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On a class of projectively flat (α, β)-metrics

By XINYUE CHENG (Chongqing) and MING LI (Chongqing)

Abstract. In this paper, we find a sufficient and necessary condition for an im-

portant class of (α, β)- metrics in the form F = αφ(β/α) to be locally projectively flat,

where φ = φ(s) is a positive C∞ function satisfying certain conditions, characterized by

a polynomial or a power series of s, α is a Riemannian metric and β is a 1-form.

1. Introduction

Hilbert’s Fourth Problem in the regular case requires to study and character-
ize Finsler metrics F = F (x, y) on an open domain U ⊂ Rn whose geodesics are
straight lines [4]. Finsler metrics on U with this property are called projectively
flat metrics. In [3], G. Hamel first found a simple system of partial differential
equations that characterizes projectively flat Finsler metrics on an open domain
U ⊂ Rn. That is F = F (x, y) on U is projectively flat if and only if the following
PDE’s hold:

Fxmyiym = Fxi . (1)

It is one of the important problems in Finsler geometry to characterize projec-
tively flat metrics. According to Beltrami’s Theorem, a Riemannian metric is
projectively flat if and only if it is of constant sectional curvature[7], [8]. Further,
it is known that a Randers metric F = α + β is projectively flat if and only if α

is projectively flat and β is closed [1], where α =
√

aij(x)yiyj is a Riemannian
metric and β = biy

i is a 1-form with b := ‖βx‖ < 1 for x ∈ M .
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In this paper, we are going to consider a class of Finsler metrics on a mani-
fold M which are expressed in the following form:

F = αφ(s), s =
β

α
,

where φ = φ(s) is a C∞ function on (−b0, b0) satisfying

φ(0) = 1, φ(s) > 0, φ(s)− sφ′(s) + (b2 − s2)φ′′(s) > 0, (2)

where s and b are arbitrary numbers with |s| ≤ b < b0. It is known that F =
αφ(s), s = β/α is a Finsler metric if and only if the condition (2) holds. Finsler
metrics in the above form are called (α, β)-metrics. The class of (α, β)-metrics
contains all Riemannian metrics (φ = 1) and all Randers metrics (φ = 1 + s). In
the past several years, various curvatures in Finsler geometry have been studied
and their geometric meaning is better understood. This is partially due to the
study of (α, β)-metrics. Thus, this motivates people to study (α, β)-metrics more
deeply.

From now on, we are going to consider a special class of (α,β)-metrics F =
αφ(s), where φ = φ(s) is a function satisfying (2) and

φ− sφ′ = (p + rs2)φ′′(s), (3)

where p, r are constants. Recently, Z. Shen has proved the following

Theorem 1.1. ([11]) Assume that φ = φ(s) satisfies (2) and (3). Let F =
αφ(β/α) be an (α, β)-metric on a manifold M . If

bi|j = 2τ
{
(p + b2)aij + (r − 1)bibj

}
(4)

and the spray coefficients Gi
α of α are of the form:

Gi
α = ξyi − τα2bi, (5)

where b :=
√

aijbibj , bi|j denote the coefficients of the covariant derivative of β

with respect to α, τ = τ(x) is a scalar function and ξ = ξi(x)yi is a 1-form on M ,

then F is locally projectively flat.

Unfortunately, we are not sure that the conditions (4) and (5) are necessary.
A key step is to prove that β is closed. However, some progress has been made
for certain types of functions φ recently. In [12], Z. Shen and G. C. Yildirim

first showed that F = (α + β)2/α is projectively flat if and only if the conditions



On a class of projectively flat (α, β)-metrics 197

(4) and (5) hold with p = 1/2 and r = −1/2. Then they proved that the (α, β)-
metrics F = α + εβ + kβ2/α are projectively flat if and only if the conditions (4)
and (5) hold with p = 1/(2k) and r = −1/2, where ε and k 6= 0 are constants.
Further, Y. Shen and L. Zhao have shown that φ = 1+εs+2ks2− k2

3 s4 satisfies
(2) and (3) with p = 1/(4k) and r = −1/4, and the Finsler metrics in the form
F = αφ(β/α) are projectively flat if and only if (4) and (5) hold [6]. In this paper
we will show that, for a larger class of Finsler metrics F = αφ(s) satisfying (2)
and (3), they are projectively flat if and only if (4) and (5) hold.

We will firstly show that, if p = 0 then the solutions of (3) will not satisfy
(2). Hence, we always assume that p 6= 0 in this paper. In this case, the solutions
of (3) are analytic near the origin and the power series of the solutions are of the
form

φ(s) = C0 + C1s + C2s
2 + C4s

4 + · · ·+ C2ns2n + · · ·, (6)

where C0 and C1 are arbitrary constants and the coefficients of φ satisfy

C2n+2 =
(
−1

p

)
(2n− 1)(2nr + 1)
(2n + 2)(2n + 1)

C2n.

By a simple analysis, we can see that φ(s) satisfies (2) and (3) if and only if
C0 = 1 and b ∈ (0,

√
|p| ) is sufficiently small. In particular, if we take r = − 1

2k

and k is a positive integer, then the φ(s) in (6) are polynomials of the following
form

φ(s) = C0 + C1s + C2s
2 + C4s

4 + · · ·+ C2ks2k. (7)

Furthermore, if we take k = 1 and then k = 2, then the (α, β)-metrics F = αφ(s),
s = β/α, given by (7) have the form

F = α + C1β +
1
2p

β2

α
, (8)

and

F = α + C1β +
1
2p

β2

α
− 1

48p2

β4

α3
(9)

respectively. These are just the (α, β)-metrics discussed in [12] and [6] respec-
tively.

By using the form (6) of φ, we have the following main

Theorem 1.2. Assume that φ = φ(s) is a function in the form (6) satisfying

(2) and (3). If C1 6= 0 and r 6= 1 or C1 = 0 but r = −1/(2k), where k is any

positive integer, then the (α, β)-metric F = αφ(β/α) is projectively flat if and

only if (4) and (5) hold.

According to the discussion above, Theorem 1.2 generalizes the results in [12]
and [6].
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2. The analysis of the solutions

In this section, we will study the second order linear ODE (3) by the power
series method. If p = 0, then equation (3) has explicit solutions as follows:

φ(s) =





Cs if r = 0

Cs + C̃s ln s if r = −1

Cs + C̃s−
1
r if r 6= 0,−1.

In this case, φ(0) 6= 1. Now, the resulting φ(s) does not satisfy (2) and the
F = αφ(β/α) defined by these φ(s) are not Finsler metrics. Therefore, we always
assume that p 6= 0.

By a theorem on the power series method of ODE, we know that the solutions
of (3) are analytic near the origin. Let the power series expressions of φ(s) be

φ(s) =
∞∑

n=0

Cnsn.

The first and the second order derivatives of φ(s) are

φ′(s) =
∞∑

n=0

(n + 1)Cn+1s
n, φ′′(s) =

∞∑
n=0

(n + 2)(n + 1)Cn+2s
n.

Plugging them into (3) yields

(2pC2 − C0) + 6pC3s +
∞∑

n=0

{
p(n + 4)(n + 3)Cn+4

+ (n + 1)
[
r(n + 2) + 1

]
Cn+2

}
sn+2 = 0. (10)

From (10) we know that the coefficients of φ(s) must satisfy

C2n+1 = 0, n ≥ 1, (11)

C2n+2 =
(
−1

p

)
(2n− 1)(2nr + 1)
(2n + 2)(2n + 1)

C2n, n ≥ 0. (12)

Hence the power series expression of φ(s) is

φ(s) = C0 + C1s + C2s
2 + C4s

4 + · · ·+ C2ns2n + · · ·. (13)
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We assert that the F = αφ(β/α) defined by φ(s) in the form (13) are Finsler
metrics if and only if C0 = 1 and b ∈ (0,

√
|p| ) is sufficiently small. Because of

φ(0) = C0 and (2), we know that C0 = 1. Then φ(s) > 0 in a sufficiently small
neighborhood of the origin. Note that

[φ(s)− sφ′(s) + (b2 − s2)φ′′(s)]s=0 =
p + b2

p
.

Thus, if b ∈ (0,
√
|p| ) is sufficiently small and |s| ≤ b, then

φ(s)− sφ′(s) + (b2 − s2)φ′′(s) > 0.

This proves our assertion. In this case,

C2 =
1
2p
6= 0. (14)

3. (α, β)-metrics

In this section, for a function φ = φ(s) satisfying (2), we will recall some
well-known properties of an (α, β)-metric F = αφ(β/α). Let bi|jdxi⊗ dxj denote
covariant derivatives of β with respect to α. Let

rij :=
1
2
(bi|j + bj|i), sij :=

1
2
(bi|j − bj|i),

si
j := ailslj , sj := bisij

and
r00 := rijy

iyj , s0 := siy
i, si

0 := si
jy

j , sl0 := sljy
j .

Clearly, β is closed if and only if sij = 0.
The geodesic coefficients Gi of F = αφ(β/α) are given by

Gi = Gi
α + αQsi

0 + H(−2αQs0 + r00)
{

χ
yi

α
+ bi

}
, (15)

where

χ :=
(φ− sφ′)φ′

φφ′′
− s,

Q :=
φ′

φ− sφ′
,

H :=
φ′′

2[(φ− sφ′) + (b2 − s2)φ′′]
.

The formula (15) is given in [2], [10], [11]. Further, by (1) and (15) we have
the following
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Lemma 3.1 ([12]). An (α, β)-metric F = αφ(β/α) is projectively flat on an

open domain U ⊂ Rn if and only if

(amlα
2 − ymyl)Gm

α + α3Qsl0 + H(−2αQs0 + r00)(blα
2 − βyl) = 0, (16)

where yl := aily
i.

4. Proof of Theorem 1.2

In this section, we are going to prove Theorem 1.2 using Lemma 3.1.
From (3) and (15) we have

Q =
φ′

(p + rs2)φ′′
, H =

1
2[(p + b2) + (r − 1)s2]

. (17)

If (4) holds, then β is closed and r00 = 2τ{(p + b2)α2 + (r − 1)β2}. Hence (15)
reduces to

Gi = Gi
α + τ

{
χ

yi

α
+ bi

}
α2.

In addition, if (5) holds, we may obtain

Gi = (ξ + τχα)yi.

Therefore F is projectively flat.
Conversely, assume that φ = φ(s) is a function satisfying (2) and (3) and the

(α,β)-metric F = αφ(β/α) is projectively flat.
If β is closed, i.e. sij = 0, (16) reduces to

(amlα
2 − ymyl)Gm

α +
α2r00

2[(p + b2)α2 + (r − 1)β2]
(blα

2 − βyl) = 0,

that is,

2(amlα
2 − ymyl)

[
(p + b2)α2 + (r − 1)β2

]
Gm

α = −α2r00(blα
2 − βyl). (18)

Contracting (18) with bl, we get

2
[
(p + b2)α2 + (r − 1)β2

]
(bmα2 − ymβ)Gm

α = −α2(b2α2 − β2)r00.
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Note that the polynomial (p+b2)α2+(r−1)β2 is not divisible by α2 and b2α2−β2

as r 6= 1. Thus (bmα2 − ymβ)Gm
α is divisible by α2(b2α2 − β2). Therefore, there

is a function τ = τ(x) such that

r00 = 2τ{(p + b2)α2 + (r − 1)β2}. (19)

Note that (19) is equivalent to (4) since sij = 0. Now the formula (15) for Gi can
be simplified to

Gi = Gi
α + τχαyi + τα2bi. (20)

On the other hand, it is well-known that F is projectively flat if and only if there
is a scalar function P (x, y) satisfying P (x, λy) = λP (x, y) for λ > 0, such that
Gi = Pyi. Thus, by (20), we have

Gi
α = (P − τχα)yi − τα2bi.

Because both of Gi
α and τα2bi are quadratic forms of (yi), we assert that ξ :=

P − τχαyi must be a 1-form and we get (5). Thus the key step of the proof is to
prove that β is closed.

It is easy to see by (17) that (16) can be rewritten as

2[(p + b2) + (r − 1)s2](p + rs2)(amlα
2 − ymyl)Gm

α φ′′

+ 2[(p + b2) + (r − 1)s2]α3sl0φ
′ − 2αs0(blα

2 − βyl)φ′

+ r00(p + rs2)(blα
2 − βyl)φ′′ = 0. (21)

Contracting (21) with bl yields

2[(p + b2) + (r − 1)s2](p + rs2)(bmα2 − ymβ)Gm
α φ′′

+ 2[(p + b2) + (r − 1)s2]α3s0φ
′ − 2αs0(b2α2 − β2)φ′

+ r00(p + rs2)(b2α2 − β2)φ′′ = 0. (22)

Then we have

{
2
[
(p + b2) + (r − 1)s2

]
(bmα2 − ymβ)Gm

α + r00(b2α2 − β2)
}
(p + rs2)φ′′

+ 2αs0(pα2 + rβ2)φ′ = 0. (23)

Case 1: C1 6= 0 and r 6= 1. In this case, we have

φ(s) = 1 + C1s + C2s
2 + C4s

4 + · · ·+ C2ns2n + · · · ,

φ′(s) = C1 + 2C2s + 4C4s
3 + · · ·+ 2nC2ns2n−1 + · · · ,

φ′′(s) = 2C2 + 4 · 3C4s
2 + · · ·+ 2n · (2n− 1)C2ns2n−2 + · · ·
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Let
ψ(s) = 2C2 + 4C4s

2 + · · ·+ 2nC2ns2n−2 + · · · .

Then φ′(s) = C1 + sψ(s) and (23) becomes
{
2
[
(p + b2) + (r − 1)s2

]
(p + rs2)(bmα2 − ymβ)Gm

α

+ r00(p + rs2)(b2α2 − β2)
}
φ′′ + 2βs0(pα2 + rβ2)ψ

+ 2αs0(pα2 + rβ2)C1 = 0. (24)

Note that, when we change y into −y in (24), only 2αs0(pα2 + rβ2)C1 changes
its sign. Hence

2αs0(pα2 + rβ2)C1 = 0. (25)

Because of p 6= 0, we assert that pα2 + rβ2 6= 0. Thus

s0 = 0.

Substituting it back into (21), by a similar discussion and by paying attention to
φ′(−s) = C1 − sψ(s), we get C1sl0 = 0. By assumption, we obtain

sl0 = 0.

That is, β is closed.

Case 2: C1 = 0 but r = − 1
2k , where k is a positive integer.

When k = 1, the metrics are just those of the form (8). In [12], Z. Shen and
G. C. Yidirim have proved that such metrics are projectively flat if and only if
(4) and (5) hold. So, in the following, we will always assume that k ≥ 2. In this
case, we have

φ(s) = 1 + C2s
2 + C4s

4 + · · ·+ C2ks2k,

φ′(s) = 2C2s + 4C4s
3 + · · ·+ 2kC2ks2k−1,

φ′′(s) = 2C2 + 4 · 3C4s
2 + · · ·+ 2k · (2k − 1)C2ks2k−2.

Let
ψ(s) = 2C2 + 4C4s

2 + · · ·+ 2kC2ks2k−2.

Then φ′(s) = sψ(s) and (23) can be rewritten as

{
2
[
(p + b2) + (r − 1)s2

]
(bmα2 − ymβ)Gm

α + r00(b2α2 − β2)
}
(p + rs2)φ′′

+ 2βs0(pα2 + rβ2)ψ = 0. (26)
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Multiplying (26) by α2k+2 yields

{
2
[
(p + b2)α2 + (r − 1)β2

]
(bmα2 − ymβ)Gm

α + r00α
2(b2α2 − β2)

}
η

+ 2α4βs0θ = 0, (27)

where

η = 2C2α
2k−2 + 4 · 3C4α

2k−4β2 + · · ·+ 2k · (2k − 1)C2kβ2k−2,

θ = 2C2α
2k−2 + 4C4α

2k−4β2 + · · ·+ 2kC2kβ2k−2.

When k ≥ 2, it is clear that θ and η are relatively prime polynomials of (yi).
Hence α4βs0 must be divisible by η. Because both of α2 and β are irreducible
polynomials of (yi), α4β and η are obviously relatively prime polynomials of (yi).
Then s0 must be divisible by η, which implies that

s0 = 0.

Substituting this back into (21) yields that

{
2
[
(p + b2) + (r − 1)s2

]
(amlα

2 − ymyl)Gm
α + r00(blα

2 − βyl)
}
(p + rs2)φ′′

+ 2[(p + b2) + (r − 1)s2]α3sl0φ
′ = 0,

that is,

{
2
[
(p + b2) + (r − 1)s2

]
(amlα

2 − ymyl)Gm
α + r00(blα

2 − βyl)
}
(p + rs2)φ′′

+ 2[(p + b2) + (r − 1)s2]α2βsl0ψ = 0. (28)

Multiplying (28) by α2k+2 yields
{
2
[
(p + b2)α2 + (r − 1)β2

]
(amlα

2 − ymyl)Gm
α

+ r00α
2(blα

2 − βyl)
}
(pα2 + rβ2)η

+ 2[(p + b2)α2 + (r − 1)β2]α4βsl0θ = 0. (29)

Hence [(p + b2)α2 + (r − 1)β2]sl0 must be divisible by η.
If k = 2, we know from (12) and (14) that

η =
1
p2

(
pα2 − 1

12
β2

)
,

(p + b2)α2 + (r − 1)β2 = 15
[(

p + b2

15

)
α2 − 1

12
β2

]
.
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It is clear that (p+b2)α2+(r−1)β2 and η are relatively prime polynomials of (yi).
Hence sl0 must be divisible by η. This yields that sl0 = 0.

If k ≥ 3, the degrees of [(p + b2)α2 + (r − 1)β2]sl0 and η show that sl0 = 0.
Thus we may conclude that β is closed when k ≥ 2. This completes the proof

of Theorem 1.2.
From Theorem 1.2 and (12), (14) and the discussion in section 2, we have

the following

Corollary 4.1. Assume that

φ(s) = 1 + C1s +
1
2p

s2 + · · ·+ C2ns2n + · · ·

and b ∈ (0,
√
|p| ) is sufficiently small, where

C2n+2 = (−1)n (2n− 1)!!
(2n + 2)!pn+1

n∏

i=1

(2ir + 1), n ≥ 1.

If C1 6= 0 and r 6= 1 or C1 = 0 but r = −1/(2k) where k is any positive integer,

then the (α, β)-metric F = αφ(β/α) is projectively flat if and only if (4) and (5)
hold.
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