Some remarks on CR–submanifolds of a locally conformal Kaehler manifold with parallel Lee form

By N. PAPAGHIUC (Iaşi)

The study of the geometry of CR-submanifolds in locally conformal Kaehler (l.c.K.) manifolds is of recent interest and has been initiated by K. MATSUMOTO, [4], [5] and continued further by L. ORNEA, [6] and S. DRAGOMIR, [2], [3]. The main purpose of this note is to prove the nonexistence of some classes of proper CR-submanifolds of a l.c.K. manifold with parallel Lee form (Theorem 3).

Let (\tilde{M}^{2n}, g, J) be a Hermitian manifold of complex dimension $n \geq 2$, where g denotes the Hermitian metric, while J stands for the complex structure. Let Ω be its fundamental 2-form, i.e. $\Omega(X, Y) = g(X, JY)$, where X, Y denote vector fields on \tilde{M}^{2n} . Then \tilde{M}^{2n} is a l.c.K. manifold iff:

(1)
$$d\Omega = \omega \wedge \Omega$$

for some closed globally defined 1-form ω on \tilde{M}^{2n} (see e.g. I. VAISMAN, [8]). The 1-form ω is called the Lee form on \tilde{M}^{2n} . Suppose that $\omega \neq 0$ at every point and consider the corresponding unit 1-form $u = \omega/|\omega|$. Denote by U the unit vector field (called the Lee vector field) defined by

(2)
$$u(X) = g(U, X).$$

Consider also the unit vector field V defined by V = JU and the 1–form v defined by

(3)
$$v(X) = g(V, X).$$

Because g is Hermitian we have

(4)
$$v = -u \circ J$$
, $u = v \circ J$, $u(V) = v(U) = 0$.

Let \tilde{M}^{2n} be a l.c.K. manifold and $\tilde{\bigtriangledown}$ be the Levi Civita connection of g. On \tilde{M}^{2n} one also has another torsionless linear connection \tilde{D} , called the Weyl connection, expressed by:

(5)
$$\tilde{D}_X Y = \tilde{\bigtriangledown}_X Y - c \left[u(X)Y + u(Y)X - g(X,Y)U \right],$$

where we denoted $c = |\omega|/2$.

It is known (see [7]) that the Hermitian manifold (\tilde{M}^{2n}, g, J) is l.c.K. if and only if there exists a global closed 1–form ω satisfying

$$DJ = 0$$

where \tilde{D} denotes the Weyl connection defined by (5). Then we have

Proposition 1. A Hermitian manifold (\tilde{M}^{2n}, g, J) is a l.c.K. manifold if and only if there exists a global closed 1-form ω satisfying

(7)
$$(\tilde{\bigtriangledown}_X J)Y = c\left[g(JX,Y)U + g(X,Y)V - u(Y)JX - v(Y)X\right]$$

for any vector fields X, Y tangent to \tilde{M}^{2n} , where $\tilde{\bigtriangledown}$ is the Levi Civita connection of g.

A l.c.K. manifold is called a \mathcal{PK} -manifold if its Lee form is absolutely parallel with respect to the Levi Civita connection $\bar{\bigtriangledown}$ of the metric. If, moreover, the local conformal Kaehler metrics have vanishing curvature, the manifold is called a $\mathcal{P}_0\mathcal{K}$ -manifold (see [8]).

It follows that a l.c.K. manifold \tilde{M}^{2n} is a \mathcal{PK} -manifold if and only if c = const. and the following relation holds

(8)
$$\nabla X U = 0$$

for any vector field X tangent to \tilde{M}^{2n} (see also [8]).

Then, by using (7) and (8) we get

Lemma 2. Let \tilde{M}^{2n} be a \mathcal{PK} -manifold. Then we have

(9)
$$\tilde{\bigtriangledown}_X V = c \left[u(X)V - v(X)U - JX \right]$$

for any vector field X tangent to \tilde{M}^{2n} .

Now, let M be a real m-dimensional Riemannian manifold isometrically immersed in a l.c.K. manifold \tilde{M}^{2n} . The submanifold M is called a CR-submanifold if it is endowed with the pair of complementary orthogonal differentiable distributions (D, D^{\perp}) , such that $JD_x = D_x$, $JD_x^{\perp} \subset$ $T_x^{\perp}M$ and $T_xM = D_x \oplus D_x^{\perp}$ for each $x \in M$, where T_xM and $T_x^{\perp}M$ are the tangent and the normal space at x of M. Remark that the study of differential geometry of CR-submanifolds of a Kaehler manifold has been initiated by A. BEJANCU in [1].

The distribution D from the definition of a CR–submanifold is called the holomorphic distribution and D^{\perp} is called the totally real distribution. A CR–submanifold is said to be proper if both distributions D and D^{\perp} have non–null dimensions.

Now, we state

338

Theorem 3. Let M be an m-dimensional CR-submanifold of a \mathcal{PK} -manifold \tilde{M}^{2n} . If the distinguished vector field V is normal to M, then M is a totally real submanifold of \tilde{M}^{2n} and $m \leq n$.

PROOF. Suppose V is normal to $M.\,$ Then, by using Lemma 2 we obtain

(10)
$$g([X,Y],V) = g(\bigtriangledown XY,V) - g(\bigtriangledown YX,V) =$$
$$=g(X, \bigtriangledown YV) - g(Y, \bigtriangledown XV) =$$
$$=cg(X, u(Y)V - JY) - cg(Y, u(X)V - JX) =$$
$$=c[g(JX,Y) - g(X,JY)] = 2cg(Y,JX) = 2c\Omega(Y,X) ,$$

for all vector fields X, Y tangent to M. Now, if we suppose that $D \neq \{0\}$, for a unit vector field $X \in \Gamma(D)$ we take $Y = JX \in \Gamma(D)$ and obtain $\Omega(Y, X) = 1$. Because $c = |\omega|/2 \neq 0$, the assertion of Theorem 3 follows from (10).

From Theorem 3 we have

Corollary 4. There does not exist proper CR-submanifolds M of a \mathcal{PK} -manifold \tilde{M}^{2n} such that V is normal to M. In particular, there does not exist proper CR-submanifolds of a \mathcal{PK} -manifold such that $U \in \Gamma(D^{\perp})$.

Corollary 5. There does not exist complex submanifolds M of a \mathcal{PK} -manifold \tilde{M}^{2n} such that the Lee vector field U is normal to M.

Therefore, if \tilde{M}^{2n} is a \mathcal{PK} -manifold we can consider two classes of proper CR-submanifolds M of \tilde{M}^{2n} , according to the position of the Lee vector field U with respect to the tangent bundle of the submanifold.

Let M be proper CR-submanifold of a \mathcal{PK} -manifold \tilde{M}^{2n} . We say that M is a L-CR-submanifold (resp. a L^{\perp}-CR-submanifold) if the Lee vector field on \tilde{M}^{2n} is tangent (resp. normal) to the submanifold M.

Denote by $\{U\}$ and $\{V\}$ the 1-dimensional distributions defined by Uand V, respectively. Then, if M is a proper L-CR-submanifold of a \mathcal{PK} manifold \tilde{M}^{2n} , the holomorphic distribution D of M has the decomposition

(11)
$$D = \overline{D} \oplus \{U\} \oplus \{V\},$$

where D is the holomorphic distribution complementary orthogonal of $\{U\} \oplus \{V\}$ in D. Therefore, the tangent bundle to M has the decomposition

(12)
$$TM = D \oplus \{U\} \oplus \{V\} \oplus D^{\perp}.$$

Concerning the integrability of all distributions which are involved in the decomposition (12) of the tangent bundle of a proper L–CR–submanifold of a \mathcal{PK} –manifold we have

N. Papaghiuc

Theorem 6. i). The distributions $D^{\perp}, D^{\perp} \oplus \{U\}, D^{\perp} \oplus \{V\}, D^{\perp} \oplus \{V\}$ and $\overline{D} \oplus D^{\perp} \oplus \{V\}$ are always integrable.

ii). If $\overline{D} \neq \{0\}$, the distributions $\overline{D} \oplus \{V\}$ and $\overline{D} \oplus \{U\} \oplus \{V\}$ are integrable if and only if the following relation holds

$$h(X, JY) = h(JX, Y)$$

for all $X, Y \in \Gamma(\overline{D})$, where h denotes the second fundamental form of the submanifold M in \tilde{M}^{2n} .

iii). If $\overline{D} \neq \{0\}$, the distributions $\overline{D}, \overline{D} \oplus \{U\}$ and $\overline{D} \oplus D^{\perp} \oplus \{U\}$ are never integrable.

Now suppose M is a proper L^{\perp}-CR–submanifold of a \mathcal{PK} -manifold \tilde{M}^{2n} . Then the tangent bundle to M has the decomposition

(13)
$$TM = D \oplus \overline{D}^{\perp} \oplus \{V\},$$

i.e. the totally real distribution D^{\perp} can be write $D^{\perp} = \overline{D}^{\perp} \oplus \{V\}$, where \overline{D}^{\perp} is the complementary orthogonal totally real distribution of $\{V\}$ in D^{\perp} .

Concerning the integrability of distributions which are involved in the decomposition (13) of the tangent bundle of a proper L^{\perp} -CR–submanifold of a \mathcal{PK} –manifold we have

Theorem 7. i). The distributions \overline{D}^{\perp} and $\overline{D}^{\perp} \oplus \{V\} = D^{\perp}$ are always integrable.

ii). The distribution $D \oplus \{V\}$ is integrable if and only if we have h(X, JY) = h(JX, Y) for all $X, Y \in \Gamma(D)$.

iii). The distributions D and $D \oplus \overline{D}^{\perp}$ are never integrable.

Remark that by $\Gamma(D)$ (resp. $\Gamma(D^{\perp})$) we have denoted the module of differentiable sections of D (resp. D^{\perp}).

References

- A. BEJANCU, CR-submanifolds of a Kaehler manifold I, Proc. Amer. Math. Soc., 69 (1978), 135–142.
- [2] S. DRAGOMIR, Cauchy-Rieamann submanifolds of locally conformal Kaehler manifolds. I, Geometriae Dedicata, 28 (1988), 181–197.
- [3] S. DRAGOMIR, Cauchy-Rieamann submanifolds of locally conformal Kaehler manifolds. II, Atti Sem. Mat. Fis. Univ. Modena, 37 (1989), 1–11.
- [4] K. MATSUMOTO, On CR-submanifolds of locally conformal Kaehler manifolds, I, J. of Korean Math.Soc., 21 (1984), 33–38.
- [5] K. MATSUMOTO, On CR-submanifolds of locally conformal Kaehler manifolds, II, Tensor, N.S., 45 (1987), 144–149.
- [6] L. ORNEA, On CR-submanifolds of locally conformal Kaehler manifolds, Demonstratic Mathematica, 19 (1986), 863–869.
- [7] I. VAISMAN, On locally conformal almost Kaehler manifolds, Israel J. of Math., 24 (1976), 338–351.

[8] I. VAISMAN, Locally conformal Kaehler manifolds with parallel Lee Form, Rendiconti di Matem., 12 (1979), 263–284.

N. PAPAGHIUC DEPARTMENT OF MATHEMATICS POLYTECHNIC INSTITUTE OF IAŞI ROMANIA

(Received April 13, 1992)