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Almost everywhere convergence of a subsequence

of the logarithmic means of quadratical partial sums

of double Walsh–Fourier series

By GYÖRGY GÁT (Nýıregyháza) and USHANGI GOGINAVA (Tbilisi)

Abstract. The main aim of this paper is to prove that the maximal operator of

the logarithmic means of quadratical partial sums of double Walsh–Fourier series is of

weak type (1, 1) provided that the supremum in the maximal operator is taken over

special indicies. The set of Walsh polynomials is dense in L1 (I × I), so by the well-

known density argument we have that t2nf
�
x1, x2

�
→ f

�
x1, x2

�
a.e. for all integrable

two-variable functions f .

1. Introduction

The partial sums Sn(f) of the Walsh–Fourier series of a function f ∈ L(I),

I = [0, 1] converges in measure on I ([8], Ch. 5). The condition f ∈ L lnL(I × I)

provides convergence in measure on I × I of the rectangular partial sums Sn,m(f)

of double Fourier-Walsh series ([13], Ch. 3.) The first example of a function from

classes wider than L lnL(I × I) with Sn,n(f) divergent in measure on I × I was

obtained in [3]. Moreover, in each Orlicz space wider than L lnL(I × I) the set

of functions which quadratic Walsh–Fourier sums converge in measure on I × I is

of first Baire category [11]. In [2] we proved that similar proposition is true also
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for logarithmic means of quadratical partial sums

tnf
(
x1, x2

)
:=

1

ln

n−1∑

i=1

Si,i(f, x, y)

n − i

of double Walsh–Fourier series. We proved that for any Orlicz space, which is not

a subspace of L lnL(I × I), the set of the functions that these means converges in

measure is of first Baire category. From this result follows that in classes wider

than L lnL(I × I) there exists functions f for which logarithmic means tn (f) of

quadratical partial sums of double Walsh–Fourier series diverges in measure.

Besides, it is surprising that the two cases (the logarithmic means of quadrat-

ical and the two-dimensional partial sums) are not different in this point of

view. Namely, for instance in the case of (C, 1) means we have a quite dif-

ferent situation. That is, it is well-known [13] that the Marcinkiewicz means

σn (f) = 1
n

∑n
j=1 Sj,j (f), that is the (C, 1) means of quadratical partial sums of

double trigonometric Fourier series of a function f ∈ L converges in L-norm and

a.e. to f . Analogical questions with respect to the Walsh, Vilenkin systems are

discussed by Weisz [12], Goginava [5] and Gát [1].

Thus, in question of convergence in measure logarithmic means of quadratical

partial sums of double Walsh–Fourier series differs from Marcinkiewicz means and

like the usual quadratical partial sums of double Walsh–Fourier series. In spite

of this in [7] it is proved the difference between Nörlund logarithmic summability

and the usual convergence for Walsh–Fourier series.

The main aim of this paper is to prove that the maximal operator of the

logarithmic means of quadratical partial sums of double Walsh–Fourier series is

of weak type (1, 1) provided that the supremum in the maximal operator is taken

over special indicies. The set of Walsh polynomials is dense in L1 (I × I) , so by

the well-known density argument we have that t2nf
(
x1, x2

)
→ f

(
x1, x2

)
a.e. for

all integrable two-variable function f .

2. Definitions and notation

Let P denote the set of positive integers, N := P ∪ {0}. Denote Z2 the

discrete cyclic group of order 2, that is Z2 = {0, 1}, where the group operation is

the modulo 2 addition and every subset is open. The Haar measure on Z2 is given

such a way that the measure of a singleton is 1/2. Let I be the complete direct

product of the countable infinite copies of the compact groups Z2. The elements

of I are of the form x = (x0, x1, . . . , xk, . . . ) with xk ∈ {0, 1}(k ∈ N). The group
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operation on I is the coordinate-wise addition, the measure (denoted by µ) and

the topology are the product measure and topology. The compact Abelian group

I is called the Walsh group. A base for the neighborhoods of I can be given in

the following way:

I0(x) := I, In(x) := {y ∈ I : y = (x0, . . . , xn−1, yn, yn+1, . . . )},

(x ∈ I, n ∈ N).

These sets are called the dyadic intervals. Let 0 = (0 : i ∈ N) ∈ I denote the null

element of I, In := In(0) (n ∈ N). Set In := I\In.

For k ∈ N and x ∈ I denote

rk (x) := (−1)
xk (x ∈ I, k ∈ N)

the k-th Rademacher function. If n ∈ N, then n =
∑∞

i=0 ni2
i, where ni ∈ {0, 1}

(i ∈ N), i.e. n is expressed in the number system of base 2. Denote |n| := max{j ∈

N : nj 6= 0}, that is, 2|n| ≤ n < 2|n|+1.

The Walsh–Paley system is defined as the sequence of Walsh–Paley functions:

wn (x) :=

∞∏

k=0

(rk (x))
nk = r|n|(x)(−1)

P|n|−1

k=0
nkxk (x ∈ I, n ∈ P) .

The Walsh–Dirichlet kernel is defined by

Dn (x) =

n−1∑

k=0

wk (x) .

Recall that

D2n (x) =

{
2n, if x ∈ In,

0, if x ∈ In.
(1)

The rectangular partial sums of the 2-dimensional Walsh–Fourier series are

defined as follows:

SM,N (f ; x1, x2) :=

M−1∑

i=0

N−1∑

j=0

f̂ (i, j)wi

(
x1
)
wj

(
x2
)
,

where the number

f̂ (i, j) =

∫

I×I

f
(
x1, x2

)
wi

(
x1
)
wj

(
x2
)
dµ
(
x1, x2

)
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is said to be the (i, j)th Walsh–Fourier coefficient of the function f .

The norm of the space Lp (I × I) is defined by

‖f‖p :=

(∫

I×I

∣∣f
(
x1, x2

)∣∣p dµ
(
x1, x2

))1/p

(1 ≤ p < ∞) ,

and ‖f‖∞ := ess sup |f(x1, x2)|. The space weak-L1 (I × I) consists of all mea-

surable functions f for which

‖f‖weak−L1(I×I) := sup
λ>0

λµ (|f | > λ) < +∞.

The logarithmic means of cubical partial sums of the double Walsh–Fourier

series are defined as follows

tnf
(
x1, x2

)
=

1

ln

n−1∑

i=1

Si,i

(
f, x1, x2

)

n − i
,

where

ln =
n−1∑

k=1

1

k
.

Denote

Fn (x) =
1

ln

n−1∑

k=1

Dk (x)

n − k
,

Fn

(
x1, x2

)
=

1

ln

n−1∑

k=1

Dk

(
x1
)
Dk

(
x2
)

n − k
,

Kn (x) =
1

n

n∑

k=1

Dk (x) ,

Kn

(
x1, x2

)
=

1

n

n∑

k=1

Dk

(
x1
)
Dk

(
x2
)
.

For the function f we consider the maximal operators

t#f = sup
n∈N

|t2nf |.
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3. Formulation of the main results

Theorem 1. Let f ∈ L1 (I × I). Then

µ {t#f > λ} ≤
c

λ
‖f‖1 .

Corollary 1. Let f ∈ L1 (I × I). Then

t2nf
(
x1, x2

)
→ f

(
x1, x2

)
a.e. as n → ∞.

4. Auxiliary propositions

Lemma 1 (Calderon–Zygmund decomposition [10]). Let f ∈ L1 (I × I),

λ > ‖f‖1. Then there exists (u(i,1), u(i,2)) ∈ I × I, ki ∈ N (i = 1, 2, . . . , ) and a

decomposition

f = f0 +

∞∑

i=1

fi,

where

1) ‖f0‖1 ≤ cλ, ‖f0‖1 ≤ c ‖f‖1 ;

2) supp fi ⊂ Iki

(
ui,1
)
× Iki

(
ui,2
)
,

∫

I×I

fi = 0, i = 1, 2, . . . ;

3) µ

(
∞⋃

i=1

(
Iki

(
ui,1
)
× Iki

(
ui,2
))
)

≤ c‖f‖1/λ.

Lemma 2. [6] Let A ≥ k, A, k ∈ N. Then

∫

Ik

sup
n≥2A

|Kn (x)| dµ (x) ≤ c
A − k + 1

2A−k
.

Lemma 3. [1] Let k ∈ N. Then

∫

Ik×Ik

sup
n≥2k

∣∣Kn

(
x1, x2

)∣∣ dµ
(
x1, x2

)
≤ c < ∞.
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5. Proof of the main results

Proof of Theorem 1. Since

D2n−j = D2n − w2n−1Dj ,

we can write

F2n

(
x1, x2

)
=

1

l2n

2n−1∑

j=1

D2n−j

(
x1
)
D2n−j

(
x2
)

j

= D2n

(
x1
)
D2n

(
x2
)
−

D2n

(
x1
)
w2n−1

(
x2
)

l2n

2n−1∑

j=1

Dj

(
x2
)

j

−
D2n

(
x2
)
w2n−1

(
x1
)

l2n

2n−1∑

j=1

Dj

(
x1
)

j

+
w2n−1

(
x1
)
w2n−1

(
x2
)

l2n

2n−1∑

j=1

Dj

(
x1
)
Dj

(
x2
)

j

= F (1)
n

(
x1, x2

)
− F (2)

n

(
x1, x2

)
− F (3)

n

(
x1, x2

)
+ F (4)

n

(
x1, x2

)
. (2)

Denote

t(i)n f := f ∗ F (i)
n , i = 1, 2, 3, 4.

Since the operator

sup
n∈N

22n

∣∣∣∣∣

∫

In(x1)×In(x2)

f
(
u1, u2

)
dµ
(
u1, u2

)
∣∣∣∣∣

is of weak type (1, 1) and

t
(1)
# f := sup

n∈N

∣∣∣t(1)n f
∣∣∣ = sup

n∈N

22n

∣∣∣∣∣

∫

In(x1)×In(x2)

f
(
u1, u2

)
dµ
(
u1, u2

)
∣∣∣∣∣ ,

we obtain that ∥∥∥t(1)# f
∥∥∥

weak−L1(I×I)
≤ c ‖f‖1 . (3)

We prove that

∫

IN×IN

sup
n≥N

∣∣∣F (4)
n

(
x1, x2

)
dµ
(
x1, x2

)∣∣∣ ≤ c < ∞. (4)
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Using Abel’s transformation we can write that

2n−1∑

j=1

Dj

(
x1
)
Dj

(
x2
)

j
=

2n−2∑

j=1

Kj

(
x1, x2

)

j + 1
+ K2n−1

(
x1, x2

)
.

Then we have

∫

IN×IN

sup
n≥N

∣∣∣F (4)
n

(
x1, x2

)
dµ
(
x1, x2

)∣∣∣

≤

∫

IN×IN

sup
n≥N

1

l2n

2n−2∑

j=1

∣∣Kj

(
x1, x2

)∣∣
j + 1

dµ
(
x1, x2

)

+

∫

IN×IN

sup
n≥N

∣∣K2n−1

(
x1, x2

)∣∣ dµ
(
x1, x2

)
= I + II. (5)

Since [4]

sup
n

∫

I×I

∣∣Kn

(
x1, x2

)∣∣ dµ
(
x1, x2

)
< ∞,

from Lemma 3 we get

II ≤ c < ∞, (6)

and also

I ≤

∫

IN×IN

sup
n≥N

1

l2n

2N−1∑

j=1

∣∣Kj

(
x1, x2

)∣∣
j + 1

dµ
(
x1, x2

)

+

∫

IN×IN

sup
n≥N

1

l2n

2n−2∑

j=2N

∣∣Kj

(
x1, x2

)∣∣
j + 1

dµ
(
x1, x2

)

≤
1

lN

2N−1∑

j=1

1

j

∫

I×I

∣∣Kj

(
x1, x2

)∣∣ dµ
(
x1, x2

)

+ sup
n≥N

1

l2n

2n−2∑

j=2N

1

j + 1

∫

IN×IN

sup
j≥2N

∣∣Kj

(
x1, x2

)∣∣ dµ
(
x1, x2

)
≤ c < ∞. (7)

Combining (5)–(7) we obtain the proof of (4).

Hence, we can write that (see Gát [1])

∥∥∥t(4)# f
∥∥∥

weak−L1(I×I)
≤ c ‖f‖1 . (8)
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Finally, we prove that

∥∥∥t(2)# f
∥∥∥

weak−L1(I×I)
≤ c ‖f‖1 . (9)

Since
2n−1∑

j=1

Dj (u)

j
=

2n−2∑

j=1

Kj (u)

j + 1
+ K2n−1 (u) ,

we have

t(2)n f
(
y1, y2

)

=

∫

I×I

f
(
x1, x2

) D2n

(
x1 + y1

)
w2n−1

(
x2 + y2

)

l2n

2n−1∑

j=1

Dj

(
x2 + y2

)

j
dµ
(
x1, x2

)

=

∫

I×I

f
(
x1, x2

) D2n

(
x1 + y1

)
w2n−1

(
x2 + y2

)

l2n

2n−2∑

j=1

Kj

(
x2 + y2

)

j + 1
dµ
(
x1, x2

)

+

∫

I×I

f
(
x1, x2

) D2n

(
x1 + y1

)
w2n−1

(
x2 + y2

)

l2n

K2n−1

(
x2 + y2

)
dµ
(
x1, x2

)

= t(2,1)
n f

(
y1, y2

)
+ t(2,2)

n f
(
y1, y2

)
. (10)

Denote (use the notation of Lemma 1)

g (t) :=

∞∑

i=1

|fi (t)|

ki
, L (t) :=

∞∑

i=1

|Ki (t)|

i + 1
.

Let
(
y1, y2

)
∈

∞⋃

i=1

(Iki
(ui,1) × Iki

(ui,2)). (11)

Since
∫

fi = 0 we have

t(2,1)
n fi

(
y1, y2

)
= 0 for n ≤ ki. (12)

Let y1 ∈ Iki
(ui,1). Then from (1) we can write that t

(2,1)
n fi

(
y1, y2

)
= 0 for

n > ki. Hence t
(2,1)
n fi

(
y1, y2

)
6= 0 implies that y1 ∈ Iki

(
ui,1
)
. Consequently,

from (11) we can suppose that

y2 ∈
∞⋂

i=1

Iki
(ui,2).
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Then we write

D := µ

{
(
y1, y2

)
∈ I ×

(
∞⋂

i=1

Iki
(ui,2)

)
: t

(2,1)
# f

(
y1, y2

)
> cλ

}

≤

∫T
∞
i=1

Iki
(ui,2)

µ

{
y1 ∈ I : t

(2,1)
#

(
∞∑

i=1

fi

)
(
y1, y2

)
> cλ

}
dµ
(
y2
)
. (13)

From (12), we have

∣∣∣∣∣t
(2,1)
n

(
∞∑

i=1

fi

)
(
y1, y2

)
∣∣∣∣∣ ≤

∞∑

i=1

∣∣∣∣∣

∫

Iki
(ui,1)×Iki

(ui,2)

fi

(
x1, x2

)

×
D2n

(
x1 + y1

)
w2n−1

(
x2 + y2

)

l2n

2n−2∑

j=1

Kj

(
x2 + y2

)

j + 1
dµ
(
x1, x2

)
∣∣∣∣∣

≤

∫

I

(∫

I

∞∑

i=1

∣∣fi

(
x1, x2

)∣∣
ki

2n−2∑

j=1

∣∣Kj

(
x2 + y2

)∣∣
j + 1

dµ
(
x2
)
)

D2n

(
x1 + y1

)
dµ
(
x1
)

=

∫

I

(∫

I

g
(
x1, x2

)
L
(
x2 + y2

)
dµ
(
x2
))

D2n

(
x1 + y1

)
dµ
(
x1
)
.

The one-dimensional operator supn∈N |S2nf | is of weak type (1, 1). We apply

this fact for the one-dimensional function h(x1) :=
∫

I
g(x1, x2)L(x2 + y2)dµ(x2)

for every fixed y2 ∈ I. Consequently, from (13) and by the above we can write

D ≤

∫T
∞
i=1

Iki
(ui,2)

µ




y1 ∈ I : sup
n

∫

I




∫

I

g
(
x1, x2

)
L
(
x2 + y2

)
dµ
(
x2
)




· D2n

(
x1 + y1

)
dµ
(
x1
)

> cλ
}

dµ(y2)

≤
c

λ

∫T∞
i=1

Iki
(ui,2)




∫

I




∫

I

g
(
x1, x2

)
L
(
x2 + y2

)
dµ
(
x2
)


 dµ
(
x1
)


 dµ
(
y2
)

=
c

λ

∫T
∞
i=1

Iki
(ui,2)




∫

I




∫

I

g
(
x1, x2

)
dµ
(
x1
)


L
(
x2 + y2

)
dµ
(
x2
)


 dµ
(
y2
)

≤
c

λ

∞∑

i=1

1

ki

∫

Iki
(ui,2)




∫

Iki
(ui,2)




∫

Iki
(ui,1)

|fi(x
1, x2)|dµ(x1)



L(x2+ y2)dµ(x2)



dµ(y2)
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=
c

λ

∞∑

i=1

1

ki

∫

Iki
(ui,2)




∫

Iki
(ui,2)




∫

Iki
(ui,1)

∣∣fi

(
x1, x2

)∣∣ dµ
(
x1
)




·
2ki−1∑

j=1

∣∣Kj

(
x2 + y2

)∣∣
j + 1

dµ(x2)



 dµ
(
y2
)

+
c

λ

∞∑

i=1

1

ki

∫

Iki
(ui,2)

[ ∫

Iki
(ui,2)




∫

Iki
(ui,1)

∣∣fi

(
x1, x2

)∣∣ dµ
(
x1
)




·

∞∑

j=2ki

∣∣Kj

(
x2 + y2

)∣∣
j + 1

dµ
(
x2
)
]
dµ
(
y2
)

= S + M. (14)

Since [10] ∫

I

|Kj (x)| dµ (x) ≤ c < ∞,

we have

S ≤
c

λ

∞∑

i=1

1

ki

∫

Iki
(ui,2)

[∫

Iki
(ui,1)

∣∣fi

(
x1, x2

)∣∣ dµ
(
x1
)

∫

Iki
(ui,2)

2ki−1∑

j=1

∣∣Kj

(
x2 + y2

)∣∣
j + 1

dµ
(
y2
)


 dµ
(
x2
)

≤
c

λ

∞∑

i=1

‖fi‖1 ≤
c

λ
‖f‖1 (15)

Using Lemma 2 for M we have

M ≤
c

λ

∞∑

i=1

1

ki

∫

Iki
(ui,2)

[∫

Iki
(ui,1)

∣∣fi

(
x1, x2

)∣∣ dµ
(
x1
)

∫

Iki
(ui,2)

∞∑

j=2ki

∣∣Kj

(
x2 + y2

)∣∣
j + 1

dµ
(
y2
)


 dµ
(
x2
)

≤
c

λ

∞∑

i=1

1

ki

∫

Iki
(ui,2)

[∫

Iki
(ui,1)

∣∣fi

(
x1, x2

)∣∣ dµ
(
x1
)

∞∑

r=ki

2r+1−1∑

j=2r

1

j

∫

Iki
(ui,2)

∣∣Kj

(
x2 + y2

)∣∣ dµ
(
y2
)


 dµ
(
x2
)
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≤
c

λ

∞∑

i=1

(
∞∑

r=ki

r − kj + 1

2r−ki

)∫

Iki
(ui,2)

∫

Iki
(ui,1)

∣∣fi

(
x1, x2

)∣∣ dµ
(
x1, x2

)

≤
c

λ

∞∑

i=1

‖fi‖1 ≤
c

λ
‖f‖1 . (16)

Combining (14)–(16) we obtain

µ

{
(
y1, y2

)
∈

∞⋃

i=1

(Iki
(ui,1) × Iki

(ui,2)) : t
(2,1)
# f

(
y1, y2

)
> cλ

}
≤

c

λ
‖f‖1 . (17)

From Lemma 1, we get

µ

{
(
y1, y2

)
∈

∞⋃

i=1

(
Iki

(
ui,1
)
× Iki

(
ui,2
))

: t
(2,1)
# f

(
y1, y2

)
> cλ

}

≤ µ

(
∞⋃

i=1

(
Iki

(
ui,1
)
× Iki

(
ui,2
))
)

≤
c

λ
‖f‖1 , (18)

and consequently from (17) and (18) we have

µ
{(

y1, y2
)
∈ I × I : t

(2,1)
# f

(
y1, y2

)
> cλ

}
≤

c

λ
‖f‖1 . (19)

Analogously, we can prove that

µ
{(

y1, y2
)
∈ I × I : t

(2,2)
# f

(
y1, y2

)
> cλ

}
≤

c

λ
‖f‖1 . (20)

Combining (10), (19) and (20) we obtain

µ
{(

y1, y2
)
∈ I × I : t

(2)
# f

(
y1, y2

)
> cλ

}
≤

c

λ
‖f‖1 . (21)

The estimation of µ
{
(y1, y2) ∈ I × I : t

(3)
# f(y1, y2) > cλ

}
is analogous to the

estimation of µ
{
(y1, y2) ∈ I × I : t

(2)
# f(y1, y2) > cλ

}
and we have

µ
{(

y1, y2
)
∈ I × I : t

(3)
# f

(
y1, y2

)
> cλ

}
≤

c

λ
‖f‖1 . (22)

Combining (2), (3), (8), (21) and (22) we complete the proof of Theorem 1.

By making use of the well-known density argument due to Marcinkiewicz

and Zygmund [9] we can show that Corollary 1 follows from Theorem 1.
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