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The maximal operator of the Fejér means of the character
system of the p-series field in the Kaczmarz rearrangement

By USHANGI GOGINAVA (Thilisi)

Abstract. The main aim of this paper is to prove that the maximal operator
o™X of the Fejér means of the character system of the p-series field in the Kaczmarz
rearrangement is bounded from the Hardy space H, /2 to the space weak-L, /2 and is not
bounded from the Hardy space Hy/2(Gp) to the space Ly ,2(Gp).

1. Introduction

The first result with respect to the a.e. convergence of the Walsh—Fejér means
onf is due to FINE [1]. Later, SCHIPP [5] showed that the maximal operator
o*f is of weak type (1,1), from which the a.e. convergence follows by standard
argument. Schipp’s result implies by interpolation also the boundedness of o* :
L, — Ly (1 <a<o0). This fails to hold for & = 1 but Fuin [2] proved that
o* is bounded from the dyadic Hardy space H; to the space L; (see also SIMON
[6]). Fujii’s theorem was extened by WEIsz [10]. Namely, he proved that the
maximal operator of the Fejér means of the one-dimensional Walsh—Fourier series
is bounded from the martingale Hardy space H,(I) to the space L, (I) for a >
1/2. SIMON [7] gave a counterexample, which shows that this boundedness does
not hold for 0 < a < 1/2. In the endpoint case a = 1/2 WEISz [13] proved that
o* is bounded from the Hardy space H;/5(I) to the space weak-Ly /o(1).

If the Walsh system is taken in the Kaczmarz ordening, the analogue of the
statement of SCHIPP [5] is due to GAT [3]. Moreover he proved an (Hy, L1)-type
estimation. Gét’s result was extended to the Hardy space by SiMON [8], who
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proved that o*is of type (Hq,Ly) for a > 1/2. WEIsz [13] showed that in the
endpoint case o« = 1/2 the maximal operator is of weak type (Hl/g, Ll/z).

GAT and NAGY [4] proved the a.e. convergence oXf — f (n — oo) for an
integrable function f € Ly (G,), where o, f is the Fejér means of the function f
with respect to the character system in the Kaczmarz rearrangement. They also
proved that the maximal operator o*X is of type (a,«) for all 1 < a < 400, of
weak type (1,1) and [lo* f]l, < |||l ,-

The main aim of this paper is to generalize the results of GAT and NAGY [4]
and we prove that the maximal operator o*X of the Fejér means of the character
system of the p-series field in the Kaczmarz rearrangement is bounded from the
Hardy space H;/5(G)) to the space weak-Lq/5(Gp) and is not bounded from the
Hardy space Hy,5(G)) to the space Ly /o (Gp).

2. Definitions and notation

Let P denote the set of positive integers, N := P U {0}. Let 2 < p € N
and denote by Z,, the pth cyclic group, that is, Z, can be represented by the set
{0,1,...,p — 1}, where the group operation is mod p addition and every subset
is open. The Haar measure on Z, is given so that

uuun:§ (j € 2).

The group operation on G, is coordinate-wise addition, the normalized Haar
measure p is the product measure. The topology on G, is the product topology,
a base for the neighborhoods of G, can be given thus:

Io(z) =Gy, In(x):={y€Gp:y= (o, -, Tn1,Yn,Ynt1,---)}s
(x € Gp, n€eN).
Let 0 = (0:¢ € N) € G, denote the null element of G,, I,, :== I,(0) (n € N). Let
A:={I,(z) 2 € Gp, n e N}.

The elements of A are intervals of G,. Set e; :== (0,...,0,1,0,...) € G}, the ith
coordinate of which is 1, the rest are zeros.
The norm (or quasinorm) of the space L, (G,) is defined by

1/a
nmw=(lgﬂ@%mw> (0 < a < +o00).
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Let T (p) denote the character group of G,,. We arrange the elements of I'(p)
as follows: For k € N and = € G, denote by rj the k-th generalized Rademacher

function:
2mixy,

ri (z) := exp <
Let n € N. Then

> (i:=v-1, z € Gy, ke€N).

o0
n:Znipi, where 0 < n; <p (ni, 1 € N),
i=0
where n is expressed in the number system with base p. Put

In| :=max(j € N:nj #0) ie., pl"l <n<phi+i

Now we define the sequence of functions 9 := (¢, : n € N) by

o0

Yn(x) = H (re(z))™  (x € Gp, n € N).

k=0
We remark that I'(p) = {¢,, : n € N} is a complete orthogonal system with
respect to the normalized Haar measure on G,,.
The character group I'(p) can be given in the Kaczmarz rearrangement as
follows: T'(p) = {xn : n € N}, where

In|—1

X (@) =7 (2) I (nj—1—i@)™ (@€ Gy, neP),
k=0

Xo(x) =1 (z€Gp).
Let the transformation 74 : G, — G, be defined as follows:
TA(':L') = (folaxA727 oy Loy LA LA4Ly - - - )

The transformation is measure-preserving and 74 (74(x)) = x. By the definition
of 74, we have

Xn(‘r) - ,r,l";\‘n\ (m)d)n—mmp” (T\n|(x)) (7’L € Na S Gp)

For a function f in Ly (G )the Fourier coefficients, the partial sums of Fourier
series, the Dirichlet kernels, the Fejér means and the Fejér kernels are defined as

follows:
~ n—1 . n—1
P= [ fa Si00)= 3 PEm@), D= 3w
Gp k=0 k=0
o1 = 2SS, KL= YDl ),

k=1 k=1
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where v, = ¥, or Xn.
Let

and
(oo}
n(®) = Znipl (n,s € N).

By a simple calculation we get

[n| ne—1

R =D D K e e+ D2 (M
s=0 [=0

The p™th Dirichlet kernels have a closed form:

{p” ifxel,,

where x € G,,. 2
0 ifad¢l,, P @)

We define the maximal operator

o fi=suplolf| (f € L1(Gp).
nelP

The space weak-L,, (G},) consists of all measurable functions f for which
1 hcar ) 3= S0 p1e (1] > )/ < o0,
p

The o-algebra generated by the intervals I, of length p~* will be denoted by
Fy, (k‘ S N)

Denote by f = (™), n € N) the one-parameter martingale with respect to
(Fh, n € N) (for details see, e.g., [9]-[12]) The maximal function of a martingale
f is defined by

= sup |f™].
neN

In case f € L1 (G,), the maximal function can also be given by

(@) = sup s / ), @<,

n>1 M

For 0 < o < oo the Hardy martingale space H,(G,) consists all martingales
for which

[ fllere == 1"l < oo
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If f € L1(G)) then it is easy to show that the sequence (Sp»(f) : n € N) is
a martingale. If f is a martingale, that is f = (f(®, f(,...), then the Fourier
coefficients must be defined in a slightly different way:

The Fourier coefficients of f € L;(G,) are the same as those of the martingale
(Spn(f) : n € N) obtained from f.

A bounded measurable function a is an a-atom, if there exists an interval I,
such that

a) [;adp=0;
b) [lallee < p(1)=1;
¢) suppa C I.

3. Formulation of the main results

Theorem 1. The maximal operator o*X is bounded from the Hardy space
H,y5(Gp) to the space weak-Ly /5(G)p).

Theorem 2. The maximal operator c*X is not bounded from the Hardy
space Hy5(Gyp) to the space Ly/o (Gyp).

4. Auxiliary propositions

We shall need the following lemmas (see [4], [13]).

Lemma 1 (Weisz). Suppose that an operator V' is sublinear, and for some
O<axl
sup p® p{z € C\I : [Va(z)| > p} < cq < o0
p>0

for every a-atom a, where I denotes the support of the atom. If V is bounded
from L, to L, for a fixed 1 < ay < 0o, then

||Vf||weak-La(Gp) < Ca”fHHa-
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Lemma 2 (Géat, Nagy). Suppose that s,b,n € N and x € I\Ip11. If
s <b<|n|, then

|K;p<s+1>+lps)ps (z)] <

while if b < s < |n|, then

0 jf$—$b€b¢fs,
Wyt (2)p* T~ if @ — ey € .

Y
K’n(s+1)+lp3,p3 (.’ﬂ)

Lemma 3 (G4t, Nagy). Let AeN and n := nApA+ na_1pA 1. +nepP.
Then

A1 p—1 ‘ ‘ A—1 ‘ p—1 1—-1

@) =143 S @KL (n(@) + S DL @)Y Y rh(a)
=0 i=1 =0 =1 i=0
na—1

0 Y @)K (ra(@)+ 5t (@) (n—nap KL (ra(x)

na—1 na—1j—1
F -t S @D @ S S @)D
=0 j=1 1i=0

Corollary 1. We have

sup/G | KX (z)| dp(z) < +o0.

n
p

Lemma 4. Let n < pA*t', A> N andz € Iy (zq,...,%Tm # 0,0,...,0,2; #
0,0,...,0), m=-1,0,...,0—1,1=0,...,N — 1. Then

A

w p
[ i ae - ) du) < 2
In p
where

IN<$0,...,$m7&0,0,...,0,3?[ 7&0,0,,0)
=1In5(0,...,0,2; #0,0,...,0), form=—1.

PROOF. It is evident that for « € Iy (xg,...,2m #0,0,...,0,2,#0,0,...,0)
we have

A A— pj .
/\D%(w%)ldu(t)gr:Z/ | DY, (ra(x — 1)) ]du(t) < ¢ Z—As—l. (3)
j=0 "IN =P P

In
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From Lemma 2 we obtain that K (ta(x —t))=0for s> A—m.

n(s+D) 4ips ps
Hence we can suppose that s < A —m.

Using Lemma 2 K (ta(z — 1)) # 0 implies that

n(s+1) 4ips ps
1) telIn(0,...,0,zn,...,24-1) f0<s<A—m;

2) tEIA(O7...,07$N,...,$q,1, tq#l‘q,l‘quh...,{)SA,l)
fA-N<s<A-1I

3) tEIA(O,...,O,tN,...,tA_s_l,xA_s,...,xq_l, tq#xq,xq+1,...,x,4_1)
ifl<s<A-—N;

4) teIa(0,...,0,tn,. .. tg—1, tq # Tq, Tqi1s-- - TA—sy- -, TA1)
ifl<s<A-N;

consequently, from (1) and (3) we can write

/1 n K (ra(z — )| dpt)

A—m ng—1
<22 [ K (ale = )] )+ [ 1D = o) autt
s=0 Iy
A-m o4 A A-l A s+A—q
sc £ At Z e A
s=0 p s=A—N gqg=N p
A-N i ps+A—qu—s—N +A*N "S ps+A—qpq—N
" pt p?
s=0 g=A-s s=0 ¢g=N

A A A A-N ¢ e A
{p P P ZP(A$N+1)}<p~

Lemma 4 is proved. O
Lemma 5. Let n € N. Then

n+1

/G max (N‘K}’/\’,(Tn(x))Dl/Q du(z) > cm.

1<N<2n
p

PROOF. It is evident that

/ DY () DY (7 () dpu(x / DY () D} (x)dp(x) = min{i, j}.
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Then we can write

N 2 N N
JRPILANE) =33 [ B (rufe)) DY (rala) dlz)
Gp j=1 j=1 i=1 Gyp
N N
= Z me{z j} > coN3. (4)
j=1 i=1
It is well-known that
/G ‘K}/\’, (Tn(w))‘du(x) <e¢p<oo, N=1,2,...,p", n=0,1,.... (5)
Denote
Ay, == {x € Gy ’K;\p, (T (2)) | < CONZ}
¢ 2cq1
and
By, = GP\ANH
where
p" ) n
N=2_ =19 > 2.
PEAN [3log2 n} "

By (5) and from the fact that |K}<’,1 (tn(z))| = O(N;) we can write

coN?® < /G (Ni’K%i(Tn(a:))Dzdu(x): /A .<Ni|K}@i(Tn(x))]>2du(x)

C1

+ [ (WIS @) duta) < 2N [ K () (o)

Denote
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From the definition of the set By, we obtain

%Niu (By,) < /BN. | (T (@) |dp() g/G K2 (7 ()] dp(z) < 1,

P

hence

Consequently we can write
v 1/2
/G s, (NG m(@)]) do)

[n/(3logn)] »
- Z / REES N|K}$(rn(z))|) dp(x)

[n/(d logn)

2D (RS a0 o) 2

logn’

which completes the proof of Lemma 5. (]

5. Proofs of the main results

PROOF OF THEOREM 1. Let a be an arbitrary atom with support I and
w(I) = p~N. We may assume that I = Iy. It is easy to see that o, (a) = 0 if
n < p~. Therefore we can suppose that n > p~.

From Lemma 3 and (2) we write

rta) = [ alOKN@—0dut) = | a3y = aut)

P
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Z Z / (2 = K (7 = D)du(?)

j N+1
A na—1
2 e~ 0K ate — 0)duto)
4L / a(t)ry (z — A VK, (Taz — t)du(tt)
n In
= o Xa(x) + o2 Xa(x) + o> Xa(z). (8)

Since |a| < ¢p™/@, we have

|071L’Xa(33) + o2Xa(x)

Zp’/l (e = )dud). ()

j=N+1

Let
x€In(xo,. ., xm #0,0,...,0,2; #0,0,...,0)

for some m=-1,0,...,0—1,1=0,...,N — 1.
Then using Lemma 2 Kg’j (15 ( —t)) # 0 implies that
tGIj(O,...,O,SUN,..qZCj,l), m:l, Tog="-+=2xm_1 =0.

Consequently we can write

|O’711’X0,($) + UZ’Xa(x)| S Z ens0,21£0,0,...,0) ()
j=N+1
N/a
cp
< leN( - 0,21£0,0,...,0) (T). (10)

From Lemma 4 we have

cepN/
lo3%a ()| < L /1 (n=nap™) |K},, 0 (rala = ) du(®)

p
epN/e pA epN/e
< H= + (11)
p pm pm

Combining (8)—(11) we get

CpN/a N/«

cp
oXa(r) < T11N(07...,0@17&0,07...,0) (7) + ot

(12)
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for
x € In (20 o xm #0,0,...,0,2;#0,0,...,0),

m=-1,0,...,01—1,1=0,...,N — 1.

Now we apply Lemma 1. We may suppose that a € Lo(Gp) is a 1/2-atom
with respect to Iy(n € N). Denote

I = In (o, .., T # 0,0,...,0,2; # 0,0, ...,0),
m=-1,0,...,01—1,1=0,...,N — 1.

Then it is evident that
N-1 [1-1 p-1 -1 p-—1

aG\v=J U U~ U 1 U

1=0 m=-—1 zo=0 Tym—1=0 zp=1 ;=1

Suppose that p = cp* for some A € N. Then from (10) we have
p)‘/Qu{x € G\ : sup |opXa(z) + ai’xa(:c)| > cp)‘} =0

for A > 2N —[. Hence we can suppose that A < 2N — [l and z € Iy (0,...,2; #
0,0,...,0) for some I =0,...,N — 1. Now we get

M 2u {x € Gp\In :sup |opXa(z) + onXa(x)| > p)‘}

Using the estimation (11) we have
P2 {x € Gp\In :sup|opXa(z)| > cp’\} =0
n

for A > 2N — m — [. Therefore we can suppose that A < 2N —m — [. Then we
obtain

P2 {x € G\In :sup|opXa(z)| > cp>‘}
n

gcp’\/QZ Z "

=0 m=—120=0 z,,—1=0 z,,=1x;=1
N-)/2 1 o 2N-A 2NA-l
Scp/\/2 E — Tt E -~ < c < oo.
=0 m=0 p I=N-X/2 m=0 p

Theorem 1 is proved. O
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PRrROOF OF THEOREM 2. Let n € P and

fn (@) = D;(n+1 (z) - D;(" (z) = Dwnﬂ (z) - D;)p" ().

P

It is evident that

-~ 1 ifo=p",...,p" -1,
-

0 otherwise.

Now we can write that

0, ifk=0,...p"
SX(faix) = DX(x) — DX (), ifk=p"+1,...,p"H —1, (13)
fu(z), if k> pntl.
We have
fiX(x) = sup |S% (fr; )| = [ fal(2)],
| Fallzr. = [ fall, = I1D3 @], = p" /). (14)
Since
Dy, (x) = Dy (2) = wpn (2) DY (70 (2)), b =1,2,...,p",

from (13) we obtain

o™ fn (z) > max ‘a;‘nJrN(fn;x)\

1<N<p
1 p"+N
= max Z SX(fn; @)
ISNSprpt N | S
1 p"+N
el X(7) _ DX
> o B, | 3 (D)= Do)
Zpn

1 N

= max Z (‘Dl)c(—i-p" (z) — D;fn (m))

2p™ 1<N<pn
L

1 N
= x > Dy (r <x>)‘.

2pn 1<r?va<pn
-7 k=1
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From Lemma 5 we get

I iz, 1 (/ max <NKN<x>|>”2du<w>)2

an||1/2 - 2ptp™ 4 1<N<2n
2
1
>c L — 00 as n — o0. (15)
log(n + 2)
Combining (14) and (15) we complete the proof of Theorem 2. O
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