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An order result for the exponential divisor function

By LÁSZLÓ TÓTH (Pécs)

Abstract. The integer d =
Q

s

i=1 p
bi
i

is called an exponential divisor of n =Q
s

i=1 p
ai
i

> 1 if bi | ai for every i ∈ {1, 2, . . . , s}. Let τ (e)(n) denote the number of

exponential divisors of n, where τ (e)(1) = 1 by convention. The aim of the present

paper is to establish an asymptotic formula with remainder term for the r-th power

of the function τ (e), where r ≥ 1 is an integer. This improves an earlier result of

M. V. Subbarao [5].

1. Introduction

Let n > 1 be an integer of canonical form n =
∏s

i=1 pai

i . The integer d

is called an exponential divisor of n if d =
∏s

i=1 pbi

i , where bi | ai for every

i ∈ {1, 2, . . . , s}, notation: d |e n. By convention 1 |e 1.

Let τ (e)(n) denote the number of exponential divisors of n. The function τ (e)

is called the exponential divisor function. J. Wu [7] showed, improving an earlier

result of M. V. Subbarao [5], that
∑

n≤x

τ (e)(n) = Ax + Bx1/2 + O(x2/9 log x), (1)

where

A :=
∏

p

(

1 +

∞∑

a=2

τ(a) − τ(a − 1)

pa

)

,
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B :=
∏

p

(

1 +

∞∑

a=5

τ(a) − τ(a − 1) − τ(a − 2) + τ(a − 3)

pa/2

)

,

τ denoting the usual divisor function. The O-term can further be improved.

Other properties of the function τ (e), compared with those of the divisor

function τ were investigated in papers [1], [2], [4], [5].

M. V. Subbarao [5] remarked that for every positive integer r,
∑

n≤x

(τ (e)(n))r ∼ Arx, (2)

where

Ar :=
∏

p

(

1 +

∞∑

a=2

(τ(a))r − (τ(a − 1))r

pa

)

. (3)

It is the aim of the present paper to establish the following more precise

asymptotic formula for the r-th power of the function τ (e), where r ≥ 1 is an

integer:
∑

n≤x

(τ (e)(n))r = Arx + x1/2P2r−2(log x) + O(xur+ε), (4)

for every ε > 0, where Ar is given by (3), P2r−2 is a polynomial of degree 2r − 2

and ur := 2r+1−1
2r+2+1 .

Note that a similar formula is known for the divisor function τ , namely for

any integer r ≥ 2,
∑

n≤x

(τ(n))r = xQ2r−1(log x) + O(xvr+ε), (5)

valid for every ε > 0, where vr := 2r−1
2r+2 and Q2r−1 is a polynomial of degree

2r − 1, this goes back to the work of S. Ramanujan, cf. [8].

Formula (4) is a direct consequence of a simple general result, given in Sec-

tion 2 as Theorem, regarding certain multiplicative functions f such that f(n)

depends only on the ℓ-full kernel of n, where ℓ ≥ 2 is a fixed integer.

We also consider a generalization of the exponential divisor function, see

Section 4.

Let φ(e)(n) denote the number of divisors d of n such that d and n have no

common exponential divisors. The function φ(e) is multiplicative and for every

prime power pa (a ≥ 1), φ(e)(pa) = φ(a), where φ is the Euler function.

As another consequence of our Theorem we obtain for every integer r ≥ 1

that
∑

n≤x

(φ(e)(n))r = Brx + x1/3R2r−2(log x) + O(xtr+ε), (6)



An order result for the exponential divisor function 167

for every ε > 0, where tr := 2r+1
−1

3·2r+1 , R2r−2 is a polynomial of degree 2r − 2 and

Br :=
∏

p

(

1 +
∞∑

a=3

(φ(a))r − (φ(a − 1))r

pa

)

. (7)

In the case r = 1 formula (6) was proved in [6] with a better error term.

Our error terms depend on estimates for

D(1, ℓ, ℓ, . . . , ℓ
︸ ︷︷ ︸

k−1

; x) :=
∑

abℓ
1
bℓ
2
·····bℓ

k−1
≤x

1,

where k, ℓ ≥ 2 are fixed and a, b1, b2, . . . , bk−1 ≥ 1 are integers.

2. A general result

We prove the following general result.

Theorem. Let f be a complex valued multiplicative arithmetic function

such that

a) f(p) = f(p2) = · · · = f(pℓ−1) = 1, f(pℓ) = f(pℓ+1) = k for every prime p,

where ℓ, k ≥ 2 are fixed integers and

b) there exist constants C, m > 0 such that |f(pa)| ≤ Cam for every prime p

and every a ≥ ℓ + 2.

Then for s ∈ C

i) F (s) :=
∞∑

n=1

f(n)

ns
= ζ(s)ζk−1(ℓs)V (s), Re s > 1,

where the Dirichlet series V (s) :=
∑∞

n=1
v(n)
ns is absolutely convergent for

Re s > 1
ℓ+2 ,

ii)
∑

n≤x

f(n) = Cfx + x1/ℓPf,k−2(log x) + O(xuk,ℓ+ε),

for every ε > 0, where Pf,k−2 is a polynomial of degree k − 2, uk,ℓ := 2k−1
3+(2k−1)ℓ

and

Cf :=
∏

p

(

1 +

∞∑

a=ℓ

f(pa) − f(pa−1)

pa

)

.

iii) The error term can be improved for certain values of k and ℓ. For example

in the case k = 3, ℓ = 2 it is O(x8/25 log3 x).



168 László Tóth

3. Proofs

The proof of the Theorem is based on the following lemma. For an integer

ℓ ≥ 1 let µℓ(n) = µ(m) or 0, according as n = mℓ or not, where µ is the Möbius

function. Note that function µℓ is multiplicative and for any prime power pa

(a ≥ 1),

µℓ(p
a) =

{

−1, if a = ℓ,

0, otherwise.
(8)

Furthermore, for an integer h ≥ 1 let the function µ
(h)
ℓ be defined in terms of the

Dirichlet convolution by

µ
(h)
ℓ = µℓ ∗ µℓ ∗ · · · ∗ µℓ

︸ ︷︷ ︸

h

.

The function µ
(h)
ℓ is also multiplicative.

Lemma. For any integers h, ℓ ≥ 1 and any prime power pa (a ≥ 1),

µ
(h)
ℓ (pa) =

{

(−1)j
(
h
j

)
, if a = jℓ, 1 ≤ j ≤ h,

0, otherwise.
(9)

Proof of the Lemma. By induction on h. For h = 1 this follows from

(8). We suppose that formula (9) is valid for h and prove it for h + 1. Using the

relation µ
(h+1)
ℓ = µ

(h)
ℓ ∗ µℓ and (8) we obtain for a < ℓ,

µh+1
ℓ (pa) = µ

(h)
ℓ (pa) = 0

and for a ≥ ℓ,

µ
(h+1)
ℓ (pa) = µ

(h)
ℓ (pa) − µh

ℓ (pa−ℓ)

=







µ
(h)
ℓ (pℓ) − 1 = −

(
h
1

)
− 1 = −

(
h+1

1

)
, if a = ℓ,

(−1)j
(
h
j

)
− (−1)j−1

(
h

j−1

)
= (−1)j

(
h+1

j

)
, if a = ℓj, 2 ≤ j ≤ h,

−µ
(h)
ℓ (phℓ) = −(−1)h

(
h
h

)
= (−1)h+1

(
h+1
h+1

)
, if a = (h + 1)ℓ,

0, otherwise,

which proves the Lemma. �



An order result for the exponential divisor function 169

Proof of the Theorem. i) We can formally obtain the desired expression

by taking v = f ∗µ∗µ
(k−1)
ℓ . Here v is multiplicative and easy computations show

that v(pa) = 0 for any 1 ≤ a ≤ ℓ + 1 and for a ≥ ℓ + 2,

v(pa) =
∑

j≥0

(−1)j

(
k − 1

j

)
(
f(pa−jℓ) − f(pa−jℓ−1)

)
,

where, according to the Lemma, the number of nonzero terms is at most k.

Let Mk = max0≤j≤k−1

(
k−1

j

)
. We obtain that for every prime p and every

a ≥ ℓ + 2,

|v(pa)| ≤ 2kMkCam.

For every ε > 0, am ≤ 2aε for sufficiently large a, a ≥ a0 say, where a0 ≥ ℓ + 2.

For Re s > 1/(ℓ + 2) choose ε > 0 such that Re s − ε > 1/(ℓ + 2). Then

∑

p

∑

a≥a0

|v(pa)|

pas
≤ 2kMkC

∑

p

∑

a≥a0

2aε

pas
≤ 2kMkC

∑

p

∑

a≥a0

1

pa(s−ε)

= 2kMkC
∑

p

1

pa0(s−ε)

(

1 −
1

ps−ε

)−1

≤ 2kMkC

(

1 −
1

21/(ℓ+2)

)−1∑

p

1

pa0(s−ε)
,

and obtain that V (s) is absolutely convergent for Re s > 1/(ℓ + 2).

Note that v(pℓ+2) = f(pℓ+2) − k for every ℓ ≥ 3, k ≥ 2 and for ℓ = 2, k ≥ 2

it is v(p4) = f(p4) −
(
k+1
2

)
.

ii) Consider the k-dimensional generalized divisor function

d(1, ℓ, ℓ, . . . , ℓ
︸ ︷︷ ︸

k−1

; n) =
∑

abℓ
1
bℓ
2
...bℓ

k−1
=n

1.

According to i),

f(n) =
∑

ab=n

d(1, ℓ, ℓ, . . . , ℓ
︸ ︷︷ ︸

k−1

; a)v(b).

One has, see [3], Ch. 6,

∑

n≤x

d(1, ℓ, ℓ, . . . , ℓ
︸ ︷︷ ︸

k−1

; n)

= K1x + x1/ℓ
(

K2 logk−2 x + K3 logk−3 x + · · · + Kk−1 log x + Kk

)

+ O(xuk,ℓ +ε), (10)
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for every ε > 0, where uk,ℓ = 2k−1
3+(2k−1)ℓ (see [3], Theorem 6.10), K1, K2, . . . ,

Kk−1, Kk are absolute constants depending on k and ℓ and K1 = ζk−1(ℓ). For

example for k = 2 one has K2 = ζ(1
ℓ ), and for k = 3: K2 = 1

ℓ ζ(1
ℓ ), K3 =

(2γ − 1)ζ(1
ℓ ) + 1

ℓ ζ′(1
ℓ ), where γ is Euler’s constant.

We obtain

∑

n≤x

f(n) =
∑

ab≤x

d(1, ℓ, ℓ, . . . , ℓ
︸ ︷︷ ︸

k−1

; a)v(b) =
∑

b≤x

v(b)
∑

a≤x/b

d(1, ℓ, ℓ, . . . , ℓ
︸ ︷︷ ︸

k−1

; a)

=
∑

b≤x

v(b)
(

K1(x/b) + (x/b)1/ℓ
(
K2 logk−2(x/b) + K3 logk−3(x/b) + . . .

+ Kk−1 log(x/b) + Kk

)
+ O((x/b)u+ε)

)

,

and obtain the desired result by partial summation and by noting that uk,ℓ >

1/(ℓ + 2).

iii) For k = 3, ℓ = 2 the errror term of (10) is O(x8/25 log3 x), cf. [3], Theo-

rem 6.4. �

4. Applications

1. In case f(n) = (τ (e)(n))r , where r ≥ 1 is an integer, we obtain formula

(4) applying the Theorem for ℓ = 2, k = 2r.

2. For k ≥ 2 consider the multiplicative function f(n) = τ
(e)
k (n), where

for every prime power pa (a ≥ 1), τ
(e)
k (pa) := τk(a) representing the number of

ordered k-tuples of positive integers (x1, . . . , xk) such that a = x1 · . . . · xk. Here

τk(pb) =
(
b+k−1

k−1

)
for every prime power pb (b ≥ 1). In case k = 2, τ

(e)
2 (n) =

τ (e)(n).

Taking ℓ = 2 and k := k we obtain that v(p4) = τk(4) − k(k + 1)/2 = 0 and

V (s) is absolutely convergent for Re s > 1
5 (and not only for Re s > 1

4 given by

the Theorem),

∑

n≤x

τ
(e)
k (n) = Ckx + x1/2Sk−2(log x) + O(xwk+ε), (11)

for every ε > 0, where Sk−2 is a polynomial of degree k − 2, wk := 2k−1
4k+1 and

Ck =
∏

p

(

1 +

∞∑

a=2

τk(a) − τk(a − 1)

pa

)

.



An order result for the exponential divisor function 171

For k = 3 the error term of (11) can be improved into O(x8/25 log3 x).

A similar formula can be obtained for
∑

n≤x(τ
(e)
k (n))r .

3. For the function φ(e)(n) defined in the Introduction we obtain formula (6)

by choosing ℓ = 3, k = 2r.
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