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An order result for the exponential divisor function

By LASZLO TOTH (Pécs)

Abstract. The integer d = H?zlpi.” is called an exponential divisor of n =
[T, p* > 1if b; | a; for every i € {1,2,...,s}. Let 7(¢)(n) denote the number of
exponential divisors of n, where T(e)(l) = 1 by convention. The aim of the present

paper is to establish an asymptotic formula with remainder term for the r-th power
of the function 7(¥), where r > 1 is an integer. This improves an earlier result of
M. V. SUBBARAO [5].

1. Introduction

Let n > 1 be an integer of canonical form n = []_; p{". The integer d
is called an ezponential divisor of n if d = [[_; pli’", where b; | a; for every
1€{1,2,...,s}, notation: d | n. By convention 1 |, 1.

Let 7(¢)(n) denote the number of exponential divisors of n. The function 7(¢)
is called the exponential divisor function. J. WU [7] showed, improving an earlier
result of M. V. SUBBARAO [5], that

Z 7€) (n) = Az + Bz'/? + O(2*°log z), (1)

n<z

where
a=T] 1+ZT<®;&<G—1> ,
P a=2 p
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7)) —7(a—1)—7(a —2 T(a—3
B:_H<1+;() =t -rla 2t >>7

p

7 denoting the usual divisor function. The O-term can further be improved.
Other properties of the function 7(¢), compared with those of the divisor
function 7 were investigated in papers [1], [2], [4], [5].
M. V. SUBBARAO [5] remarked that for every positive integer r,
> () ~ A, @)
n<zx

where

4, =11 (1 i _p(:(a = Uy) : 3)

It is the aim of the present paper to establish the following more precise
asymptotic formula for the r-th power of the function 7(¢), where r > 1 is an
integer:

S () = Az + 22 Py _p(logz) + Oz ), (4)
n<w

for every € > 0, where A, is given by (3), Par_o is a polynomial of degree 2" — 2
2rtl_q
PEEESE
Note that a similar formula is known for the divisor function 7, namely for

and u, :=

any integer r > 2,

> (7(n)" = 2Qar1(logx) + O(a"" ), ()
n<zx
valid for every € > 0, where v, = g:—;; and @Q2r_1 is a polynomial of degree

2" — 1, this goes back to the work of S. RAMANUJAN, cf. [8].

Formula (4) is a direct consequence of a simple general result, given in Sec-
tion 2 as Theorem, regarding certain multiplicative functions f such that f(n)
depends only on the ¢-full kernel of n, where ¢ > 2 is a fixed integer.

We also consider a generalization of the exponential divisor function, see
Section 4.

Let ¢(®)(n) denote the number of divisors d of n such that d and n have no
common exponential divisors. The function ¢(¢) is multiplicative and for every
prime power p® (a > 1), ¢(°)(p®) = ¢(a), where ¢ is the Euler function.

As another consequence of our Theorem we obtain for every integer r > 1
that

3 (09 0) = By + a3 Ry _s(logz) + O(at ), (6)

n<zx
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2;;;1 , Ror_o is a polynomial of degree 2" — 2 and

B, =] <1 .3 (é(a))" p(f(“ _ 1))’“) | -

In the case r = 1 formula (6) was proved in [6] with a better error term.

for every € > 0, where t, :=

Our error terms depend on estimates for

DAL, )= >,
k—1 ab{bg »»»»» bf; s
where k,¢ > 2 are fixed and a, by, ba,...,bg—1 > 1 are integers.

2. A general result

We prove the following general result.

Theorem. Let f be a complex valued multiplicative arithmetic function
such that

a) f(p) = f(*) = = f"") =1, f() = f@"") = k for every prime p,
where ¢, k > 2 are fixed integers and

b) there exist constants C, m > 0 such that |f(p®)| < Ca™ for every prime p
and every a > { + 2.

Then for s € C

i) Z

where the Dirichlet series V(s) :== Y > | ”7(1?) is absolutely convergent for
Res > 5%7

(5)CF L (Us)V (s), Res > 1,

ii) > f(n) = Cra+a'/ Py i_s(logx) + Oz +9),
n<z
for every € > 0, where Py j_o is a polynomial of degree k — 2, uy ¢ := %

and
C; = H <1 n Z f(*) _pj(pa_l)> '
P a={

iii) The error term can be improved for certain values of k and ¢. For example
in the case k = 3, £ = 2 it is O(z/?° log® z).
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3. Proofs

The proof of the Theorem is based on the following lemma. For an integer
¢ > 1let pg(n) = u(m) or 0, according as n = m* or not, where u is the Mobius
function. Note that function pu, is multiplicative and for any prime power p®
(a=1),

-1, ifa=2¢,
pe(p®) = 8
#") {O, otherwise. (®)

Furthermore, for an integer h > 1 let the function M;(gh) be defined in terms of the
Dirichlet convolution by

(h) _
[lp | = ek fle kK fug
~—_—

h

The function ,ugh) is also multiplicative.

Lemma. For any integers h,¢ > 1 and any prime power p® (a > 1),

9 () — {(—1)j ("), ifa=je, 1<j<h, o

0, otherwise.

PROOF OF THE LEMMA. By induction on h. For A = 1 this follows from

(8). We suppose that formula (9) is valid for h and prove it for h 4+ 1. Using the

relation uyﬁl) = uyl) * e and (8) we obtain for a < ¢,

a h’ a
Pt (p®) = 1™ (p*) = 0

and for a >/,

h a h a a—
w0 = 1 00 — i)

-1~ -1==(1), et

(=170 = (=171 (h) = (=7 ("F), ifa=t5, 2<j<h,
= () = == G) = (DML, ifa= (1)L

0, otherwise,

which proves the Lemma. (I
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PROOF OF THE THEOREM. i) We can formally obtain the desired expression
by taking v = f* pu* ,ugkfl). Here v is multiplicative and easy computations show

that v(p®) =0 for any 1 < a < ¢+ 1 and for a > ¢ + 2,

v(p®) = (-1 (k - 1) (fF 7Y = 7 h),

>0 J

where, according to the Lemma, the number of nonzero terms is at most k.
Let M}, = maxo<j<i—1 (kgl) We obtain that for every prime p and every
a>0+2,
[v(p®)] < 2kMCa™.

For every € > 0, a™ < 2%¢ for sufficiently large a, a > ag say, where ag > £ + 2.
For Res > 1/(£+ 2) choose £ > 0 such that Res —e > 1/(¢ + 2). Then

N SN W

P a>agp P a>agp p a>ag
1 1\ 1 -t 1
= 2kMpC Y e (1 - p”) < 2kM;C (1 ~ S /(M)) > el
p p

and obtain that V(s) is absolutely convergent for Re s > 1/(¢ + 2).

Note that v(p‘*?) = f(p**2) — k for every £ > 3, k > 2 and for £ =2, k > 2
it is v(p*) = f(p") — (*1)-

ii) Consider the k-dimensional generalized divisor function

d(1,0,¢,...,4;n) = 1.
— ¢ ZZZ —
k—1 abibs...by_,=n

According to i),

One has, see [3], Ch. 6,

> d(1,0.¢, .. bn)
N——

nsaw k—1

= Kz + xl/t (KQ logk_Qx + K3 1ogk_3x + -+ Ki_qlogz + Kk)

+ O(x st ), (10)
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for every € > 0, where uxy = % (see [3], Theorem 6.10), K1, Ks,...,
Kj_1, K}, are absolute constants depending on & and ¢ and K; = ¢¥~1(¢). For
example for k = 2 one has Ky = ((), and for k = 3: K, = 3((}), K3 =
(27 — 1)¢(§) + 3¢/ (), where ~ is Euler’s constant.

We obtain
> fn) Zdlu ra)u(b) = > v(b Zdlu 1)
n<z ab<z k 1 b<z a<z/b k 1
(. (1(1 2/b) + (2/b)"* (K log" % (z/b) + K3 log" " (x/b) +
b<zx

+ Kj_1log(z/b) + Ki) + O((x/b)ws))’

and obtain the desired result by partial summation and by noting that wg, >

/(¢ +2).
iii) For k = 3, £ = 2 the errror term of (10) is O(z%/2° log® ), cf. [3], Theo-
rem 6.4. g

4. Applications

1. In case f(n) = (7(9(n))", where r > 1 is an integer, we obtain formula
(4) applying the Theorem for £ =2, k = 2".

2. For k > 2 consider the multiplicative function f(n) = T,Ee) (n), where
for every prime power p® (a > 1), T,Ee) (p®) := 7% (a) representing the number of
ordered k-tuples of positive integers (x1,...,x) such that a = z1 - ... - z;. Here
Te(p?) = (bzﬁzl) for every prime power p® (b > 1). In case k = 2, 7'2(6) (n) =
7(e) (n).

Taking ¢ = 2 and k := k we obtain that v(p?) = 74(4) — k(k +1)/2 = 0 and
V (s) is absolutely convergent for Res > & (and not only for Res > 1 given by
the Theorem),

ZTke = Cpz + z'/28)_s(log ) + O(z++9), (11)

n<x

k_*} and

for every € > 0, where Si_2 is a polynomial of degree k — 2, wy, := 4211@+

Ok_H<1+ZTk — 7 a—1)>.
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For k = 3 the error term of (11) can be improved into O(x%/2 log® z).
A similar formula can be obtained for 3, _, (T,Ee) (n))".

3. For the function ¢(¢)(n) defined in the Introduction we obtain formula (6)
by choosing ¢ = 3, kK = 27.
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