^{n+1}. \end{cases}$$
 (13)

We have

$$f_n^{*\chi}(x) = \sup_{k} \left| S_{p^k}^{\chi}(f_n; x) \right| = \left| f_n(x) \right|,$$

$$\| f_n \|_{H_{\alpha}} = \| f_n^* \|_{\alpha} = \| D_{p^n}^{\chi}(x) \|_{\alpha} = p^{n(1 - 1/\alpha)}.$$
(14)

Since

$$D_{k+p^{n}}^{\chi}(x) - D_{p^{n}}^{\chi}(x) = w_{p^{n}}(x) D_{k}^{\psi}(\tau_{n}(x)), \quad k = 1, 2, \dots, p^{n}$$

from (13) we obtain

$$\sigma^{*\chi} f_{n}(x) \geq \max_{1 \leq N \leq p^{n}} \left| \sigma_{p^{n}+N}^{\chi}(f_{n}; x) \right|$$

$$= \max_{1 \leq N \leq p^{n}} \frac{1}{p^{n}+N} \left| \sum_{k=p^{n}+1}^{p^{n}+N} S_{k}^{\chi}(f_{n}; x) \right|$$

$$\geq \frac{1}{2p^{n}} \max_{1 \leq N \leq p^{n}} \left| \sum_{k=p^{n}+1}^{p^{n}+N} (D_{k}^{\chi}(x) - D_{p^{n}}^{\chi}(x)) \right|$$

$$= \frac{1}{2p^{n}} \max_{1 \leq N \leq p^{n}} \left| \sum_{k=1}^{N} \left(D_{k+p^{n}}^{\chi}(x) - D_{p^{n}}^{\chi}(x) \right) \right|$$

$$= \frac{1}{2p^{n}} \max_{1 \leq N \leq p^{n}} \left| \sum_{k=1}^{N} D_{k}^{\psi}(\tau_{n}(x)) \right|.$$

From Lemma 5 we get

$$\frac{\|\sigma^{*\chi} f_n\|_{1/2}}{\|f_n\|_{1/2}} \ge \frac{1}{2p^n p^{-n}} \left(\int_{I^d} \max_{1 \le N \le 2^n} \left(N |K_N(x)| \right)^{1/2} d\mu(x) \right)^2 \\
\ge c \left(\frac{n+1}{\log(n+2)} \right)^2 \to \infty \text{ as } n \to \infty.$$
(15)

Combining (14) and (15) we complete the proof of Theorem 2.

References

- J. Fine, Cesàro summability of Walsh-Fourier series, Proc. Nat. Acad. Sci. USA 41 (1955), 558-591.
- [2] N. J. Fujii, Cesàro summability of Walsh–Fourier series, Proc. Amer. Math. Soc. 77 (1979), 111–116.
- [3] G. GÁT, On (C, 1) summability of integrable function with respect to the Walsh-Kaczmarz system, Studia Math. 130 (1998), 135–148.
- [4] G. GÁT and K. NAGY, Cesàro summability of the character system of the p-series field in the Kaczmarz rearrangement, Analysis. Math. 28 (2002), 1–23.
- [5] F. SCHIPP, Certain rearrangements of series in the Walsh series, Mat. Zametki 18 (1975), 193–201.
- [6] P. Simon, Investigation with respect to the Vilenkin system, Ann. Univ. Sci. Sect. Math. (Budapest) 27 (1985), 87–101.
- [7] P. SIMON, Cesàro summability with respect to two-parameter Walsh system, Monatsh. Math. 131 (2000), 321–334.
- [8] P. Simon, On the Cesàro summability with respect to the Walsh–Kaczmarz system, J. Approx. Theory 106 (2000), 249–261.
- [9] F. Weisz, Martingale Hardy spaces and their applications in Fourier analysis, Springer, Berlin – Heidelberg – New York, 1994.
- [10] F. Weisz, Cesàro summability of one and two-dimensional Walsh–Fourier series, Anal. Math. 22 (1996), 229–242.
- [11] F. Weisz, Convergence of double Walsh–Fourier series and Hardy spaces, *Approx. Theory & its Appl.* 17,2 (2001), 32–44.
- [12] F. Weisz, Summability of multi-dimensional Fourier series and Hardy spaces, Kluwer Academic, Dordrecht, 2002.
- [13] F. Weisz, θ-summability of Fourier series, Acta Math. Hungar. 103(1-2) (2004), 139-176.

USHANGI GOGINAVA
DEPARTMENT OF MECHANICS AND MATHEMATICS
TBILISI STATE UNIVERSITY
CHAVCHAVADZE STR. 1
TBILISI 0128
GEORGIA

E-mail: z_goginava@hotmail.com

(Received September 19, 2005; revised February 22, 2006)